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During the last decade a lot of research and develop 
efforts have been made to design competitive still image 
coders for several kinds of applications.  

In this paper, we present a new wavelet still-image 
coder, called LWT (Lower-Tree Wavelet), based on the 
construction and codification of coefficient trees as other 
proposals do. This algorithm is fast and symmetric (except 
in extremely low bit rates), which makes it adequate for 
real-time interactive multimedia applications. We have 
compared our algorithm with several well-known coders in 
terms of rate/distortion performance using the standard 
Lena image. Results show that LTW, with lower temporal 
complexity, achieves better results than EZW (in 0.8 dB 
PSNR) and stack-run (in 0.13 dB). Also, we have tested 
the temporal complexity of LTW algorithm, resulting 3.5 
times faster than an optimized EZW. 
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A wide variety of wavelet-based image compression 
schemes have been reported in the literature. The early 
wavelet image coders [1] were designed to exploit the 
ability of compacting energy on the wavelet 
decomposition. They used quantizers and variable-length 
entropy coders, showing little improvements with respect 
to the popular DCT-based ones.  

However, the properties of wavelet coefficients can be 
exploited more efficiently. In that sense, Shapiro [3] 
developed a wavelet-based encoder that considerably 
improves the previous proposals. The encoder, called 
Embedded Zero-tree Wavelet encoder (EZW), is mainly 
based on two questions (a) the similarity between the same 
kind of sub-bands in a wavelet decomposition, and (b) a 
quantization based on a successive-approximation scheme 
that can be adjusted in order to get a specific bit rate. The 
own encoder includes an entropy encoder (typically an 
adaptive arithmetic encoder) as its final stage. 

Said and Pearlman [2] proposed a variation of EZW, 
called SPIHT (Set Partitioning In Hierarchical Trees). It 
achieves better results than EZW, even without taking into 
account the final arithmetic encoding stage. The 
improvements are due to the way it groups the wavelet 
coefficients and how it stores the significant information. 

A different approach to the previous algorithms is the 
one proposed in [4], known as the stack-run algorithm. 
This algorithm has a similar structure than JPEG coders. 
That is, after wavelet decomposition, wavelet coefficients 
are quantized using a classic quantization scheme. Then, 
quantized coefficients are entropy coded using a run-
length encoder (RLE) and, finally, an arithmetic encoder is 
used.  

In [5], a joint space-frequency quantization scheme 
was proposed. It uses a spatial quantization, like zero-tree, 
in combination with a standard scalar quantizer. The idea 
is based in the fact that natural images are perfectly 
modeled by a lineal combination of compacted energy in 
both domains the frequency and space.  

One of the most widely used technique from the 
above presented ones is tree encoding. However, this kind 
of coders exhibit an important asymmetry, due to the way 
that construction of significance coefficient maps and 
refinement stages are performed in the encoding stage.  So 
this kind of coders, by nature, are not able to work 
efficiently in interactive multimedia applications. 

In this paper, we propose a new wavelet still-image 
coder that it is simpler and faster than others previously 
published [3][2]. We have called it LTW (Lower-Tree 
Wavelet) coder. The main contribution of LTW is the way 
that it builds the coefficient map. It does not use an 
iterative loop in order to determine the significant 
coefficients and to assign them bits. It builds the 
significant map in only one step using two symbols for 
pruning tree branches, and then, depending on the required 
target bit rate, it codes the significant coefficients also in 
one step. This algorithm reduces the complexity on the 
encoder stage in such manner that it is similar to de 
decoder stage. So, another important feature of LTW is its 
symmetric behavior. 



