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Due to the heavy tailed pattern of Internet traffic, it is crucial to monitor the incoming arri-
val rate in a Web system to preserve its performance. In this study, we focus on the arrival
rate processing mechanism as part of the design of an adaptive load balancing Web algo-
rithm. The arrival rate is one of the most important metrics to be monitored in a Web site
to avoid the possible congestion of Web servers. Six methods are analysed to detect the
burstiness of incoming traffic in a Web system. We define six burstiness factors to be indi-
vidually included in an adaptive load balancing algorithm, which also needs to monitor
some Web servers’ parameters continuously, such as the arrival rate at the server or its
CPU utilization in order to avoid an unexpected overload situation.

We also define adaptive time slot scheduling based on the burstiness factor, which
reduces considerably the overhead of the monitoring process by increasing the monitoring
frequency when bursty traffic arrives at the system and by decreasing the frequency when
no bursts are detected in the arrival rate. Simulation results of the behaviour of the six
burstiness factors and adaptive time slot scheduling when sudden changes are detected
in the arrival rate are presented and discussed. We have considered a scenario made up
of a locally distributed cluster-based Web information system for simulations.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The fact that Internet traffic flows exhibit heavy tailed
probability distributions has been widely discussed in the
Internet literature [1,2]. As Web traffic inter-arrival times
normally follow a heavy tailed distribution, maintaining a
good performance of the Web system is normally more
complicated than if this distribution were easily predict-
able. Hence, it is possible that in a few seconds a Web ser-
ver that is not overloaded may receive an increase in the
number of connections, which produces a situation of con-
gestion [3,4]. This occurs when the server reaches the con-
nection number limit it can handle. Even, without reaching
this limit, if the client’s request for a connection is ac-
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cepted, the response time for that request may experience
a long delay because of the long queue of requests waiting
to be served by the Web system [4]. Internet service pro-
viders often offer different Quality of Service (QoS) levels
to provide different priority to different users. When the
congestion situation is severe, admission policies are nor-
mally applied. This leads to the challenge of satisfying
the performance requirements for different types of re-
quests at all times.

Our main concern in the design of a load balancing Web
system is how to monitor some Web servers’ parameters in
a very adaptive way in order to reduce the algorithm over-
head. Some of the Web servers’ parameters likely to be
monitored are the arrival rate, the CPU/disk utilization, I/
O performance, etc. The performance of the nodes that
compound the Web system have to be monitored continu-
ously in order to know their status and make the appropri-
ate decisions in case of overload to avoid a possible
congestion situation. This can be done in several ways:
(i) each time a request arrives at the front-end of the
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Web system; (ii) at fixed times by using static time slot
scheduling; or (iii) at non-fixed times by using dynamic
time slot scheduling. The overhead introduced by option
(i) is the biggest because each time a request arrives at
the Web system, Web node parameters are monitored.
While option (ii) introduces a constant overhead, option
(iii) monitors the system at non-fixed intervals, hence, its
overhead will depend on the frequency of those intervals.
The drawback of defining monitoring in a constant dura-
tion interval schedule (option (ii)) is the choice of monitor-
ing time interval. It is very difficult to set a duration
interval that fits with all possible Internet arrival rates at
the Web system due to its heavy tailed pattern.

We propose using adaptive time slot scheduling (option
(iii)) where the frequency of monitoring depends on a
burstiness factor that will increase its value when bursty
arrivals reach the system, and decrease it, if no burstiness
is detected. The adaptive time interval we define depends
directly on this burstiness factor. Therefore, the monitoring
task’s overhead is related to the burstiness of the arrivals in
the Web system and time slot scheduling is completely
adaptive to the burstiness detected in the arrival rate that
reaches the system.

We have included six burstiness factors in a content-
aware load balancing model designed with OPNET Mod-
eler [5] to compare the effect of including different bursti-
ness factors in the Web system performance. A previous
study of burstiness in a Web system was presented in a
conference paper [6]. The load balancing algorithm used
is beyond the scope of this article and is fully described
in [7].

