
Optimal Topology for Distributed Shared-Memory

Multiprocessors: Hypercubes Again?

Jos�e Duato and M.P. Malumbres

Facultad de Inform�atica, Universidad Polit�ecnica de Valencia
P.O.B. 22012, 46071 - Valencia, SPAIN. E-mail: fjduato,mperezg@gap.upv.es

Abstract. Many distributed shared-memory multiprocessors (DSM) use

a direct interconnection network to implement a cache coherence pro-
tocol. An interesting characteristic of the message tra�c produced by

coherence protocols is that all the messages are very short. Most current

multicomputers use low dimensional meshes or tori because these topolo-
gies usually achieve a higher performance. However, when messages are

very short, latency is mainly dominated by the distance traveled in the

network. As a consequence, higher dimensional topologies may achieve
a lower latency than low-dimensional topologies. In this paper, we com-

pare the 2D-mesh and the hypercube topologies assuming a very detailed

router model. Network load has been modeled taking into account the
tra�c produced by cache coherence protocols. Performance results show

that average latency for hypercubes is slightly lower than for meshes.

Moreover, hypercubes achieve a much higher throughput than meshes,
making them suitable for DSMs.

1 Introduction

Distributed shared-memory multiprocessors (DSM) are gaining acceptance be-

cause they are easier to program than multicomputers. Recently proposed DSMs

use a direct interconnection network to access remote memory locations, making

these architectures scalable [12, 11]. Most DSM implement a cache coherence pro-

tocol. An interesting characteristic of the message tra�c produced by coherence

protocols is that all the messages are very short. In particular, invalidations and

acknowledgments require a single 
it. Messages containing a cache line usually

range from four to sixteen 
its depending on 
it width and line size.

Most current multicomputers like Intel Paragon and Cray T3D use wormhole

switching [4] and low dimensional meshes or tori [10, 9]. Low-dimensional topo-

logies allow the use of wider channels, therefore increasing channel bandwidth

[1]. This is important when messages are long. However, when messages are very

short, latency is mainly dominated by the distance traveled in the network. As a

consequence, higher dimensional topologies may achieve a lower latency than low-

dimensional topologies. Taking into account that invalidation protocols require a

very low message latency to work e�ciently, the optimal topology for DSMs may

di�er from the one for multicomputers. Throughput is also important for cache

This work was supported by the Spanish CICYT under Grant TIC94{0510{C02{01



Switch

In
pu

t c
ha

nn
el

s

(virtual channels)

Input queues Output queues

(virtual channels)

From/to local processor

Routing
control unit

O
ut

pu
t c

ha
nn

el
s

m
ux

m
ux

Fig. 1. Router model used in our study

coherence protocols, especially for update protocols. Again, high-dimensional to-

pologies may achieve a higher throughput for short messages because they o�er

more alternative paths, especially when adaptive routing is used.

In this paper, we present a performance evaluation of deterministic and fully

adaptive routing algorithms for meshes and hypercubes. Performance evaluation

uses a very detailed router model. The design complexity of the router has been

considered while computing internal delays. Also, wire length has been taken

into account to compute channel delay and bandwidth. Network load has been

modeled taking into account the tra�c produced by cache coherence protocols

in DSMs. In section 2, we describe the router model that we have considered.

In section 3, we present the network tra�c pattern. In section 4 we present the

simulation results for di�erent approaches. Finally, conclusions are drawn.

2 Router Model

Each router consists of a routing control unit, a switch, and several channels.

Figure 1 shows the router model used in our simulator. The routing control unit

selects the output channel for a message as a function of its destination node, the

current node and the output channel status. The routing control unit can only

process one message header at a time. We also considered an alternative router

design in which each virtual channel has an independent routing control unit,

allowing a concurrent processing of message headers that arrive at the node. The

switch is a crossbar. So, it allows multiple messages traversing it simultaneously

without interference.

Physical channels can be split into several virtual channels. Virtual channels

are assigned to the physical link using a demand-slotted round-robin arbitration

scheme. Each virtual channel has an associated bu�er. This bu�er is divided

into two halves, one associated with the output port of the switch (m 
its), and



another one associated with the input to the next node's switch (n 
its). We will

use the m+n notation to specify this bu�er size. We have used a variable bu�er

size to study the impact on performance.

