
�����������	
������������	������������
����

��������	
�����������	���

Department of Computer Engineering (DISCA)
Universidad Politécnica de Valencia

Camino de Vera 17, 46071 Valencia, Spain
E-mail: {joliver, mperez}@gap.upv.es

���������

�
During the last decade a lot of research and develop
efforts have been made to design competitive still image
coders for several kinds of applications.

In this paper, we present a new wavelet still-image
coder, called LWT (Lower-Tree Wavelet), based on the
construction and codification of coefficient trees as other
proposals do. This algorithm is fast and symmetric (except
in extremely low bit rates), which makes it adequate for
real-time interactive multimedia applications. We have
compared our algorithm with several well-known coders in
terms of rate/distortion performance using the standard
Lena image. Results show that LTW, with lower temporal
complexity, achieves better results than EZW (in 0.8 dB
PSNR) and stack-run (in 0.13 dB). Also, we have tested
the temporal complexity of LTW algorithm, resulting 3.5
times faster than an optimized EZW.

�	�
�������
���

A wide variety of wavelet-based image compression
schemes have been reported in the literature. The early
wavelet image coders [1] were designed to exploit the
ability of compacting energy on the wavelet
decomposition. They used quantizers and variable-length
entropy coders, showing little improvements with respect
to the popular DCT-based ones.

However, the properties of wavelet coefficients can be
exploited more efficiently. In that sense, Shapiro [3]
developed a wavelet-based encoder that considerably
improves the previous proposals. The encoder, called
Embedded Zero-tree Wavelet encoder (EZW), is mainly
based on two questions (a) the similarity between the same
kind of sub-bands in a wavelet decomposition, and (b) a
quantization based on a successive-approximation scheme
that can be adjusted in order to get a specific bit rate. The
own encoder includes an entropy encoder (typically an
adaptive arithmetic encoder) as its final stage.

Said and Pearlman [2] proposed a variation of EZW,
called SPIHT (Set Partitioning In Hierarchical Trees). It
achieves better results than EZW, even without taking into
account the final arithmetic encoding stage. The
improvements are due to the way it groups the wavelet
coefficients and how it stores the significant information.

A different approach to the previous algorithms is the
one proposed in [4], known as the stack-run algorithm.
This algorithm has a similar structure than JPEG coders.
That is, after wavelet decomposition, wavelet coefficients
are quantized using a classic quantization scheme. Then,
quantized coefficients are entropy coded using a run-
length encoder (RLE) and, finally, an arithmetic encoder is
used.

In [5], a joint space-frequency quantization scheme
was proposed. It uses a spatial quantization, like zero-tree,
in combination with a standard scalar quantizer. The idea
is based in the fact that natural images are perfectly
modeled by a lineal combination of compacted energy in
both domains the frequency and space.

One of the most widely used technique from the
above presented ones is tree encoding. However, this kind
of coders exhibit an important asymmetry, due to the way
that construction of significance coefficient maps and
refinement stages are performed in the encoding stage. So
this kind of coders, by nature, are not able to work
efficiently in interactive multimedia applications.

In this paper, we propose a new wavelet still-image
coder that it is simpler and faster than others previously
published [3][2]. We have called it LTW (Lower-Tree
Wavelet) coder. The main contribution of LTW is the way
that it builds the coefficient map. It does not use an
iterative loop in order to determine the significant
coefficients and to assign them bits. It builds the
significant map in only one step using two symbols for
pruning tree branches, and then, depending on the required
target bit rate, it codes the significant coefficients also in
one step. This algorithm reduces the complexity on the
encoder stage in such manner that it is similar to de
decoder stage. So, another important feature of LTW is its
symmetric behavior.

In section 2 a description of the proposed algorithm is
shown. In section 3, we show a performance evaluation of
our proposed scheme in terms of rate/distortion and
computation complexity performance metrics. Finally, in
section 4 some conclusions and future work are drawn.