The following sections of this paper are organised as fol-
lows: Section 2 describes related studies on burstiness
analysis in Internet traffic. Section 3 details the definition
of monitoring slots. The burstiness factors we have consid-
ered for our experiments are detailed in Section 4 and the
adaptive time slot scheduling mechanism is described in
Section 5. Section 6 details the simulation scenario and
shows the results obtained. Finally, we discuss some con-
cluding points and the open problems.
2. Related work

In this section, burstiness modelling and detection re-
lated research is introduced.

2.1. Burstiness detection based on traffic

The pioneers in modelling burstiness are Wang et al.
[8]. They analyse the relation between jitter and burstiness
in real-time communications. In this paper, the burstiness
detection mechanism is defined for individual packets. The
authors define the burstiness of the mth packet as a mea-
sure of time that expresses the distance between the actual
arrival time and the right edge of the mth packet arrival
interval because they consider the servers usually process
packets one by one at a constant rate. An implementation
of this mechanism has been defined in our simulation sce-
nario. More details and results are described in the follow-
ing sections.
Burstiness detection based on the traffic rate and inde-
pendent of individual packets is defined in other papers
[9–12]. Menascé and Almeida [9] are the first to introduce
a burstiness factor. They define it as the fraction of time
during the time slot arrival rate that exceeds the average
arrival. In this case, burstiness monitoring is carried out
following fixed time slot scheduling. In Section 4, we de-
scribe in detail how this burstiness factor is defined and
works and introduce some modifications to it. Baryshni-
kov et al. [10] study how traffic predictions can be very
useful to reduce latencies and performance degradation
in Web servers. They use linear extrapolation as a predic-
tion technique and state that this technique for burstiness
detection is not a good predictor. In general, however,
they conclude that even simple prediction algorithms
have a significant prediction power. We also consider
their mechanism in the burstiness factors we define in
Section 4. In [11], van de Meent et al. detect burstiness
through the average traffic rate and the peak rate each
second. They define a non-linear relation between these
two variables to model the variation in the traffic rate
that shows burstiness. Li et al. [12] detect burstiness in
their model by defining thresholds. If the arrival rate ex-
ceeds the thresholds in a number of successive slots, then
sustained burstiness occurs.

2.2. Burstiness detection based on TCP protocol

Burstiness has also been modeled for TCP traffic in other
sudies such as like [13,14]. In [13], the authors detect
bursts of TCP acknowledgment packet transmissions to in-
crease the size of the congestion window. A burstiness
model is defined in [14] that assigns a burstiness value to
each TCP packet based on the RTT in order to control the
actual sending rate.

2.3. Burstiness detection in databases

With regards to databases, Vlachos et al. [15] detect
short-term and long-term bursts in online search queries
by comparing the moving average (of 7 days and 30 days
for short-term and long-term bursts, respectively) of user
demands with its mean value.

2.4. Burstiness detection based on Internet traffic
characterisation

Other papers deal with the characteristics of Internet
traffic by focusing on the burstiness implicit to it. Sarvo-
tham et al. [16] define an alpha/beta traffic model, consid-
ering the traffic bursts as the alfa-traffic and analyse why
the bursts occur in network traffic. Lan et al. [17] define
a burst as a train of packets with a lower inter-arrival time
than a threshold and study the correlations between size,
rate and burstiness.

As indicated above, we have included some ideas from
previous papers [8–10] in our burstiness definition, which
are detailed in Section 4. We have also used the non-linear
relation defined in [11] to analyse some of the results ob-
tained in Section 6.
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3. Defining monitoring slots

The fact of introducing monitoring to a real system may
introduce a relative error in the measurements taken. The
most precise measuring of the system parameters could be
carried out if monitoring is executed continuously and
then all the changes in the system parameters are recorded
in a database. The main problem involved is the extremely
high overhead that is introduced in the system when many
hundreds of requests per second arrive in the Web system
and the monitoring process may modify the system’s per-
formance. Therefore, the monitoring itself may vary the
values of the monitored parameters.

