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Abstract—We address two issues in this work: on one hand,
we consider and compare five throughput predictors to be used
in a Web system in order to estimate its future performance and,
on the other hand, we propose an adaptive QoS-aware admission
control algorithm that is based on a resource allocation scheme
that includes a throughput predictor. In order to obtain a low
overhead, the monitoring of the arrival traffic to the Web system
is done following an adaptive time slot scheduling based on the
burstiness factor that we defined in a previous work. Simulation
results of the behaviour of the five throughput predictors and
the admission control algorithm are presented and discussed.

I. INTRODUCTION

It has been widely studied that Internet traffic is self similar
and that sudden bursts of packets can reach a point in a
network infrastructure that offers Web services. This affects
considerably to the performance of the system in case it is not
prepared to process that increase in the demand.

We propose an adaptive admission control algorithm that
prevents the system from a not expected overload by predicting
the throughput of the Web servers. We have considered five
throughput predictors in this work in order to compare them
once included in our admission control algorithm. The problem
of allocating the resources of a Web System that considers QoS
is also addressed. Our algorithm is prepared to be implemented
in a cluster of Web servers to increase the scalability of the
solution.

II. AIMING FOR LOW OVERHEAD

In order to obtain a low overhead, we plan the invocation
times of the algorithm based on the arrival rate. We defined
a burstiness factor, b(k), in a previous work [1]. This factor
varies its value in a range of [0,1] and gives an indication of
the burstiness perceived at the entry point of the system. The
entry point can be defined as the front-end of the system, or
each of the Web servers that are currently attending requests.
Based on this factor, we also defined an adaptive time slot
scheduling in [1], that sets the times the admission control
algorithm is invoked. Hence, we divide the time in slots
(k) of different durations (d(k)) during the experiment. The
burstiness detected in the system influences in the execution of
the admission control algorithm in this way: when an increase

in the burstiness is detected, then the algorithm is invoked
more frequently, and viceversa.

III. SYSTEM ARCHITECTURE

The system architecture proposed is based on Web cluster-
based network servers and includes a front-end Web switch. A
Web switch is normally described as a content-aware switch
that can dencapsulate the requests up to the application level
and classify them on the basis of this information. The cluster
of Web servers is locally connected to the Web switch in a
two-tier organisation. Each Web server attends the requests
that ask for static files, namely static requests and the Appli-
cation/Database server is accessed when the request asks for
a Web page that needs to retrieve dynamic content (dynamic
requests).

IV. QOS-AWARENESS

Different classes of requests are distinguished in the al-
gorithm. We define the priority of each class of requests
by setting a fraction of the utilisation of the whole Web
system for each class. Hence, we consider a set of classes,
C = {c1, c2, . . . , cr}, and define for them a normalised
utilisation value in a decreasing order. Hence, the class of
requests that represent c1 have more priority than the class
c2, and so on. The sum of the utilisation values of all the
classes is equal to 1, that represents the whole utilisation of
the Web system. The admission control algorithm defines how
the different classes of requests are distributed among the Web
servers.

V. THROUGHPUT PREDICTION

The admission control algorithm is based on throughput
prediction for a Web system. We have defined five throughput
predictors that give us the trend of the system behaviour and
permit the admission control algorithm to take decisions that
maintain the performance of the system. A previous version of
the predictors P1-P3 were introduced in [2]. We have extended
the research in throughput prediction in order to obtain better
results. Let us briefly present these five predictors.
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A. P1: based on filtering

This predictor is basically a moving average between the
estimated value of the throughput in the last slot and the
harmonic mean of the throughput obtained in the last two
slots.

x̂1(k + 1) = (1− a(k + 1)) · x̂1(k) + a(k + 1) · 2
1

x(k)+
1

x(k−1)

The value a(k+1) is obtained by the total observation time,
T , and the duration of the next slot, d(k + 1):

a(k + 1) = 2·T−d(k+1)
2·T+d(k+1)

B. P2: based on burstiness

This predictor includes the burstiness factor we described
in Section II in the prediction of the throughput.

x̂2(k + 1) = x̂2(k)− (β(k + 1) · u(k))
β(k + 1) = (b(k)− b(k − 1)) · |x(k)− x(k − 1)|

The goal of this estimator is to decrease the prediction
when a burst of requests is detected, depending on the current
utilisation of the servers.

C. P3: based on filtering and burstiness

The harmonic mean of the predictor 1 and 2 is considered
as the third predictor.

D. P4: based on least mean square (LMS)

We have also considered the Least Mean Square (LMS)
algorithm [3] to predict the throughput. LMS introduces an
iterative procedure that makes successive corrections to a
weight vector that minimises the mean square error.
Let w(k + 1) denote the weight vector of the LMS filter

that is computed at the k slot. The operation can be resumed
by the following recursive operation:

w(k + 1) = w(k) + µ · [x(k)− x̂5(k)] · x(k),
where M is the number of tap weights used in the adaptive

transversal filter, µ is the step-size parameter and the vectors
w(k) and x(k) are defined as:

w(k) = [w0(k), w1(k), ..., wM−1(k)]T

x(k) = [x(k), x(k − 1), ..., x(k −M + 1)]T

The predicted value of throughput is obtained by linear
prediction.