�	�����������������������������������

For the most part, digital images are represented with a set
of pixel values. The encoder proposed in this paper can be
applied to a set of coefficients � resulting from a dyadic
decomposition Ω(�), in order that �=Ω(�). The most
commonly used dyadic decomposition in image
compression is the hierarchical wavelet subband transform
[1] (with a lot of advantages over other transform methods
as the DCT), so an element �� ML ∈, is called transform

coefficient.
Tree oriented wavelet image encoders are proved to

efficiently transmit or store the set �, achieving a great
performance results. In these algorithms, two stages can
be established. The first one consists on encoding the
significance map, i.e., the location and amount of bits
required to represent those coefficients that will be
encoded (significant coefficients). And in the second
stage, significant transform coefficients are encoded, i.e.
their sign and magnitude bits, depending on the desired
target bit rate.

One of the main drawbacks in previous tree oriented
wavelet image encoders is their high temporal complexity.
That is mainly due to the bit plane processing at the
construction of the significance map, performed along
different iterations, using a threshold that focuses on a
different bit plane in each iteration. Moreover, the bits of
the significant coefficients are also bit plane processed.

Our proposed LTW algorithm is able to encode the
significance map without performing one loop scan per bit
plane. Instead of it, only one scan of the transform
coefficients is needed. The LTW also can encode the bits
of the significant transform coefficients in only one scan.

Let us define some concepts before the LTW be
explained. Like in the rest of tree encoding techniques,
coefficients from � can be logically arranged as a tree. In
our algorithm, every coefficient ��� , in the LL subband

(the scaled version of the original image) is the root of a
tree. For each root node placed at (�, �), the following
offspring will be formed by three coefficients placed at
(�+width(LL), �), (�, �+height(LL)) and (a+width(LL),
b+height(LL)). The offspring of the rest of nodes (�, �) are
the four coefficients placed at (2�, 2�), (2�+1, 2�), (2�,
2�+1), (2�+1, 2�+1) (except for those nodes in the first
level of decomposition subbands, LH0, HL0 and HH0,
that represent the leaves of the trees).

We also have to define the order to scan the subbands
in the first stage, where the significance map is built. We

use a zig-zag order, starting from the LL subband, so that
all the subbands at a level � are always scanned before the
�-1 subbands. Finally, coefficients in a subband are
scanned in a Morton order. Notice that both the scan order
and the trees are defined in a similar way that in Shapiro’s
EZW algorithm.

Now we are ready to define the algorithm. Let us start
with the encoder part. The quantization process is
performed by two strategies: one coarser and another finer.
The finer one consists on applying a scalar uniform
quantization on the coefficients, and it is performed before
the LTW algorithm. On the other hand, the coarser one is
based on removing bit planes from the least significant
part of the coefficients, and it belongs to the LTW
encoder. We define 	
���� as the number of less
significant bits that are going to be removed in the LTW.

At the initialization of the encoder, it is calculated the
maximum number of bits needed to represent the higher
coefficient (���
����) and it is output to the decoder. The
	
���� parameter is also output. With these data, we
initialize an adaptive arithmetic encoder that will be used
to transmit the number of bits required to encode any
coefficient. We will only transmit those coefficients that
require more than 	
���� bits to be coded, so only
���
�����	
���� symbols are needed to represent this
information. We also use two extra symbols to efficiently
represent the significance map.

In the next stage the significance map is encoded as
following. All the subbands are scanned in zig-zag order
and for each subband all the coefficients are scanned in
Morton order, as explained previously. Then, for each
coefficient, if it is significant (i.e., it is different to zero if
we discard the first 	
���� bits) the number of bits
required to represent that coefficient is encoded with an
adaptive arithmetic encoder. As coefficients in the same
subband have similar magnitude, and due to the order we
have established to scan the coefficients, the adaptive
arithmetic encoder is able to encode very efficiently the
number of bits of the transform coefficients. On the other
hand, if a coefficient is not significant and all its
descendents are not significant (they form a lower-tree),
the symbol ����� is encoded and this coefficient and its
descendents are marked as not active (initially all them are
active). A not active coefficient is not processed any more,
neither in the first stage nor in the second one. Finally, if
the coefficient is insignificant but it has at least one
significant descendent, the symbol �������������� is
encoded and only this coefficient is marked as not active.