We assume that all operations inside each router are synchronized by its local

clock signal. To compute the clock frequency of each router, we use the delay

model proposed in [3]. It assumes 0.8 micron CMOS gate array technology for

the implementation. The delay of each component is computed as follows:

{ Routing control unit. Routing a message involves the following operations:

Address decoding, routing decision, and header selection. According to [3],

the address decoder delay is equal to 2.7 ns. The routing decision logic has a

delay that grows logarithmically with the number of alternatives, or degree

of freedom, o�ered by the routing algorithm. Denoting by F the degree of

freedom, this circuit has a delay given by 0:6 + 0:6 logF ns. Finally, the

routing control unit must compute the new header, depending on the output

channel selected. This operation has a delay given by 1:4 + 0:6 logF ns.

Therefore, total routing time will be the sum of all the delays, yielding:

Tr = 2:7 + 0:6 + 0:6 logF + 1:4 + 0:6 logF = 4:7 + 1:2 logF ns.

{ Switch. The time required to transfer a 
it from one input channel to the

corresponding output channel is the sum of the delay involved in the internal


ow control unit, the delay of the crossbar, and the set-up time of the output

channel latch. The 
ow control unit has a constant delay equal to 2.2 ns. The

crossbar delay grows logarithmicallywith the number of ports. Assuming that

P is the number of ports of the crossbar, its delay is given by 0:4+ 0:6 logP

ns. Finally, the set-up time of a latch is 0.8 ns. Therefore, switch time is:

Ts = 2:2 + 0:4 + 0:6 logP + 0:8 = 3:4 + 0:6 logP ns.

{ Channels. The time required to transfer a 
it across a physical channel in-

cludes the o�-chip delay across the wires, and the time required to latch it

onto the destination. The latter time is the sum of input bu�er, input latch

and synchronizer delays. Typical values for the technology used are 0.6, 0.8,

and 1.0 ns, respectively, yielding 2.4 ns per 
it. The o�-chip delay across

the wires depends on their length. In particular, topologies like 2D-meshes

have constant wire length. For the technology used, assuming 25 pF load,

typical propagation delay across wires is 1.5 ns. However, hypercubes have

wires with di�erent lengths. So, wire delay must be computed for hypercubes

taking into account wire length in order to make a fair comparison with mesh

topologies. For example, if we have an 8D-hypercube, we can assemble the to-

pology in three dimensions as shown in Figure 2. As can be seen, the shortest

wires have the same length that they would have in a 2D-mesh. Also, there

are some wires twice as long as the shortest ones. Finally, the longest wire

is four times the size of the shortest one. Thus, the o�-chip delay in an 8D-

hypercube will depend on wire length. For the shortest wires, a typical value

will be 1:5 ns (the same as for 2D-meshes). For the remaining wire lengths,

the o�-chip delay will be 3 ns and 6 ns, respectively.



y

x

z

1x 2x 4x

An 8x8 plane
conforming
a 6D-Hyp.

Fig. 2. A three-dimensional implementation of a 8D-hypercube

If virtual channels are used, the time required to arbitrate and select one

of the ready 
its must be added. The virtual channel controller has a delay

logarithmic in the number of virtual channels per physical channel. If V is the

number of virtual channels per physical channel, virtual channel controller

delay is 1:24 + 0:6 logV ns. If we denote the o�-chip delay for the shortest

wires as Tc1, and the o�-chip delays for wires that are twice and four times

longer as Tc2 and Tc4, respectively, total channel delay yields:

Tc1 = 2:4 + 1:5 + 1:24 + 0:6 logV = 5:14 + 0:6 logV ns.

Tc2 = 2:4 + 1:5 � 2 + 1:24 + 0:6 logV = 6:64 + 0:6 logV ns.

Tc4 = 2:4 + 1:5 � 4 + 1:24 + 0:6 logV = 9:64 + 0:6 logV ns.

