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Abstract. Over the last decade a lot of research and development ef-
forts have gone into designing competitive video coding standards for
several kinds of applications. Some video encoders like MPEG-4 and
H.26L, exhibit a high computational cost, far from real-time encoding,
with medium to high quality video sequences. So, for these kinds of
video coding standards, it is very difficult to find software solutions able
to code video in real-time. In this paper, we design a parallel version of
the ITU-T H.26L video coding standard, showing different implemen-
tation approaches and evaluate their performance. Several experiments
were carried out showing that parallel versions of H.26L significantly
improve its coding speed by running in a cluster of personal computers
interconnected with Myrinet LAN.

1 Introduction

The storage, processing and delivery of multimedia data in their raw form is very
expensive; for example, a standard 35mm photograph could require about 18
MBytes of storage and one second of NTSC-quality colour video requires almost
23 MBytes of storage. To make widespread use of digital imagery practical, some
form of data compression must be used.

Digital images can be compressed by eliminating redundant information.
There are three types of redundancy that can be exploited by image compression
systems:

— Spatial Redundancy. In almost all natural images, the values of neighbouring
pixels are strongly correlated.

— Spectral Redundancy. In images composed of more than one spectral band,
the spectral values for the same pixel location are often correlated.

— Temporal Redundancy. Adjacent frames in a video sequence often show very
little change.

The removal of spatial and spectral redundancies is often accomplished by
transform coding, which uses a reversible linear transform to decorrelate the



image data. Temporal redundancy is exploited by techniques that only encode
the differences between adjacent frames in the image sequence, such as motion
prediction and compensation.

In the last few years, many video compression algorithms have been pro-
posed. As a result, several image and video compression standards have been
approved [H.26X, MPEG-X, JPEG2000] and many hardware/software solutions
are now available. Futhermore, clusters of workstations (COWSs) are currently be-
ing considered as a cost-effective alternative for small-scale parallel computing.
Although COWSs do not provide the computing power available in multicom-
puters and multiprocessors, they meet the needs of a great variety of parallel
computing problems at a lower cost, in particular high quality video coding
applications for video on demand systems.

With respect to video parallel programming, several MPEG parallel imple-
mentations have been developed. Perhaps, at software level, the most significant
works on MPEG parallelization have been done at Berkeley [6], [18]. Load balanc-
ing studies have been performed at Purdue, achieving significant improvements
on a Paragon machine [15]. Yu and Anastassiou have evaluated parallel versions
of MPEG-2 encoder on an Ethernet-based COWs [16]. Other MPEG parallel
implementations have been proposed to run on high performance switched LAN
networks [10]. Also, several H.263 parallel implementations have been developed
on multiprocessors [17] and COWs [4].

In this paper, a parallel ITU-T H.26L video encoder is proposed. The com-
putational cost of the H.26L encoder is extremely high. We propose two parallel
versions: the first divides the overall video sequence among the working nodes
(GOP-level parallelism). The second divides one frame among the working nodes
(Frame-level parallelism). Both approaches were evaluated on a Myrinet-based
COWs.

In section (2) we give a brief description of the H.26L encoder. In section
(3) the two parallel versions are explained. Section (4) shows some evaluation
results and, finally, in section (5) some conclusions are drawn.

2 The H.26L Video Encoder

H.26L [8] is the current project of the ITU-T Video Coding Experts Group
(VCEG), a group officially chartered as ITU-T Study Group 16 Question 6. The
primary goals of the H.26L project are:

— Improved coding efficiency. The syntax of H.26L should permit an average
reduction in bit rate by 50% compared to H.263+ (version 2 of H.263 [9])
for a similar degree of encoder optimization.

— Improved Network Adaptation. Issues relating to network adaptation that
were examined seriously for the first time in the H.263 and MPEG-4 projects
are being taken further in H.26L.

— Simple syntax specification. The design of H.26L is strongly intended to lead
to a simple, clean solution avoiding any excessive quantity of optional fea-
tures or profile configurations. A new feature of the design is its introduction



of a conceptual separation between a Video Coding Layer (VCL), which pro-
vides the core high-compression representation of the video picture content,
and a Network Adaptation Layer (NAL), which packages that representation
for delivery over a particular type of network.