E. P5: based on normalised least mean square (NLMS)

In order to avoid the sensibility of the LMS algorithm to the
scaling of its input x(k), the NLMS method normalises the
previous expression by dividing the vector x(k) by the square
of its Euclidean norm.

ŵ(k + 1) = ŵ(k) + µ · [x(k)− x̂6(k)] · x(k)
‖x(k)‖2

VI. RESOURCE ALLOCATION

We base the resource allocation strategy on the throughput
obtained by the estimator, and the service times (δ(k)) moni-
tored in the Web and Application/Database servers. Hence, we
can predict the utilisation that each class of traffic will have
in each server of the Web system with this expression:

û(k + 1) = x̂(k + 1) · δ(k)

This prediction does not include the SLA we have defined
for each class of request. Therefore, we normalise the pre-
dicted utilisation to guarantee the priority requirements of
each class. For a better understanding of this modification,
we include two subscripts to the following expressions: i and
j. The first one, i, represents a Web server and Applica-
tion/Database server set, and the second one, j, represents a
class of traffic. Depending on the content that the request asks
for, it is mainly attended by the Web server (static request) or
by the Application/Database server (dynamic request).
The normalisation of the utilisation estimation is done to

distribute the 100% of the available capacity of the Web
system between all the classes of requests, beingN the number
of Web and Application/Database server sets that are included
in the Web system:

û
′

i,j(k + 1) = (cj · N) ûi,j(k)∑
∀i

ûi,j(k)

With this modification, we assure that each traffic class has
reserved the utilisation of the Web system that corresponds to
its SLA. To obtain the number of requests that are going to
be accepted for each class in each server during the following
slot, we make the inverse operation and multiply the obtained
throughput by the duration of the next slot in order to obtain
the number of requests:

γi,j(k + 1) = û
′
i,j(k+1)

δ(k) · d(k + 1)
During the next slot, each Web and Application/Database

server counts the number of accepted requests. When γi,j(k+
1) is reached, the server stops attending that class of requests
until the next invocation of the admission control algorithm.

VII. RESULTS

The five throughput predictors have been tested in the
resource allocation algorithm. We have configured a simulation
scenario in OPNET Modeler that consists of 5 Web and
Application/Database servers that attend two different classes
of requests. The SLA specified for each class is c1 = 0.625 for
class-1 requests and c2 = 0.375 for class-2. We have stressed
the Web system with requests coming from by 30, 40, 50,
60, 70, 80, 90 and 100 Web clients. Obviously, as the load
increases in the Web system, the algorithm needs to reject
more requests.
We have considered a Pareto user think time in the Web

clients, and the session duration and the session inter-repetition
time are modelled according to a exponential distribution. The
file size has been obtained from the logs of the 24th of June
of the 1998 World Cup Web Site.
Each simulation has been run for 2000 seconds with 4

different seeds. As we have introduced the same proportion of
static and dynamic requests in the system, the bottleneck of
the architecture is the Application/Database server. In fact, the
admission control algorithm limits the CPU utilisation of the
Application/Database servers and then, starts to reject class-2
dynamic requests with 40 clients, as it can be observed in the
lower part of Figure 1a). In the upper part of this figure, we
see that Class-1 requests are also rejected when there are 70
clients asking for dynamic content.
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Fig. 1. a) Rejection of dynamic requests; b) Back-end server Utilisation for requests that ask for dynamic content and c) Error of Throughput Predictions
of dynamic requests.

The 90th percentile of the CPU utilisation mean of all the
Application/Database servers for each traffic class is repre-
sented in Figure 1b). The maximum utilisation for class-2
requests is almost reached with 40 clients, while for class-
1 requests the maximum is obtained with 70 clients. Hence,
Application/Database servers are at 100% of their utilisation
with 70 clients.

In order to compare the goodness of the predictions made
by the five predictors we defined in Section V, we have
also computed the error obtained once the predictor has been
included in the admission control algorithm. In Figure 1c), we
can observe that the errors of the predictors decrease when the
servers are reaching their maximum utilisation for each traffic
class. This is due to the fact that most of the requests of that
traffic class are rejected, hence, the throughput prediction is
near to zero.

We have also considered the response time of the requests
that stress the bottleneck of the system, that are the dynamic
requests. It can be observed in Figure 2 the response time
of dynamic requests of class-1. The differences among the
curves begin at 60 clients, when the Application/Database
server starts to be overloaded. The predictor P4 stands out
for its lowest values of the response time.

VIII. CONCLUSIONS AND OPEN PROBLEMS

We introduce a low overhead admission control algorithm
that bases its decisions on the values obtained by a throughput
predictor. The invocation times of the algorithm are adaptively
scheduled depending on the burstiness detected in the sys-
tem in order to reduce the overhead of the algorithm. Five
throughput predictors are introduced in this work and their
behaviour in the admission control algorithm is compared
under a simulation scenario in OPNET Modeler. The resource
allocation algorithm adaptively distributes the utilisation of the
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Fig. 2. Response Time

servers among the different classes of requests. The results
show that the algorithm guarantees the service specified in the
SLA with all the throughput predictors, but show differences in
the response times of the requests that ask for dynamic content
as the bottleneck of the system starts to be overloaded.
Simulation experiments that include a more variable work-

load are planned as a future work in order to verify the results
of this work and confirm that the predictor based in LMS is
the one that best suits in the algorithm.
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