Moreover, obtaining average times of the values mea-
sured is a normal technique, even if all the system compo-
nents are precisely and completely measured. This also
leads to an implicit error in the accuracy of the final value
of the observed metrics. We consider that this error cannot
be avoided because without it, monitoring a system would
get bogged down in the extraction and determination of
minute details, which may make the overall analysis more
difficult.

As previously stated, we propose monitoring the system
by using adaptive time slot scheduling. To our knowledge
there are no prior studies that set this scheduling to mon-
itor the HTTP arrival rate at a Web system.

Obviously, an implicit error will be introduced. Let us
analyse this fact with an example. Suppose we are moni-
toring the arrival rate of HTTP requests that arrive at the
front-end of a Web system. It is evident that the arrival rate
of the incoming requests is a random metric. If it is moni-
tored by using fixed intervals, the resulting curve is differ-
ent to the curve of the arrival rate monitored following
adaptive time slot scheduling, which is due to the different
values in the x-axis. Fig. 1 represents both curves and the
monitoring intervals scheduled for each one. At the bottom
of the plot, the observation times of the arrival rate moni-
tored following a fixed time slot are illustrated. In this case
the arrival rate is monitored every 20 s. At the top of the
plot, the monitored time intervals are represented when
following an adaptive time slot. It is clear that on average
both arrival rate curves are equivalent but at each moment
of the observation period one varies with respect to the
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Fig. 1. Arrival rate monitored followi
other because of the different observation times. In Section
5, we explain how we set the duration of the adaptive
monitoring time slots.

We are going to define the burstiness factors considered
in this paper in order to study their behaviour, and then we
detail how the adaptive time slot scheduling is defined.

4. Burstiness factors

We have considered six different approaches to define
burstiness factors in order to compare their behaviour
and detect their benefits or drawbacks under the same cir-
cumstances. Some of these approaches are based on previ-
ous articles we cited in Section 2 and the rest are
modifications of them, as indicated below.

All the burstiness factor values are defined in [0,1] in
order to limit the range of the factor because its value will
be used later in the algorithm, for instance, to make some
decisions to avoid a congestion situation. Hence, all the
burstiness factors defined here can be easily adapted to
be used in an admission control algorithm, despite being
beyond the scope of this paper. The factor calculation is
made for each time interval or slot defined by adaptive
time slot scheduling, that is described in Section 5.

We start with the burstiness factor defined in [9] (BF1)
and we propose some modifications to it to try to adapt it
more accurately to the variations of incoming traffic (BF2,
BF3, BF4). Some modifications are also included to intro-
duce linear extrapolation in order to detect the bursty slots
(BF5), as Baryshnikov et al. suggested in [10]. We have also
considered a sixth burstiness factor (BF6) by including the
proposal of Wang et al. [8]. In this case, the factor is com-
puted for each incoming HTTP request to a Web server.

A description of each burstiness factor is given in the
following subsections, and at the same time the reader
can observe a representation of them in Fig. 2a–j. We have
simulated all the burstiness factors proposed in this sec-
tion in a discrete event simulator, OPNET Modeler [5].
The scenario consists of five Web servers that receive re-
quests from 30 clients. The workload is fully described in
Section 6. We show the behaviour of the factors we pro-
pose together with the arrival rate monitored in a Web ser-
ver plotted on two scales (on the right the burstiness factor
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scale; on the left, the arrival rate scale). At the bottom of
the figures the monitor time intervals of the arrival rate
is given. All of the plots included in Fig. 2 have been ob-
tained from the same simulation scenario that receive ex-
actly the same workload, although some variations in the
arrival rate can be observed. These variations are due to
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the different lengths of the time intervals when we moni-
tor the system, as explained in the previous section, which
depends directly on the burstiness factor applied.