In section 2 a description of the proposed algorithm is 
shown. In section 3, we show a performance evaluation of 
our proposed scheme in terms of rate/distortion and 
computation complexity performance metrics. Finally, in 
section 4 some conclusions and future work are drawn.  
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For the most part, digital images are represented with a set 
of pixel values. The encoder proposed in this paper can be 
applied to a set of coefficients � resulting from a dyadic 
decomposition Ω(�), in order that �=Ω(�). The most 
commonly used dyadic decomposition in image 
compression is the hierarchical wavelet subband transform 
[1] (with a lot of advantages over other transform methods 
as the DCT), so an element �� ML ∈,  is called transform 

coefficient. 
Tree oriented wavelet image encoders are proved to 

efficiently transmit or store the set �, achieving a great 
performance results.  In these algorithms, two stages can 
be established. The first one consists on encoding the 
significance map, i.e., the location and amount of bits 
required to represent those coefficients that will be 
encoded (significant coefficients).  And in the second 
stage, significant transform coefficients are encoded, i.e. 
their sign and magnitude bits, depending on the desired 
target bit rate. 

One of the main drawbacks in previous tree oriented 
wavelet image encoders is their high temporal complexity. 
That is mainly due to the bit plane processing at the 
construction of the significance map, performed along 
different iterations, using a threshold that focuses on a 
different bit plane in each iteration. Moreover, the bits of 
the significant coefficients are also bit plane processed. 

Our proposed LTW algorithm is able to encode the 
significance map without performing one loop scan per bit 
plane. Instead of it, only one scan of the transform 
coefficients is needed. The LTW also can encode the bits 
of the significant transform coefficients in only one scan.  

Let us define some concepts before the LTW be 
explained.  Like in the rest of tree encoding techniques, 
coefficients from � can be logically arranged as a tree. In 
our algorithm, every coefficient ��� ,  in the LL subband 

(the scaled version of the original image) is the root of a 
tree. For each root node placed at (�, �), the following 
offspring will be formed by three coefficients placed at 
(�+width(LL), �), (�, �+height(LL)) and (a+width(LL), 
b+height(LL)). The offspring of the rest of nodes (�, �) are 
the four coefficients placed at (2�, 2�), (2�+1, 2�), (2�, 
2�+1), (2�+1, 2�+1) (except for those nodes in the first 
level of decomposition subbands, LH0, HL0 and HH0, 
that represent the leaves of the trees). 

We also have to define the order to scan the subbands 
in the first stage, where the significance map is built. We 

use a zig-zag order, starting from the LL subband, so that 
all the subbands at a level � are always scanned before the 
�-1 subbands. Finally, coefficients in a subband are 
scanned in a Morton order. Notice that both the scan order 
and the trees are defined in a similar way that in Shapiro’s 
EZW algorithm. 

Now we are ready to define the algorithm. Let us start 
with the encoder part. The quantization process is 
performed by two strategies: one coarser and another finer. 
The finer one consists on applying a scalar uniform 
quantization on the coefficients, and it is performed before 
the LTW algorithm. On the other hand, the coarser one is 
based on removing bit planes from the least significant 
part of the coefficients, and it belongs to the LTW 
encoder. We define 	
����
 as the number of less 
significant bits that are going to be removed in the LTW.  

At the initialization of the encoder, it is calculated the 
maximum number of bits needed to represent the higher 
coefficient (���
����) and it is output to the decoder. The 
	
����
 parameter is also output. With these data, we 
initialize an adaptive arithmetic encoder that will be used 
to transmit the number of bits required to encode any 
coefficient. We will only transmit those coefficients that 
require more than 	
����
 bits to be coded, so only 
���
�����	
����
 symbols are needed to represent this 
information. We also use two extra symbols to efficiently 
represent the significance map. 