In what follows, we compute the value of F and P as a function of the topo-

logy and the number of virtual channels for deterministic and adaptive routing

algorithms. The deterministic routing algorithm is the dimension-order routing

algorithm. The adaptive routing algorithm is based on Duato's theory [7]. In this

routing algorithm, all the virtual channels but one are used for fully adaptive

minimal routing. The remaining virtual channel is used to avoid deadlocks by

routing in dimension-order.

1. 2D-mesh with deterministic routing. A deterministic routing algorithm has a

single routing choice. However, messages can use any virtual channel. If there

are V virtual channels per physical channel then F = V . Also, each crossbar

has P = 4V + 1 ports, including the port connecting to the local processor.

2. 2D-mesh with adaptive routing. The number of routing choices is equal to

F = 2(V � 1)+ 1, because we have V � 1 virtual channels in each dimension

that can be used to cross the dimensions in any order plus one additional

virtual channel to avoid deadlock [7]. As above, the number of ports is given

by P = 4V + 1.



3. 8D-hypercube with deterministic routing. In this case, we have F = V and

P = 8V + 1.

4. 8D-hypercube with adaptive routing. The number of routing choices is F =

8(V � 1) + 1 and the number of ports is P = 8V + 1.

3 Network Tra�c Pattern Description

We assume a distributed shared-memory multiprocessor architecture. So, tra�c

consists of two kinds of messages: control messages containing invalidations and

acknowledgments (1 data 
it), and data messages that transport cache lines (8

data 
its). Control messages represent a 60% of the total number of messages and

may have more than one destination (multicast messages). The rest of messages

will be unicast data messages, following the usual distribution in DSMs.

For each simulation run, we have considered that message generation rate

is constant and the same for all the nodes. Once the network has reached a

steady state, the 
it generation rate is equal to the 
it reception rate (tra�c).

We have evaluated the full range of tra�c, from low load to saturation. The

message destination is randomly chosen among all the nodes. This pattern has

been widely used in other performance evaluation studies [6, 2].

4 Simulation Results

We evaluated 2D-mesh and hypercube topologies with 256 nodes, considering

di�erent routing algorithms and network parameters, and assuming the speci�c

tra�c pattern described above. We ran simulations using the minimumnumber of

virtual channels per physical channel and the minimum plus one. The evaluation

methodology used is based on the one proposed in [7]. The most important

performance measure in DSMs is latency (time required to deliver a message).

So, plots will represent latency versus network tra�c. Tra�c is the 
it reception

rate. Latency is measured in nanoseconds. Tra�c is measured in 
its per node

per microsecond. Note that we have used absolute measurement units because we

are going to compare routing algorithms that involve di�erent implementations,

and consequently, di�erent clock frequencies. When simulation results do not

consider the router implementation, the latency and tra�c will be measured in

clock cycles and 
its per node per cycle, respectively.

4.1 E�ect of queue size and multiple routing control units

We analyzed the e�ect of 
it queues with capacity for 2 + 2 and 4 + 5 
its.

Note that a queue with capacity for 4 + 5 
its is able to store a whole message,

including its header. Also we considered two router models: one of them has the

typical routing control unit in which header 
its are routed sequentially, and the

other one is able to make routing operations in parallel. So, we can determine if

the routing control unit is a bottleneck when short messages are used.



10

15

20

25

30

35

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

’8D-Hyp.a2V.Seq’

Traffic(flits/cycle/node)

M
es

sa
ge

_L
at

en
cy

(c
yc

le
s) ’8D-Hyp.a2V.Par’

15

20

25

30

35

40

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

M
es

sa
ge

_L
at

en
cy

(c
yc

le
s) ’8D-Hyp.adap.Q45’

’8D-Hyp.adap.Q22’

Traffic(flits/cycle/node)

Fig. 3. Single vs multiple routing control units, and e�ect of queue size in

8D-hypercubes using an adaptive routing algorithm

Figure 3a shows the di�erence between using single and multiple routing con-

trol units in an 8D-hypercube with adaptive routing. As can be seen, latency is

almost identical when tra�c load is low. When tra�c increases, the di�erence

between both approaches also increases, achieving an improvement of up to 25%

in average latency. In general, the latency improvement is not worth the addi-

tional cost of replicating the routing control units. Similar results are obtained

for 2D-mesh topologies. So, in what follows, a single routing control unit will be

used. Figure 3b shows the e�ect of using 
it queues of di�erent capacities. This

e�ect is very small. So, in what follows, we will use a 4+5 queue size per channel.