4.1. BF1: Menascé proposal

The first burstiness factor we use was proposed by
Menascé and Almeida [9]. Its definition requires knowing
the mean arrival rate of HTTP transactions for a Web server
measured during some time intervals or slots 0;1; . . . ;

k� 1, denoted as lk. For a slot k and a Web server, kðkÞ rep-
resents its corresponding arrival rate. If kðkÞ > lk, then the
slot is considered a bursty slot. Given m slots, the bursti-
ness factor is defined as the relation between the cumula-
tive number of slots that satisfy kðkÞ > lk, called kþ, and
the current number of slots, k [9]:

borigðkÞ ¼
kþ

k
: ð1Þ

This burstiness factor smooths the arrival rate curve.
Fig. 2a illustrates that it follows the arrival rate but does
not accurately represent its quick variations. We consider
that the burstiness factor should alert the system as
quickly as possible of an increase in the arrival rate, and
this factor increases or decreases along with the increasing
or decreasing arrival rate trend but very slowly and
delayed.

We propose the direct inclusion of the arrival rate value
in the burstiness factor in the next proposal, as a way to
modify it quantitatively.

4.2. BF2: Arrival rate included

The second burstiness factor considered modifies the
previous one by including the relative difference of the ar-
rival rate of the two previous slots. Hence, the burstiness
factor modification also depends on how much the arrival
rate increases or decreases. Its expression is the following:

barr rateðkÞ ¼
kþ

k
� 1þ kðkÞ � kðk� 1Þ

kðk� 1Þ

� �
;

0 < barr rateðkÞ < 1: ð2Þ

Notice that barr rateðkÞ can be greater than 1 in this defini-
tion. When this happens we set it to 1 to fulfill the
0 < barr rateðkÞ < 1 restriction.

Fig. 2b shows that, in this case, the burstiness factor also
varies with the variations of the arrival rate. Nevertheless,
there are some peaks in the arrival rate that are not fol-
lowed by the factor. In the next proposal we introduce a
penalisation when detecting a consecutive number of bur-
sty slots.

4.3. BF3: Penalisation included

We also want the burstiness factor to accurately repre-
sent the increasing traffic peaks incoming to a Web server.
Hence, we consider that a maximum of j consecutive bursty
slots should cause a proportional increase in the burstiness
factor. This is the reason for including a penalisation in the
factor that depends on a record of previous bursty slots.
This penalisation is limited with a record of j slots, being
a ¼ 0:1 � j, for j 2 1; . . . ;10. We have chosen to have a max-
imum record of 10 slots to penalise the burstiness factor
because if the burstiness detected in the arrival rate is ex-
treme, then the burstiness factor will be doubled every 10
slots. Hence, the maximum value of the burstiness factor
can be easily reached:

bpenalisðjÞðkÞ ¼
kþ

k
� ð1þ aÞ; 0 < bpenalisðjÞðkÞ < 1: ð3Þ

We have simulated the scenario with different values of j
to compare its behaviour. Fig. 2c–e represent the results
obtained with this burstiness factor and a record of 3, 4
and 10 slots, respectively. We have omitted the plots cor-
responding to the rest of the values of j in Fig. 2 because
we consider that the behaviour of this factor is perfectly
understood with these three values of j and in this way
we avoid the inclusion of more plots in this paper. It can
be observed that as j increases the burstiness factor pen-
alisation also increases. We need to check if this penalisa-
tion (possibly excessive for high values of j) leads to an
increase in the system performance or otherwise, de-
creases its performance because of an overreaction to
the arrival rate.

4.4. BF4: Arrival rate and penalisation included

This proposal includes the relative arrival rate differ-
ence between the last two slots, which will permit the
burstiness factor to follow all the arrival rate variations,
and the penalisation:

barr rate penalisðjÞðkÞ ¼
kþ

k
� 1þ kðkÞ � kðk� 1Þ

kðk� 1Þ þ a
� �

: ð4Þ

We also limit the value of barr rate penalisðjÞ:

0 < barr rate penalisðjÞ < 1:

The burstiness factor values in the simulation are shown in
Fig. 2f–h, representing the results obtained with a maxi-
mum record of 3, 4 and 10 slots. We can observe that the
resulting curves of BF4 are similar to the BF3 curves, but
in this case the burstiness factor is also sensitive to
changes in the arrival rate.