Different from the previous MPEG and ITU-T standards, some new tech-
niques, such as spatial prediction in intra coding, motion compensation with
adaptive block size, 4x4 integer DCT, UVLC (Universal Variable Length Cod-
ing), CABAC (Context-based Adaptive Binary Arithmetic Coding) and loop
filter are adopted by H.26L. The intra predictions are derived from the neigh-
bouring pixels in left and top blocks. The unit size of spatial prediction is either
4x4 or 16x16. There are 6 different modes for each 4x4 sub-block. The first mode
is DC prediction and other modes represent different directions of predictions.
16x16 intra prediction is particularly suitable for a flat region with little details.
Vertical, horizontal, DC and plane predictions are used at 16x16 size.

H.26L allows more than one previous frames for inter frame prediction. In-
ter prediction is calculated from one of these previous frames. In the MPEG-4
standard, only 8x8 and 16x16 blocks are the units for motion estimation and
compensation. However, seven block sizes, i.e., 16x16, 16x8, 8x16, 8x8, 8x4, 4x8
and 4x4, are supported in H.26L. The spiral search finds the minimum cost for
each block size in the given range. The cost includes signal SAD and overhead
bits for coding block size information and motion vectors. The optimal block size
is decided based on these minimum costs. If 4x4 block size is the winner, there
are 8 motion vectors for this macroblock. The precision of motion vectors is at
least quarter pixel. With higher complexity for higher coding efficiency, H.26L
allows 1/8 pixel accuracy prediction. The residue after prediction is transformed
with 4x4 integer DCT. Basic scanning order is still zigzag similar to that used
in MPEG-4. Two different entropy-coding techniques are used in H.26L to com-
press quantized coefficients: UVLC and CABAC. UVLC provides a simple and
robust method to code all mode information and DCT coefficients. But the
performance at moderate or high bit rates is not good. Therefore, CABAC is
proposed as another option in H.26L.

The sum of the prediction and the current reconstructed error image forms
the reconstructed reference. H.26L uses the deblocking filter in the motion com-
pensation loop. The deblocking process directly operates on the reconstructed
reference first across vertical edges and then across horizontal edges. Obviously,
different image regions and different bit rates need different levels of smoothing.
Therefore, the deblocking filter is automatically adjusted in H.26L depending on
activities of blocks and QP parameters.

3 Parallel Algorithms

The amount of work associated with coding different pictures is variable and un-
predictable. In this section, we present two versions of an H.26L parallel video
encoder: GOP (Group Of Pictures) division and frame division. The difference
between them consists of the degree of parallelism employed. The first version,



GOP division, divides the overall video sequence among the available working
nodes, so each node is able to independently process a set of contiguous frames.
With GOP division there is no explicit communication between working nodes
at encoding time. The only communication is performed at the end of the encod-
ing process when results have to be delivered to the final compressed file. The
second parallel version of the H.26L video encoder, frame division, divides one
frame among working nodes (fine-grain parallelism). The considered task unit
for frame division is the slice, a consecutive group of macroblocks. As expected,
when processing a frame two communications steps are performed: (a) storing
the compressed bitstream associated to this frame (gather operation) and, (b)
exchange state information required for coding the next frame.

3.1 GOP division

As stated above, each processor computes a GOP of the video sequence. Each
GOP begins with an I-Frame, the rest being P-Frames and, optionally, B-Frames.
So, if the first picture is an I-Frame, that does not depend on previous pictures,
then a GOP is defined as a closed group of pictures that can be decoded indepen-
dently. Let us consider the following values, n_frames is the number of frames in
the video sequence, n_frames_gop is the number of frames in one GOP, n_gops
(the number of GOPs) is given by n_frames/n_frames_gop and p is the number
of processors. The number of not assigned GOPs is n_gops_not = mod(n_gops, p)
and the number of assigned GOPs to each processor is n_gops_as = (n-gops —
n_gops-not)/p. The total number of GOPs assigned to the processor Py, k =0 :
p— 1, is given by:

n-gops-as + 1, k < n_gops_not

n_gops_p = (1)
n_gops_as, k > n_gops_not

To determine which frames will be assigned to each processor, two parameters
have been defined, ify, the initial frame, and f f; the final frame belonging to
processor Py. Then Py calculates the frames ify,ifrxs1,- -, ffr- The values of
these parameters are given by the following expressions:

k x (n_gops_p x n_frames_gop), k < n_gops_not
ifr =
n_frames — ((p — k) * (n_gops_p * n_frames_gop)), k > n_gops_not
(2)
((k 4+ 1) * (n_gops-p x n_frames_gop)) — 1, k < n_gops_not

ffe=
(n-frames — ((p — k — 1) * (n_gops_p * n_frames_gop))) — 1, k > n_gops_not

(3)