In the next stage the significance map is encoded as 
following. All the subbands are scanned in zig-zag order 
and for each subband all the coefficients are scanned in 
Morton order, as explained previously. Then, for each 
coefficient, if it is significant (i.e., it is different to zero if 
we discard the first 	
����
 bits) the number of bits 
required to represent that coefficient is encoded with an 
adaptive arithmetic encoder. As coefficients in the same 
subband have similar magnitude, and due to the order we 
have established to scan the coefficients, the adaptive 
arithmetic encoder is able to encode very efficiently the 
number of bits of the transform coefficients. On the other 
hand, if a coefficient is not significant and all its 
descendents are not significant (they form a lower-tree), 
the symbol ����� is encoded and this coefficient and its 
descendents are marked as not active (initially all them are 
active). A not active coefficient is not processed any more, 
neither in the first stage nor in the second one. Finally, if 
the coefficient is insignificant but it has at least one 
significant descendent, the symbol �������������� is 
encoded and only this coefficient is marked as not active. 

The second stage consists on encoding the significant 
coefficients discarding the first 	
����
 bits and their last 
bit (it can be inferred by the decoder). In order to speed up 
the execution time of the algorithm, we may not use an 
arithmetic encoder, what results in a very small lost in 
performance. The sign is transmitted in a similar way. 



The LTW encoder and decoder algorithms are defined 
as follows. 
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(E1) INITIALIZATION 

output 	
����
 
output ( ) { }ML

&F
������

ML

,2logmaxmax
, ∈∀

=  

mark all �� ML ∈,  as active 

(E2) OUTPUT THE SIGNIFICANCE MAP. Scan the 
subbands (zig-zag order). For each ML� ,  in a subband  

if active( ML� , ) 

( ) MLML ������ ,2, log=  

if ��	
�������� ML >,  

arithmetic_output ML����� ,  

else 
mark ML� ,  as not active 

( ){ }MLML �� ,, descendant=  

( ) { }\[

'F

�
ML\[

,2logmaxnmaxdesc
,, ∈∀

=  

if  ��������	�
���� >  

arithmetic_output �����	
�����

 
else 

mark all ML\[ �� ,, ∈  as not active 

arithmetic_output ����� 
E3) OUTPUT THE SIGNIFICANT TRANSFORM 

COEFFICIENTS. Scan � in an established order. For each 
�� ML ∈,  

if active( ML� , ) 

output 

( ) ( )
MLUSODQHMLQELWV ��

ML ,1,1 bitbit
),( +− �  

output sign( ML� , ) 

"���: ( )��bit  is a function that returns the �th bit of �. 
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D1) INITIALIZATION 

input 	
����
, ���
���� 
mark all �� ML ∈,  as active 

D2) INPUT THE SIGNIFICANCE MAP. Scan the 
subbands in the same order as in E2). For each ML� ,  in a 

subband 
if active( ML� , ) 

arithmetic_input ML����� ,  

if ML����� , =�������������� 

mark ML� ,  as not active 

if ML����� , =������ 

( ){ }MLML �� ,, descendant=  

mark ML� ,  and all ML\[ �� ,, ∈  as not active 

D3) INPUT THE SIGNIFICANT TRANSFORM 
COEFFICIENTS. Scan � in the same order as in E3). For 
each 
ML ∈,c  

if active( ML� , ) 

( )
MLQELWV �

ML ,),(
setbit  

input ( ) ( )
MLUSODQHMLQELWV ��

ML ,1,1 bitbit
),( +− �  

( )ML� ,rplanesetbit  

input sign( ML� , ) 

"���: ( )��bit  is a function that writes the �th bit of �, and 

( )�
Q

setbit  set one the �th bit of �. 

Notice that, in the decoder at D3), the 	
����th bit of 
each significant coefficient is set to one in order to reduce 
the error interval of the recovered coefficients. 
�
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Like in other tree-based wavelet encoders, in the LTW 
algorithm there are two stages, in the first one the 
significance map is encoded (it is called dominant pass in 
EZW and sorting pass in SPIHT) and in the second one 
the significant coefficients are encoded (called subordinate 
pass in EZW and refinement pass in SPIHT). Unlike them, 
in the LTW the significance map and the significant 
coefficients are encoded in only one iteration, without the 
need of an iterative loop scanning the same trees once per 
bit plane. Moreover, several lists must be handled in both 
the EZW and the SPIHT algorithms, while the LTW does 
not need the construction of lists. In fact, implementing 
this algorithm is simpler and it has lower temporal 
complexity (see performance comparison in section 3).  

