In-Transit Buffers: A Mechanism to Support Minimal Routing in
Myrinet*

J. Flich, M. P. Malumbres, P. Lépez, J. Duato

Dpto. Informética de Sistemas y Computadores, Universidad Politécnica de Valencia

Camino de Vera, 14, 46071-Valencia, Spain. E-mail: {jflich,mperez,plopez,jduato}@gap.upv.es

Due to the increasing computing power of microprocessors and the high cost of multiprocessors, networks of
workstations (NOWSs) are currently being considered as a cost-effective alternative for parallel computing.
One of the preferred network technologies for building NOWSs is Myrinet [1], which provides simple and
very flexible network designs. In particular, it allows the network behavior to be changed through the
Myrinet Control Program (MCP) executed by the LANai processor in the network interface card (NIC).

Myrinet uses up*/down* routing [4] to build paths between network hosts. Unfortunately, up*/down*
routing is not always able to provide a minimal path between some pairs of hosts, as shown in the
following example. In Figure 1.a, a message transmitted from Switch 4 to Switch 1 cannot go through
any minimal path. The shortest path (through Switch 6) is not allowed since the message should traverse
a link in the “up” direction after one in the “down” direction which is forbidden in up*/down* routing.
All the allowed paths (through switches 0, 2, and through switches 0, 5) are non-minimal. The number
of forbidden minimal paths increases as the network becomes larger. Consequently, minimal routing is
usually disallowed due to the up*/down* restrictions. Another drawback of up*/down* routing is that it
forces most of the traffic to cross the root switch (Switch 0), leading to saturation at relatively low traffic.

local queue NIC
at thein-transit host
4 oy 8
- ! up*/down* path in-transit buffer
up" direction H
s
Minimal path
“down" link in-transit message
in-transit host — N Cdownup restriction
Ts~o_ | "up'link
Switch

Figure 1: a) Up*/down* and Minimal Routing. b) Implementation of the in-transit buffer mechanism

The basic idea to eliminate these drawbacks consists of splitting the forbidden minimal paths into
several up*/down* paths. On each path, an intermediate host is selected as the destination and, at this
host, packets are ejected from the network and later re-injected into it. In other words, the dependencies
between “down” and “up” links are removed by the use of some buffers at the intermediate hosts (i.e.
in-transit buffers). In Figure 1.a we can see that, with the in-transit buffer mechanism, a minimal route
can be used to route packets from Switch 4 to Switch 1. To break the channel dependencies, packets are
sent to a host connected to the intermediate Switch 6. This host will re-inject packets as soon as possible.

The in-transit buffer mechanism adds latency to each packet crossing intermediate hosts and also uses
some additional resources in both the network (i.e. links) and the network interface cards (i.e. memory
pools and DMA engines). On the other hand, with this mechanism, “down” to “up” tramsitions are
allowed. The resulting routing algorithm is less restrictive so that less traffic needs to cross the root switch
than in the original up*/down* routing algorithm, and it always provides minimal paths among all nodes.

Figure 1.b shows the implementation of the in-transit buffer mechanism. A packet that needs the
in-transit buffer will be addressed to the in-transit host. The in-transit host will re-inject the packet as

*This work was supported by the Spanish CICYT under Grant TIC97-0897-C04-01 and by Generalitat Valenciana under
Grant GV98-15-50

soon as possible into the network, forwarding it to its destination host or to another in-transit host. To
implement the mechanism, some NIC memory is needed and the MCP program has to be modified. In
order to minimize the introduced overhead, as soon as the in-transit packet header is processed and the
required output channel is free, a DMA transfer is programmed to re-inject the in-transit packet. There
is no problem if the DMA transfer begins before the packet has been completely received, because it will
continue arriving at the same rate that it is being transmitted!, assuming that all the links in the network
have the same bandwidth?. The only additional requirement is that the message is completely stored in
the NIC memory at the source host before starting transmission to avoid interference with the host I/O
bus.

To make this mechanism deadlock-free, it must be guaranteed that an in-transit packet that is being re-
injected can be completely ejected from the network if the re-injected part of the packet becomes blocked,
thus removing potential channel dependencies that may result in a deadlock (down-up transitions). So,
when an in-transit packet arrives at a given host, care must be taken to ensure that there is enough buffer
space to store it at the interface card before starting the DMA transfer. Otherwise, the MCP stores the
packet in the host memory, considerably increasing overhead. Also, because we are assigning buffers in
host memory to packets, we need to avoid possible deadlock situations due to dependencies among the
buffers. We solve this by grouping those buffers into buffer classes [3].

We are evaluating the new mechanism by simulation. We have simulated 40 topologies using network
sizes of 8, 16, 32, and 64 switches for uniform, bit-reversal, hot-spot, and local traffic patterns. Message
sizes of 32, 512, and 1024 bytes are used.

32 bytes 1024 bytes
Switches Min Max Avg Min Max Avg
8 -9.0105 | 10.0971 | -3.1212 | -17.2995 | 13.4601 | -8.0626
16 9.2622 62.8934 | 33.4776 0.4845 49.7260 | 26.6592
32 66.4511 | 139.5732 | 99.2126 | 49.9866 | 100.7512 | 77.3265
64 160.0910 | 288.9706 | 220.5531 | 124.6746 | 220.2373 | 164.8961

Table 1: Percentages of throughput increase when using the in-transit buffer mechanism for the uniform
distribution.

For uniform traffic distribution (Table 1), we find that the in-transit buffer mechanism always increases
network throughput for networks of 16 switches or larger. Average improvement ranges from 26% for 16-
switch networks to 220% for 64-switch networks. For 8 switches, most up*/down* paths are minimal,
thus leaving little potential for performance improvement by the proposed mechanism. For hot-spot, bit-
reversal, and local traffic distributions, similar results are obtained. Regarding latency, this mechanism
only increases latency significantly for short messages (13% on average for 32-byte messages). For longer
messages, latency increase is minimal and could even decrease for large networks as more minimal paths
are provided by this routing mechanism.

We are currently implementing the in-transit buffer mechanism in the Myricom GM message-passing
software [2].

References

[1] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. Seizovic and W. Su, “Myrinet - A
gigabit per second local area network,” IEEE Micro, pp. 29-36, February 1995.

[2] GM protocol, 'http://www.myri.com/GM’

[3] I. S. Gopal, “Prevention of store-and-forward deadlock in computer networks,,” IEEE Transactions on Com-
munications, vol. COM-33, no. 12, pp. 1258-1264, December 1985.

[4] M. D. Schroeder et al., “Autonet: A high-speed, self-configuring local area network using point-to-point links,”
Technical Report SRC research report 59, DEC, April 1990.

Due to limited memory bandwidth in the NICs, a source host may inject bubbles into the network, thus lowering the
effective reception rate at the in-transit host. This problem has been addressed and can be easily avoided when implementing
the MCP code. Also, future implementations of Myrinet interfaces will eliminate this problem.

2Myrinet supports mixing links with different bandwidth.