Thus, the parallel algorithm using the GOP division method will be the
following:

Compute_GOP _par: In Parallel for k =0,---,p—1
In Processor P,

(*Compute frames *)

Compute ify and f f5,

For i =1ify to ffi do

Compute Frame ¢

EndFor

(*Obtain bitstream*)

Send bitstream to P,

If & = 0 obtain final compressed file
End Compute_GOP_par

3.2 Frame division

In this case the task unit is the slice, a group of consecutive macroblocks in a
frame. Each frame is divided in slices, and those are assigned to working nodes.
Since most test sequences use only one slice per row of macroblocks (the slice
width is the same as the frame width) , each frame usually contains a small
number of slices. For example, in CIF video format the number of macroblocks
that conforms a slice will be 22, with a total of 18 slices per frame. With QCIF
formats a slice will contain 11 macroblocks, so the total number of slices is limited
to 9.

Let us consider the following values, n_frames is the number of frames in
the overall sequence, n_m_t is the number of macroblocks in one frame, n_m_s
is the number of macroblocks in one slice, n_s = n_m_t/n_m_s is the number
of slices and p is the number of processors. The number of not assigned slices
is n_s_.n = mod(n-s,p) and the number of assigned slices to each processor is
n-s.as = (n_s — n_s_n)/p. The total number of slices assigned to the processor
Py, k=0:p—1,is given by:

nsas+1, k<n_.sn
n_sp= (4)
n-s_as, k> n_sn

To determine the macroblocks assigned to each processor, two parameters
have been defined, imy,, the initial macroblock, and fmy the final macroblock
of processor Pj. Then Py calculates the macroblocks imy, imy11,-- -, fmy. The
values of these parameters are given by the following expressions:

kx(n.spxn-m.s), k<n_sn
imk == (5)
nom_t— ((p—k)* (n.scpxnom.s)), k> n_sn



(k+1)*(ns.pxnomes)) — 1, k < n-sn
fo = (6)
(nomit—((p—k—1)*(nsppxn-m.s)))—1, k>n_sn

Thus, the parallel algorithm using the frame division method will be the
following:

Compute_frame_par: In Parallel for k=0,---,p—1
In Processor P,
(*Compute macroblocks *)
Compute imy, and fmy
Fori =0 to n_frames — 1 do
For j = imy to fmy do
Compute Macroblock j of Frame ¢
EndFor
Send bitstream to P,
If £ =0 obtain partial bitstream
EndFor
If & = 0 obtain final compressed file
End Compute_frame_par

4 Experimental Results

The sequential algorithm is evaluated using the sequential execution time, T.
The parallel algorithms are evaluated using parallel execution time T}, (p pro-
cessors), speed-up, S, = T1 /T, and efficiency, E,, = S,/p. The results have been
obtained using a Beowulf cluster of 32 nodes interconnected with a Myrinet
switch. Each node consists of an Intel Pentium-II processor at 300MHz with 128
MBytes RAM. Communication routines in MPT and C language are used. Sev-
eral numbers of working nodes have been used for running both parallel versions
of H.26L. encoder, in particular we have run experiments with 2, 3, 4, 9, 16 and
24 nodes. We have used the public available sources of H.26L. TML 8.4 as the
starting point for this study. During the experiments several QCIF (176x144)
video sequences (carphone, claire and miss-am) of 315 frames were used. The
sequence of frame types used in all tests is the following IBBPBBPI---. In
the GOP division method n_frames_gop = 7 and n_gops = 45. Nine slices of 11
macroblocks have been considered. In the frame division method n_m_t = 99,
n-m_s = 11 and n_s = 11. The deblocking filter optional mode was not used.
We have employed the following coding options:

— Fractional 1/4 pixel precision is used.

— Seven different block sizes (16 x 16,16 x 8,8 x 16,8 x 8,8 x 4,4 x 8 and 4 x 4)
are employed in motion compensated prediction.

— One previous frame is used for inter motion search.