One disadvantage of the LTW algorithm is that it is 
not naturally embedded (unlike EZW and SPIHT). Instead 
of it the bit rate is adjusted using two quantization 
parameters in the same way as in the widely used MPEG 
standard. 
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We have implemented the LTW encoder and decoder 
algorithm in order to verify the expected results. It has 
been implemented using standard C language, and all the 
simulation tests have been performed on a regular 
Personal Computer, with an AMD K7 Processor. The 
selected image has been the standard Lena (monochrome, 
8 bpp, 512x512). This allows us to compare the LTW 
performance with other codecs. 

A six-level dyadic wavelet transform has been used, 
with biorthogonal 10/18 filter [2], although other filters 
like 9/7 [3] have shown similar behavior. Table 1 presents 
a performance comparison, in terms of image quality 
(PSNR) at different bit rates (bpp). It shows that the 



proposed codec outperforms the EZW in approx. 0.8 bpp 
at low rates, and others codecs not tree-oriented, like the 
stack-run, are also improved. SPIHT uses a more complex 
algorithm to group the coefficients and therefore achieves 
slightly higher performance (0.2 dB). 

 
Codec\rate LTW EZW Stack-run SPIHT 

2 44.79 N/a n/a n/a 
1 40.12 39.55 n/a n/a 

0.5 37.01 36.28 36.89 37.21 
0.25 33.93 33.17 33.80 34.11 

0.125 31.04 30.23 n/a n/a 
 

Table 1: PSNR (dB) with different bit rates and codecs 
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Figure 1: Execution time comparison (EZW and LTW) 

 
One of the main advantages of the LTW algorithm is 

its lower temporal complexity. In order to perform a 
practical comparison between LTW and EZW, we have 
implemented a version of the EZW. This program runs the 
EZW in an efficient way. For instance, in the initialization 
section of the algorithm, the highest descendent of every 
coefficient is efficiently calculated (cost O(�2) for a �x� 
image), therefore there is no need to explore the trees in 
the dominant pass to know if a coefficient is encoded as 
root of zero tree or as isolated zero (see [4]). Figure 1 
shows as our algorithm greatly outperforms the EZW in 
terms of execution time (the encoder is over 3.5 times 
faster and the decoder about 2.5). On the other hand, the 
LTW encoder and decoder are much more symmetric than 
the EZW. Notice that, except at very low bit rates, the 
execution time for the LTW encoder is very similar to the 
execution time for the decoder. The exploration of the 
trees (i.e., looking for significant descendents) is only 
performed on the encoder side, and its temporal 
complexity is the same at any rate, that is what makes the 
LTW really asymmetric at very low bit rates (lower than 
0.25 bpp). 
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In this paper, we have presented the LTW encoder, a 

new wavelet still-image encoder based on the construction 
and efficient coding of wavelet coefficient trees. Due to its 
higher symmetry and lower temporal complexity, we think 
that the LTW is a good candidate for real-time interactive 
multimedia communications. 

We have evaluated our proposal, comparing its 
performance in terms of rate/distortion with the EZW, 
SPIHT and stack-run algorithms. Results show that LTW 
improves EZW and stack-run in 0.8 and 0.13 dB at most 
bit rates but it is not able to reach the SPIHT performance, 
being 0.2 dB behind it. However, we have shown that the 
main contribution of this algorithm is its lower temporal 
complexity. In particular, LTW is able to code the 
standard Lena image up to 3.5 times faster than EZW.  

As future work, we are planning to optimize the LTW 
encoder and include it in a Motion Wavelet video encoder, 
testing its performance on common video sequences.  
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