The second stage consists on encoding the significant
coefficients discarding the first 	
���� bits and their last
bit (it can be inferred by the decoder). In order to speed up
the execution time of the algorithm, we may not use an
arithmetic encoder, what results in a very small lost in
performance. The sign is transmitted in a similar way.

The LTW encoder and decoder algorithms are defined
as follows.

������	�����	�� �!�
(E1) INITIALIZATION

output 	
����
output () { }ML

&F
������

ML

,2logmaxmax
, ∈∀

=

mark all �� ML ∈, as active

(E2) OUTPUT THE SIGNIFICANCE MAP. Scan the
subbands (zig-zag order). For each ML� , in a subband

if active(ML� ,)

() MLML ������ ,2, log=

if ��	
�������� ML >,

arithmetic_output ML����� ,

else
mark ML� , as not active

(){ }MLML �� ,, descendant=

() { }\[

'F

�
ML\[

,2logmaxnmaxdesc
,, ∈∀

=

if ��������	�
���� >

arithmetic_output �����	
�����

else

mark all ML\[�� ,, ∈ as not active

arithmetic_output �����
E3) OUTPUT THE SIGNIFICANT TRANSFORM

COEFFICIENTS. Scan � in an established order. For each
�� ML ∈,

if active(ML� ,)

output

() ()
MLUSODQHMLQELWV ��

ML ,1,1 bitbit
),(+− �

output sign(ML� ,)

"���: ()��bit is a function that returns the �th bit of �.

������	�����	�� �!�
D1) INITIALIZATION

input 	
����, ���
����
mark all �� ML ∈, as active

D2) INPUT THE SIGNIFICANCE MAP. Scan the
subbands in the same order as in E2). For each ML� , in a

subband
if active(ML� ,)

arithmetic_input ML����� ,

if ML����� , =��������������

mark ML� , as not active

if ML����� , =������

(){ }MLML �� ,, descendant=

mark ML� , and all ML\[�� ,, ∈ as not active

D3) INPUT THE SIGNIFICANT TRANSFORM
COEFFICIENTS. Scan � in the same order as in E3). For
each ML ∈,c

if active(ML� ,)

()
MLQELWV �

ML ,),(
setbit

input () ()
MLUSODQHMLQELWV ��

ML ,1,1 bitbit
),(+− �

()ML� ,rplanesetbit

input sign(ML� ,)

"���: ()��bit is a function that writes the �th bit of �, and

()�
Q

setbit set one the �th bit of �.

Notice that, in the decoder at D3), the 	
����th bit of
each significant coefficient is set to one in order to reduce
the error interval of the recovered coefficients.
�
�	�	������������ �!"��!"#��!�##�$��#%�#�&�%#���

Like in other tree-based wavelet encoders, in the LTW
algorithm there are two stages, in the first one the
significance map is encoded (it is called dominant pass in
EZW and sorting pass in SPIHT) and in the second one
the significant coefficients are encoded (called subordinate
pass in EZW and refinement pass in SPIHT). Unlike them,
in the LTW the significance map and the significant
coefficients are encoded in only one iteration, without the
need of an iterative loop scanning the same trees once per
bit plane. Moreover, several lists must be handled in both
the EZW and the SPIHT algorithms, while the LTW does
not need the construction of lists. In fact, implementing
this algorithm is simpler and it has lower temporal
complexity (see performance comparison in section 3).

One disadvantage of the LTW algorithm is that it is
not naturally embedded (unlike EZW and SPIHT). Instead
of it the bit rate is adjusted using two quantization
parameters in the same way as in the widely used MPEG
standard.

'	��
(����
�����������

We have implemented the LTW encoder and decoder
algorithm in order to verify the expected results. It has
been implemented using standard C language, and all the
simulation tests have been performed on a regular
Personal Computer, with an AMD K7 Processor. The
selected image has been the standard Lena (monochrome,
8 bpp, 512x512). This allows us to compare the LTW
performance with other codecs.