4.5. BF5: Linear extrapolation approach

In this case, we have used linear extrapolation of the ar-
rival rate in order to detect bursty slots instead of the aver-
age of the arrival rate, as described by Baryshnikov et al.
[10]. We compute the prediction of the arrival rate in the
next slot for a Web server as the next expression, tðkÞ being
the final time of the slot k:

k̂ðkÞ ¼ kðk� 2Þ þ tðkÞ � tðk� 2Þ
tðk� 1Þ � tðk� 2Þ

� ðkðk� 1Þ � kðk� 2ÞÞ: ð5Þ

We consider a bursty slot when kðkÞ > k̂ðkÞ and then we ap-
ply expression (1), considering kþ as the number of bursty
slots and k as the current number of slots. This burstiness
factor will be represented as bextrapðkÞ.
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Fig. 2i shows the results obtained with this burstiness
factor and the resulting curve can be observed as being
even smoother than the one obtained from the original
Menascé proposal.

4.6. BF6: Wang approach

This last proposal, introduced by Wang et al. [8], has
been considered in order to analyse its behaviour and com-
pare it with the other proposals. The main difference be-
tween this proposal and all the previous ones is that this
factor is computed for each incoming HTTP request that
reaches a Web server.

Considering tð1Þ and tðmÞ as the times when packets 1
and m arrive at the Web server, and cðtð1Þ; tðmÞÞ ¼ m� 1
as the number of packets between tðmÞ and tð1Þ, the
expression that Wang et al. used to represent the bursti-
ness of each packet is the following [8]:

bðmÞ ¼ tð1Þ þ cðtð1Þ; tðmÞÞ
qmin

� tðmÞ; ð6Þ

where qmin represents the minimum throughput:

qmin ¼ min
cðtð1Þ; tð2ÞÞ
tð2Þ � tð1Þ ;

cðtð1Þ; tð3ÞÞ
tð3Þ � tð1Þ ; . . . ;

cðtð1Þ; tðmÞÞ
tðmÞ � tð1Þ

� �
:

In this case, burstiness is calculated in seconds and repre-
sents a measure of time that expresses the distance between
the actual arrival time and the right edge of the mth packet
arrival interval. As this definition of burstiness is expressed
in seconds, we have modified it to be applicable to slots.

Hence, lbðkÞ being the mean of the burstiness of the
packets that arrive in a slot k, and lb the mean of the burs-
tiness of all the previous packets, we consider a bursty slot
when lbðkÞ > lb and then we apply expression (1), consid-
ering kþ as the number of bursty slots and k as the current
number of slots. This burstiness factor will be represented
as bwangðkÞ.

In Fig. 2j, it can be observed that the BF6 curve does not
accurately follow the arrival rate changes. The BF6 curve
decreases in some points of Fig. 2j when the arrival rate
curve increases. We will obtain more results with this
burstiness factor in order to know its possible benefits with
different workloads despite the fact that its calculation is
made for each incoming HTTP request and then it needs
a huge computational effort, which leads to a considerable
overhead compared to the other proposals.

5. Adaptive time slot scheduling

Once we have defined the burstiness factors, let us de-
scribe how we use them to set up adaptive time slot
scheduling.

We divide the total observation time T of the experi-
ment in several slots of variable duration. While the exper-
iment is simulated, the duration of the slot changes based
on the value obtained by the burstiness factor. Hence, the
duration of the slot kþ 1 is dependent on the burstiness
of the two previous slots, bðkÞ and bðk� 1Þ, as follows:

dðkþ 1Þ ¼
dðkÞ

1þbðkÞþbðk�1Þ ; if bðkÞP bðk� 1Þ;
dðkÞ

1þbðkÞ�bðk�1Þ ; if bðkÞ < bðk� 1Þ:

8<
: ð7Þ
Therefore, the number of slots defined during the simula-
tion time is also variable. We can calculate the total num-
ber of slots that divide the observation time T during each
slot. Considering the duration of the slot kþ 1, the fre-
quency of slots is defined as

eðkþ 1Þ ¼ T
dðkþ 1Þ :

The burstiness factor will never be 0 because we consider
the first slot of the experiment as bursty to avoid a division
by 0.