4.2 Considering router delays and implementation constraints

The most important implementation constraints proposed in the literature are

pin count and network bisection width [1]. For small and medium size networks,

channel width is only limited by pin count, existing proposals to increase the

utilization of the available bisection bandwidth without increasing pin count [5].

In order to make a fair comparison between the 2D-mesh and the hypercube,

both topologies should have the same pin count. So, physical channels are twice

as wide in the 2D-mesh than in the 8D-hypercube. Thus, the 8D-hypercube will

spend 2 clock cycles to transfer one 
it across a short physical channel, while the

2D-mesh will only require one cycle. Also, depending on parameters like number

of virtual channels, routing algorithm, network dimensions and physical layout,

we can compute the delays for all the router components. Using the expressions

obtained in the router model section, we present in table 1 the delays and clock

periods for 2D-mesh and 8D-hypercube topologies.

2D-mesh Tr Ts Tc1 Tclk

Det-1V 4.7 4.79 5.14 5.14

Det-2V 5.9 5.3 5.74 5.9
Adap-2V 6.6 5.3 5.74 6.6

Adap-3V 7.49 5.62 6.09 7.49

8D-hyp Tr Ts Tc1 Tc2 Tc4 Tclk

Det-1V 4.7 5.3 5.14 6.64 9.64 5.3

Det-2V 5.9 5.85 5.74 7.24 10.24 5.9
Adap-2V 8.5 5.85 5.74 7.24 10.24 5.85

Adap-3V 9.6 6.2 6.09 7.59 10.59 6.2

Table 1. Delays for routing control unit (Tr), switch (Ts) and channels of di�erent

lengths (Tci), and router clock period (Tclk) in 8D-hypercube and 2D-mesh topologies.



100

150
200

250
300

350

400
450

500
550

600

5 10 15 20 25 30
200

250

300

350

400

450

500

550

600

5 10 15 20 25 30 35

M
es

sa
ge

_L
at

en
cy

(n
s)

’2D-Mesh.det-1V’
’2D-Mesh.det-2V’
’8D-Hyp.det-1V’
’8D-Hyp.det-2V’

Traffic(flits/useg/node)Traffic(flits/useg/node)

’8D-Hyp.adap-2V’
’2D-Mesh.adap-3V’
’2D-Mesh.adap-2V’

’8D-Hyp.adap-3V’

Fig. 4. Performance of deterministic and adaptive routing algorithms for 2D-mesh and

8D-hypercube when constant pin count and variable channel length are considered

In the 2D-mesh, the delays for the routing control unit, switch and channels

are very similar. So, the clock period is determined by the slowest component.

However, in 8D-hypercubes the delay for long channels can be up to twice

the switch delay. Delays for the switch and routing control unit are very similar

when deterministic routing is used. However, these delays considerably di�er for

adaptive routing. So, we have chosen clock period to be equal to max(Tr ; Ts) for

deterministic routing, and equal to Ts for adaptive routing. As a consequence,

the routing operation will require two clock cycles when adaptive routing is used.

Taking into account that transferring one 
it across a short physical channel

requires 2 clock cycles (due to pin count constraints), transferring one 
it across

the rest of the channels can be done in four clock cycles.

Figure 4a shows simulation results for deterministic routing algorithms with

one and two virtual channels, assuming the timing considerations mentioned

above. Both topologies achieve similar average message latency when network

load is low, being slightly better for the hypercube with one virtual channel.

However, the hypercube increases throughput with respect to the 2D-mesh by a

factor of 2 and 1.5 for one and two virtual channels, respectively.

