
In-Transit Bu�ers: A Mechanism to Support Minimal Routing in

Myrinet�

J. Flich, M. P. Malumbres, P. L�opez, J. Duato

Dpto. Inform�atica de Sistemas y Computadores, Universidad Polit�ecnica de Valencia

Camino de Vera, 14, 46071{Valencia, Spain. E-mail: fjflich,mperez,plopez,jduatog@gap.upv.es

Due to the increasing computing power of microprocessors and the high cost of multiprocessors, networks of

workstations (NOWs) are currently being considered as a cost-e�ective alternative for parallel computing.

One of the preferred network technologies for building NOWs is Myrinet [1], which provides simple and

very exible network designs. In particular, it allows the network behavior to be changed through the

Myrinet Control Program (MCP) executed by the LANai processor in the network interface card (NIC).

Myrinet uses up*/down* routing [4] to build paths between network hosts. Unfortunately, up*/down*

routing is not always able to provide a minimal path between some pairs of hosts, as shown in the

following example. In Figure 1.a, a message transmitted from Switch 4 to Switch 1 cannot go through

any minimal path. The shortest path (through Switch 6) is not allowed since the message should traverse

a link in the \up" direction after one in the \down" direction which is forbidden in up*/down* routing.

All the allowed paths (through switches 0, 2, and through switches 0, 5) are non-minimal. The number

of forbidden minimal paths increases as the network becomes larger. Consequently, minimal routing is

usually disallowed due to the up*/down* restrictions. Another drawback of up*/down* routing is that it

forces most of the traÆc to cross the root switch (Switch 0), leading to saturation at relatively low traÆc.

up*/down* path

Minimal path

4 5

376

0"up" direction

2

1

in-transit host

"down" link

"up" link

local queue
at the in-transit host

down-up restriction

in-transit buffer

in-transit message

Switch

NIC

Figure 1: a) Up*/down* and Minimal Routing. b) Implementation of the in-transit bu�er mechanism

The basic idea to eliminate these drawbacks consists of splitting the forbidden minimal paths into

several up*/down* paths. On each path, an intermediate host is selected as the destination and, at this

host, packets are ejected from the network and later re-injected into it. In other words, the dependencies

between \down" and \up" links are removed by the use of some bu�ers at the intermediate hosts (i.e.

in-transit bu�ers). In Figure 1.a we can see that, with the in-transit bu�er mechanism, a minimal route

can be used to route packets from Switch 4 to Switch 1. To break the channel dependencies, packets are

sent to a host connected to the intermediate Switch 6. This host will re-inject packets as soon as possible.

The in-transit bu�er mechanism adds latency to each packet crossing intermediate hosts and also uses

some additional resources in both the network (i.e. links) and the network interface cards (i.e. memory

pools and DMA engines). On the other hand, with this mechanism, \down" to \up" transitions are

allowed. The resulting routing algorithm is less restrictive so that less traÆc needs to cross the root switch

than in the original up*/down* routing algorithm, and it always provides minimal paths among all nodes.

Figure 1.b shows the implementation of the in-transit bu�er mechanism. A packet that needs the

in-transit bu�er will be addressed to the in-transit host. The in-transit host will re-inject the packet as

�This work was supported by the Spanish CICYT under Grant TIC97{0897{C04{01 and by Generalitat Valenciana under

Grant GV98-15-50

1



soon as possible into the network, forwarding it to its destination host or to another in-transit host. To

implement the mechanism, some NIC memory is needed and the MCP program has to be modi�ed. In

order to minimize the introduced overhead, as soon as the in-transit packet header is processed and the

required output channel is free, a DMA transfer is programmed to re-inject the in-transit packet. There

is no problem if the DMA transfer begins before the packet has been completely received, because it will

continue arriving at the same rate that it is being transmitted1, assuming that all the links in the network

have the same bandwidth2. The only additional requirement is that the message is completely stored in

the NIC memory at the source host before starting transmission to avoid interference with the host I/O

bus.

To make this mechanism deadlock-free, it must be guaranteed that an in-transit packet that is being re-

injected can be completely ejected from the network if the re-injected part of the packet becomes blocked,

thus removing potential channel dependencies that may result in a deadlock (down-up transitions). So,

when an in-transit packet arrives at a given host, care must be taken to ensure that there is enough bu�er

space to store it at the interface card before starting the DMA transfer. Otherwise, the MCP stores the

packet in the host memory, considerably increasing overhead. Also, because we are assigning bu�ers in

host memory to packets, we need to avoid possible deadlock situations due to dependencies among the

bu�ers. We solve this by grouping those bu�ers into bu�er classes [3].

We are evaluating the new mechanism by simulation. We have simulated 40 topologies using network

sizes of 8, 16, 32, and 64 switches for uniform, bit-reversal, hot-spot, and local traÆc patterns. Message

sizes of 32, 512, and 1024 bytes are used.

32 bytes 1024 bytes

Switches Min Max Avg Min Max Avg

8 -9.0105 10.0971 -3.1212 -17.2995 13.4601 -8.0626

16 9.2622 62.8934 33.4776 0.4845 49.7260 26.6592

32 66.4511 139.5732 99.2126 49.9866 100.7512 77.3265

64 160.0910 288.9706 220.5531 124.6746 220.2373 164.8961

Table 1: Percentages of throughput increase when using the in-transit bu�er mechanism for the uniform

distribution.

For uniform traÆc distribution (Table 1), we �nd that the in-transit bu�er mechanism always increases

network throughput for networks of 16 switches or larger. Average improvement ranges from 26% for 16-

switch networks to 220% for 64-switch networks. For 8 switches, most up*/down* paths are minimal,

thus leaving little potential for performance improvement by the proposed mechanism. For hot-spot, bit-

reversal, and local traÆc distributions, similar results are obtained. Regarding latency, this mechanism

only increases latency signi�cantly for short messages (13% on average for 32-byte messages). For longer

messages, latency increase is minimal and could even decrease for large networks as more minimal paths

are provided by this routing mechanism.

We are currently implementing the in-transit bu�er mechanism in the Myricom GM message-passing

software [2].

References

[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. Seizovic and W. Su, \Myrinet - A

gigabit per second local area network," IEEE Micro, pp. 29{36, February 1995.

[2] GM protocol, 'http://www.myri.com/GM'

[3] I. S. Gopal, \Prevention of store-and-forward deadlock in computer networks,," IEEE Transactions on Com-

munications, vol. COM-33, no. 12, pp. 1258-1264, December 1985.

[4] M. D. Schroeder et al., \Autonet: A high-speed, self-con�guring local area network using point-to-point links,"

Technical Report SRC research report 59, DEC, April 1990.

1Due to limited memory bandwidth in the NICs, a source host may inject bubbles into the network, thus lowering the

e�ective reception rate at the in-transit host. This problem has been addressed and can be easily avoided when implementing

the MCP code. Also, future implementations of Myrinet interfaces will eliminate this problem.
2Myrinet supports mixing links with di�erent bandwidth.

2