As the duration of the following slot is defined by the
value of the burstiness factor on the current slot, when a
burstiness increase is detected, the following testing time
is brought nearer in order to check the incoming arrival
rate early enough and then tune again the algorithm
parameters. If a decrease in burstiness is perceived, the
duration of the following slot is enlarged to reduce the
overhead. By controlling the burstiness in the arrival rate,
and then the duration of testing slots, a sudden reduction
in the future performance of the Web servers may be
forecasted.

An example of adaptive time slot scheduling is depicted
in Fig. 3. In the upper part of the figure the arrival rate and
the burstiness factor curve are drawn following adaptive
time slot scheduling. As the arrival rate increases from
time instant 910 s, the burstiness factor also increases.
We have used BF1 to illustrate burstiness factor behaviour
in this case. Below this figure, the slot duration is repre-
sented in another scale. It can be observed how the dura-
tion of the slots decreases when the arrival rate
increases. Some slots have been zoomed in to detail the de-
crease of their durations.
6. Simulation scenario and results

We have tested the six burstiness factors described in
Section 4 in the discrete event simulator OPNET Modeler
[5]. The architecture is made up of a set of clients that re-
quest Web contents from the Web system as depicted in
Fig. 4. The load balancing algorithm employed in this sce-
nario is fully described in [7] and is beyond the scope of
this document. The architecture is modeled as a one-way
architecture that provides an alternative way for the re-
sponses to reach the clients, instead of going through the
load balancer, in order to prevent the load balancer from
becoming the system bottleneck.

We have considered 30, 40 and 50 clients in order to
compare the results obtained by the six burstiness factors.
Each of the tests has been simulated with four seeds for 5,
10, 15 and 20 Web servers in the system.

The workload generated by the set of Web clients con-
tains dynamic and static HTTP requests to the Web cluster
and has been modeled according to recent results in Inter-
net traffic literature. We have considered four types of
applications that can be executed concurrently by the
Web clients. Each of these applications asks for Web con-
tent with a user think time that follows a Pareto distribu-
tion ðk ¼ 0:3;a ¼ 1:4Þ [18,19]. As our intention is to
stress the system with intense workload by using a low
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number of clients in order to simplify the scenario design,
the equivalent of 30, 40 and 50 clients requesting for Web
content with four concurrent application means that an
average of 125, 160 and 200 requests per second reach
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the Web system. The session duration and the session
inter-repetition time are modeled according to an expo-
nential distribution, as it is documented in [20,21],
respectively.

The size of the Web pages the clients ask for has been
obtained from the logs of the 24th of June of the 1998
World Cup Web Site [22]. Arlitt et al. [1] estimate, after
analysing these logs, that the body of the unique file size
distribution follows a lognormal distribution and also that
it is heavy tailed. A summary of the workload specification
is shown in Table 1.

Two experiments have been carried out in the scenario
shown in Fig. 4. The first experiment stresses the system
during a total simulation time of 2000 s with the workload
specified in Table 1. The second experiment considers an
increase in the arrival rate at 1000 s of the simulation time
and for 200 s by changing the user think time from a Pareto
ðk ¼ 0:3;a ¼ 1:4Þ distribution to a Pareto ðk ¼ 0:2;a ¼ 1:4Þ.
This means an important increase in the traffic that arrives
at the system. The purpose of this modification is to ana-
lyse how the burstiness factors react to a sudden increase
of the arrival rate.

6.1. First experiment: no changes in the workload

As we want to know the relation between the arrival
rate and the burstiness factor detected in each server, we
have chosen to compute their correlation by using the
standard Pearson method [23]. In the central set of col-
umns, Table 2 shows the maximum of the 95th percentile
of the correlation values between the arrival rate and the
burstiness factors detected in the servers for 30, 40 and
Table 1
Workload specification.

Number of Web servers 5, 10, 15, 20

Number of clients 30, 40, 50
File size Lognormal body and heavy tailed
User think time (s) Pareto ðk ¼ 0:3;a ¼ 1:4Þ
User session duration (s) Exponential ðl ¼ 600Þ
Session inter-repetition time (s) Exponential ðl ¼ 30Þ

Table 2
Maximum correlation between the 95th percentile of the differences of the
burstiness factor and the arrival rate in two consecutive slots for (i) 30
clients, (ii) 40 clients and (iii) 50 clients.