A six-level dyadic wavelet transform has been used,
with biorthogonal 10/18 filter [2], although other filters
like 9/7 [3] have shown similar behavior. Table 1 presents
a performance comparison, in terms of image quality
(PSNR) at different bit rates (bpp). It shows that the

proposed codec outperforms the EZW in approx. 0.8 bpp
at low rates, and others codecs not tree-oriented, like the
stack-run, are also improved. SPIHT uses a more complex
algorithm to group the coefficients and therefore achieves
slightly higher performance (0.2 dB).

Codec\rate LTW EZW Stack-run SPIHT

2 44.79 N/a n/a n/a
1 40.12 39.55 n/a n/a

0.5 37.01 36.28 36.89 37.21
0.25 33.93 33.17 33.80 34.11

0.125 31.04 30.23 n/a n/a

Table 1: PSNR (dB) with different bit rates and codecs

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
im

e
(M

ill
io

n
of

 C
PU

 c
yc

le
s)

Rate (bpp)

EZW encoder
EZW decoder
LTW encoder
LTW decoder

Figure 1: Execution time comparison (EZW and LTW)

One of the main advantages of the LTW algorithm is

its lower temporal complexity. In order to perform a
practical comparison between LTW and EZW, we have
implemented a version of the EZW. This program runs the
EZW in an efficient way. For instance, in the initialization
section of the algorithm, the highest descendent of every
coefficient is efficiently calculated (cost O(�2) for a �x�
image), therefore there is no need to explore the trees in
the dominant pass to know if a coefficient is encoded as
root of zero tree or as isolated zero (see [4]). Figure 1
shows as our algorithm greatly outperforms the EZW in
terms of execution time (the encoder is over 3.5 times
faster and the decoder about 2.5). On the other hand, the
LTW encoder and decoder are much more symmetric than
the EZW. Notice that, except at very low bit rates, the
execution time for the LTW encoder is very similar to the
execution time for the decoder. The exploration of the
trees (i.e., looking for significant descendents) is only
performed on the encoder side, and its temporal
complexity is the same at any rate, that is what makes the
LTW really asymmetric at very low bit rates (lower than
0.25 bpp).

�
)	��������
����

In this paper, we have presented the LTW encoder, a

new wavelet still-image encoder based on the construction
and efficient coding of wavelet coefficient trees. Due to its
higher symmetry and lower temporal complexity, we think
that the LTW is a good candidate for real-time interactive
multimedia communications.

We have evaluated our proposal, comparing its
performance in terms of rate/distortion with the EZW,
SPIHT and stack-run algorithms. Results show that LTW
improves EZW and stack-run in 0.8 and 0.13 dB at most
bit rates but it is not able to reach the SPIHT performance,
being 0.2 dB behind it. However, we have shown that the
main contribution of this algorithm is its lower temporal
complexity. In particular, LTW is able to code the
standard Lena image up to 3.5 times faster than EZW.

As future work, we are planning to optimize the LTW
encoder and include it in a Motion Wavelet video encoder,
testing its performance on common video sequences.

��*��������

[1] M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies. “Image
coding using wavelet transform,” ������������	�
����������
,
vol 1. nº 2. pp. 205-220, 1992

[2] A. Said, A. Pearlman. “A new, fast, and efficient image
codec based on set partitioning in hierarchical trees,” �����
������� ���������� � ���� �� � �	�� �� � �� �� �
 , vol.
6, nº 3, June 1996

[3] J.M. Shapiro, “Embedded Image Coding Using Zerotrees of
Wavelet Coefficients,” ��������������������������������������,
vol. 41, pp. 3445-3462, December 1993.

[4] M.J. Tsai, J. Villasenor, F. Chen. “Stack-run image coding,”
��������������������������������	����������������
�, vol
6, nº 10, pp. 519-521, Oct. 1996

[5] Z. Xiong, K. Ramchandran, M.T. Orchard. “Space-frequency
quantization for wavelet image coding,” ���������������	�
��
��������
, vol.6, nº5, pp.677-693, May 1997