The operations of reading from the source video file and writing into the out-
put compressed file are included in the total encoding time. In order to verify the



correctness of parallel implementations, the resulting compressed video streams

were checked in terms of quality metrics and total number of bits per frame,

being exactly the same results as those obtained with the sequential version.
Tables 1, 2 and 3 show the experimental results in seconds for the first 45

GOPs of each video sequence.

Table 1. Experimental results using the carphone video sequence.

GOP division

Frame division

p T,  Speed-up Efficiency

p T,  Speed-up Efficiency

1 9365.362

2 4714.796 1.986 99.3%
3 3233.557 2.896 96.54%
4 2468.485 3.794  94.84%
9 1099.195  8.52 94.66%
16 620.031  15.10 94.40%
24 425.395 22.01 91.73%

1 9365.362

2 5160.32 1.81 90.74%
3 3369.01 2,77 92.66%
4 3359.01 2.78 69.68%
91324.061  7.07 78.59%

Table 2. Experimental results using the claire video sequence.

GOP division

Frame division

p T,  Speed-up Efficiency

p T,  Speed-up Efficiency

1 9448.893

2 472329  1.98 99.18%
3 3129.467  2.99 99.54%
4 2486.894 3.799 94.98%
9 1052.625 8.97 99.73%
16 638.019 14.809 92.56%
24 426.059 22.17  92.40%

1 9448.893

25231.495 1.80 90.30%
3 3347.598  2.82 94.08%
4 3299.278  2.86 71.59%
91296.904 7.28 80.95%

As can be seen, the GOP division method efficiencies are very good. The
distribution of GOPs between working nodes was the following:

— 2 nodes: 23 GOPs for first node and 22 for the second one.

— 3 nodes: 15 GOPs for each node.
— 4 nodes: 12 GOPs for the first node
— 9 nodes: 5 GOPs per node.

and 11 for the remaining nodes.

— 16 nodes: 3 GOPs for nodes Py, k = 0 : 12, and 2 GOPs for the remaining

nodes.



Table 3. Experimental results using the miss-am video sequence.

GOP division Frame division

p Ty Speed-up Efficiency|p T, Speed-up Efficiency
1 11948.259 111948.259

2 6404.774  1.86 93.27% |2 6669.15 1.79 89.57%
3 4367.796  2.73 91.18% (3 4277.01 279 93.12%
4 3213.745 3.71 92.94% |4 4145.189 2.88 72.06%
9 1463.771 8.162 90.69% |9 1622.632  7.36 81.81%
16 876.57 13.63 85.19%
24 585.900  20.39 84.97%

— 24 nodes: 2 GOPs for nodes Py, k = 0 : 20, and 1 GOP for the remaining
nodes.

When using the frame division version of H.26L video encoder, the best
results, in terms of efficiencies, are obtained using three processors. This is mainly
due to good load balance, assigning three slices (33 macroblocks) to each node.
When other numbers of nodes are employed, the frame division will be:

— 2 nodes: 5 and 4 slices per node.

— 4 nodes: 3 slices for the first node and 2 for the rest of nodes.

— 9 nodes: 1 slice per node. Here the load balancing is the same as that obtained
with 3 nodes, however, communication time significantly increases, reducing
the total encoding time to 80%.

To compare both parallel versions the following figures are presented. Figure
1 shows the encoding time for the carphone video sequence.

In general the behaviour of frame division, in terms of encoding time, is worse
than GOP division, because the former requires more communications than the
latter.

Figure 2 shows the efficiencies of both parallel versions encoding the carphone
video sequence.

The best efficiencies are obtained with GOP division, which achieves a good
load balance. In the frame division there is one communication per frame, but
in the GOP division there is only one communication during the total encoding
time.

5 Conclusions

We have presented a preliminary study of two parallel implementations of a
H.26L video encoder. The first method distributes the whole video sequence
between system nodes, dividing the original sequence in Groups Of Pictures
(GOPs). The second method proposed, divides each video frame among the
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nodes. The division was made at slice level, requiring a barrier synchronization
between working nodes in order to exchange the necessary information to prop-
erly code the next frame. We have used common test sequences to evaluate the
performance of both approaches, achieving better results with the GOP division
method, because it requires only one communication step.

As future work, we are planning to make several optimizations to the frame
division method in order to hide its communication overhead. Also, we will test
other data distribution strategies to minimize communications in both methods.
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