First experiment Second experiment

(i) (ii) (iii) (i) (ii) (iii)

BF1 0.3433 0.3840 0.4078 0.2406 0.2417 0.2033
BF2 0.8205 0.8195 0.8141 0.7698 0.7263 0.7361

BF3
j ¼ 3 0.5386 0.5677 0.5395 0.6940 0.6928 0.6764
j ¼ 4 0.5267 0.5187 0.5467 0.7375 0.6848 0.6579
j ¼ 10 0.5011 0.4862 0.5273 0.5996 0.6263 0.6550

BF4
j ¼ 3 0.8711 0.8508 0.8495 0.8123 0.8287 0.8330
j ¼ 4 0.8551 0.8393 0.8469 0.8513 0.8422 0.8390
j ¼ 10 0.8225 0.7843 0.7974 0.8160 0.8395 0.8344

BF5 0.6313 0.6168 0.5735 0.4497 0.4663 0.4326
BF6 0.1179 0.1328 0.0798 0.1585 0.1444 0.1260
50 clients in this first experiment. We have considered
the differences of the values of each statistic in two consec-
utive slots because this is the way we have formulated
most of the expressions above. The correlation values be-
tween the arrival rate and the slot frequency are very sim-
ilar to those presented in this table due to the definition of
the slot frequency, which is directly dependent on the
burstiness factor, hence we have omitted it.

We find that both statistics are strongly correlated when
the used burstiness factor includes the arrival rate in its for-
mula, which is the case of BF2 and BF4. Indeed, BF4 is the
most correlated, but its correlation decreases as j increases
(in all cases: (i)–(iii)). The same occurs with BF3. This means
that these burstiness factors are probably excessively pena-
lised when j is increased for the proposed workload.

Comparing columns (i)–(iii) in Table 2 for the first
experiment we can observe that, despite the fact that its
correlation values are less than 0.5, BF1 improves its max-
imum correlation when more traffic reaches the server.
The rest of the burstiness factors do not show this
improvement in the first experiment.

In order to obtain a deeper understanding of the benefits
of each burstiness factor, Fig. 5 shows the relation between
the differences of the 95th percentile of the arrival rate val-
ues and the slot frequency in two consecutive slots for 30
clients. A smooth curve computed by Loess [24] has been
added to the plots in Fig. 5 to highlight the trend of this rela-
tion for 5, 10, 15 and 20 servers. As the workload generated
by the 30 clients is the same in all the cases, when we have
five active servers in the Web system, more requests per
second arrive at each server than if we have 20 active serv-
ers. Hence, the Loess smooth curve differentiates the arrival
rate and slot frequency changes for each case.

It can be observed that BF1, BF5 and BF6 (see Fig. 5a, i
and j, respectively), scarcely modify the values of slot fre-
quency when changing the arrival rate difference for 5,
10, 15 and 20 servers. The case of BF3 (see Fig. 5c, d and
f) shows a bent Loess curve because when a non-bursty
slot is detected after a sequence of bursty slots, the bursti-
ness factor decreases suddenly returning to its original va-
lue. This can also be observed in Fig. 2. In the case of BF4,
there is also a decrease in the burstiness factor when a
non bursty slot is detected, but it is smoother because it
depends on the arrival rate detected in the server. The
clearer linear relation is obtained with BF2 and BF4 for 5,
10, 15 and 20 servers, which supports the results obtained
by Table 2.