Figure 4b shows simulation results for adaptive routing algorithms. As can be

seen, the hypercube o�ers better performance than 2D-meshes, achieving a 25%

reduction in message latency for three virtual channels, and a 10% reduction

for two virtual channels. Moreover, in the latter case, the hypercube improves

throughput by a factor of 2.7 over the 2D-mesh. On the other hand, performance

does not improve when the number of virtual channels is increased from two to

three. This result was already presented in [8].

5 Conclusions

Previous research has shown that low-dimensional topologies achieve higher per-

formance than high-dimensional topologies.While this is true for multicomputers,

previous research e�orts did not consider the particular characteristics of network

tra�c in DSMs. When cache coherence protocols are implemented in hardware,

messages are very short. In this case, latency heavily depends on the distance

between nodes, therefore favoring the use of high-dimensional topologies.



In this paper, we have evaluated 2D-meshes and 8D-hypercubes using tra�c

patterns that are typical in DSMs. We have used deterministic and fully adapt-

ive routing algorithms. Also, several network parameters, like number of virtual

channels, bu�er sizes and router models have been evaluated. To make a fair

comparison, we have taken into account the delays of the main components of

the router, as well as pin count constraints and variable wire lengths. The simu-

lation results show that the 8D-hypercube behaves better than the 2D-mesh in all

the cases, achieving a slightly lower latency and a much higher throughput. Also,

the maximum performance is obtained for both topologies when the minimum

number of virtual channels is used.

In summary, hypercubes perform better than 2D-meshes when tra�c consists

of very short messages, and router designs are optimized for each topology. Note

however that we did not analyze very large networks. Bisection width may be

the main constraint for channel width in networks with thousands of processors.

So, results may change for large networks. Anyway, current DSMs have a few

hundreds of nodes at most.

References

1. A. Agarwal, \Limits on interconnection network performance", IEEE Trans. Par-

allel Distributed Syst., vol. 2, no. 4, pp. 398{412, Oct. 1991.

2. R.V. Boppana, and S. Chalasani, \A comparison of adaptive wormhole routing
algorithms," in Proc. 20th Annu. Int. Symp. Comput. Architecture, May 1993.

3. A.A. Chien, \A cost and speed model for k-ary n-cube wormhole routers," in Proc.

Hot Interconnects'93, Aug. 1993.
4. W.J. Dally and C.L. Seitz, \Deadlock-free message routing in multiprocessor in-

terconnection networks," IEEE Trans. Comput., vol. 36, no. 5, pp. 547{553, May

1987.

5. W.J. Dally, \Express cubes: Improving the performance of k-ary n-cube intercon-

nection networks," IEEE Trans. Comput., vol. 40, no. 9, pp. 1016{1023, Sept. 1991.

6. W.J. Dally, \Virtual-channel 
ow control," IEEE Trans. Parallel Distributed Syst.,
vol. 3, no. 2, pp. 194{205, Mar. 1992.

7. J. Duato, \A new theory of deadlock-free adaptive routing in wormhole networks,"

IEEE Trans. Parallel Distributed Syst., vol. 4, no. 12, pp. 1320{1331, Dec. 1993.
8. J. Duato and P. L�opez, \Performance evaluation of adaptive routing algorithms for

k-ary n-cubes," in Proc. Workshop on Parallel Computer Routing and Communic-

ation, May 1994.

9. Intel Scalable Systems Division, \Intel Paragon Systems Manual," Intel Corpora-

tion.

10. R.E. Kessler and J.L. Schwarzmeier, \CRAY T3D: A new dimension for Cray

Research," in Compcon, pp. 176{182, Spring 1993.

11. J. Kuskin et al., \The Stanford FLASH multiprocessor," in Proc. 21st Annu. Int.

Symp. Comput. Architecture, April 1994.

12. D. Lenoski, J. Laudon, K. Gharachorloo, W. Weber, A. Gupta, J. Hennessy, M.

Horowitz and M. Lam, \The Stanford DASH multiprocessor," IEEE Computer

Magazine, vol. 25, no. 3, pp. 63{79, March 1992.

This article was processed using the LATEX macro package with LLNCS style