6.2. Second experiment: increasing the workload

In order to contrast the results obtained in the first
experiment, we have increased the workload significantly
to check whether the correlation values are maintained
by the burstiness factors studied in this second experi-
ment. A general reduction can be observed of the correla-
tion values in Table 2, in the right set of columns, due to
the peak in the arrival rate we introduce when we modify
the user think time at 1000 s. This is not the case for BF3,
which increases its j values and seems to adapt better to
this sudden change in the arrival rate. Nevertheless, BF2
and BF4 are still the most correlated.
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For a better analysis of the results, we have related the
average and peak traffic rates (see Fig. 6a) as van de Meent
et al. describe in [11]. The objective is to compare this traffic
rate relation with the relation of average and peak bursti-
ness factor values for each of the six burstiness factors con-
sidered, highlighting the results obtained for 5, 10, 15 and
20 servers (see Fig. 6b–k). The more similar the traffic rate
relation figure and the burstiness factor relation figure are,
the better the burstiness factor represents the variations of
the arrival rate and consequently adapts its value.
The comparison shows an excessive penalisation on BF3
and BF4 for all the values of j. The reason is that when a large
number of consecutive slots are bursty, then these factors
increase their own values more and more. Hence, they easily
reach their maximum values (that is 1) and remain near it
most of the simulation time. The greater the j of BF3 and
BF4 is, the more times they reach 1. This makes it almost
impossible for them to detect a sudden, even greater peak
in the arrival rate reaching the system because most of the
times these factors have reached their maximum values.
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BF1, BF4 and BF5 (Fig. 6b, j and k, respectively) reach
their maximum values of 1 fewer times during the simula-
tion time of this second experiment. We can label them as
the most conservative because they react to the arrival rate
variations by slightly changing their values, which is a
drawback if there is a sudden increase in the arrival rate.

BF2 shows almost the same behaviour for 5, 10, 15 and 20
servers (see Fig. 6c) compared to the variations of the arrival
rate plot for a different number of servers (Fig. 6a), due to the
fact that BF2 adaptively changes with the variations in the
workload in each case. However, the comparison among
the different number of servers in not very important be-
cause their results correspond to different simulations.

7. Conclusions

The aim of this paper is to study several burstiness fac-
tors that detect the variations in the arrival rate at a Web
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system. This leads to a monitoring scheduling that is de-
fined by adaptive time slot scheduling to minimise the
execution overhead of the monitoring itself and the actions
of the algorithm that uses the monitored information. If
the burstiness factor detects an increase in the arrival rate
trend to the system, the adaptive time slot scheduling pro-
posed permits checking times are closer in the terms of
time, or viceversa if an arrival rate decrease is detected.
The set of the slot duration is calculated based on the burs-
tiness factor, enabling the adaptive monitoring of the bur-
sty arrivals at the system.

Six different burstiness factors have been considered in
this work. The main advantage of defining a burstiness fac-
tor is that is can be located in any part of the Web system
that receives an arrival rate. We have chosen to detect the
burstiness in the Web servers of the Web system. Some of
the burstiness factors defined (BF1, BF5 and BF6) are con-
servative in the sense that they do not change their values
significantly with the arrival rate variations; while others
(BF3 and BF4) include some penalisation when detecting
successive bursty slots that force them to change their va-
lue considerably. We have found that a burstiness factor
that quickly follows changes in the arrival rate trend is
good enough as long as its maximum value is not easily
reached. Conservative burstiness factors are not very use-
ful if there is a sudden increase in the arrival rate.

An accurate tracking of the arrival rate trend by the burs-
tiness factor is mandatory. It is also important to choose a
burstiness factor that permits detecting an increase in the
arrival rate independently of the actual workload in the sys-
tem. These are the main reasons for us to conclude that BF2
seems the best candidate for an adaptive Web system.

An open problem in the design of a burstiness factor
that includes a penalisation is the decision of the penalty
amount to be included in it. Especially in the case of
detecting several consecutive bursty slots. The factor has
to be suitable for all possible arrival rates a Web system
may expect and has to follow arrival rate variations accu-
rately in the range of values defined for it.

The impact of the different burstiness factors in the per-
formance of the load balancing algorithm is also an open
question to be analysed, which could be included in a fu-
ture analysis of burstiness factors in a globally distributed
Web server architecture versus a locally distributed Web
server architecture.

Also, as a further study we would like to consider that
traffic differentiation in the burstiness factor may improve
the performance of the Web system as not all types of traf-
fic demand the same service in the Web servers.
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