
electronics

Article

A Simulation Tool for Evaluating Video Streaming
Architectures in Vehicular Network Scenarios

Pedro Pablo Garrido Abenza * , Manuel P. Malumbres , Pablo Piñol
and Otoniel López Granado

Department of Computer Engineering, Miguel Hernández University, Avda. Universidad, s/n,
03202 Elche, Spain; mels@umh.es (M.P.M.); pablop@umh.es (P.P.); otoniel@umh.es (O.L.G.)
* Correspondence: pgarrido@umh.es; Tel.: +34-96-665-8387

Received: 27 September 2020; Accepted: 20 November 2020; Published: 22 November 2020 ����������
�������

Abstract: An integrated simulation tool called Video Delivery Simulation Framework over Vehicular
Networks (VDSF-VN) is presented. This framework is intended to allow users to conduct experiments
related to video transmission in vehicular networks by means of simulation. Research on this topic
requires the use of many independent tools, such as traffic and network simulators, intermediate
frameworks, video encoders and decoders, converters, platform-dependent scripting languages,
data visualisation packages and spreadsheets, and some other tasks are performed manually. The lack
of tools necessary to carry out all these tasks in an integrated and efficient way formed the motivation
for the development of the VDSF-VN framework. It is managed via two user-friendly applications,
GatcomSUMO and GatcomVideo, which allow all the necessary tasks to be accomplished. The first
is primarily used to build the network scenario and set up the traffic flows, whereas the second
involves the delivery process of the whole video, encoding/decoding video, running simulations,
and processing all the experimental results to automatically provide the requested figures, tables and
reports. This multiplatform framework is intended to fill the existing gap in this field, and has been
successfully used in several experimental tests of vehicular networks.

Keywords: simulation tool; vehicular networks; video delivery; HEVC

1. Introduction

A vehicular ad hoc network (VANET) is a multi-hop wireless network in which messages are
exchanged, both between mobile vehicles and with fixed infrastructure nodes. Several types of
communication may take place: vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), or vehicle-to-
everything (V2X). This type of network has many applications in the field of intelligent transportation
systems (ITS), such as in traffic information systems, road safety, Internet access and entertainment
applications (infotainment). Applications such as infotainment, security surveillance [1,2], health care
assistance on-the-fly [3,4], video transmission for overtaking manoeuvres [5] and other applications
related to video transmission require high bandwidth and low packet transmission delay, especially in
real-time applications.

However, wireless networks are subject to several problems, such as limited bandwidth, the use
of a shared medium in which transmissions from different communicating nodes can collide, and other
phenomena such as signal attenuation with distance (path loss), the presence of obstacles (shadowing),
and refraction and reflection (multipath) effects. Furthermore, in the specific case of VANETs,
the communication window between vehicles is very limited due to their high mobility, which causes
dynamically changing network topologies. Each of these problems can lead to a high rate of packet
loss; this is especially true for video transmission applications due to the high bandwidth and bounded
packet delay required, and particularly for real-time applications.

Electronics 2020, 9, 1970; doi:10.3390/electronics9111970 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-0545-7443
https://orcid.org/0000-0001-6493-5057
https://orcid.org/0000-0003-3510-1891
https://orcid.org/0000-0002-6968-061X
http://dx.doi.org/10.3390/electronics9111970
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/11/1970?type=check_update&version=2


Electronics 2020, 9, 1970 2 of 15

Simulation is the most commonly used technique for experimenting with vehicular networks,
as it is easier to design a simulated network scenario than a real one or an experimental testbed.
Furthermore, this approach makes it feasible to evaluate a scenario under different conditions and to
collect statistics, and ensures that experiments are reproducible [6].

Research on video delivery in vehicular networks requires the use of many independent tools,
such as traffic and network simulators, intermediate frameworks, video encoders and decoders,
converters, platform-dependent scripting languages, data visualisation packages and spreadsheets,
and some tasks are usually done by hand. A lack of tools to carry out all the necessary tasks in
an integrated and efficient way formed the motivation for the development of the Video Delivery
Simulation Framework over Vehicular Networks (VDSF-VN) framework. The main innovations of
the proposed simulation framework are as follows: (i) a reduction in the probability of errors in
the simulation chain; (ii) automation of the longer and more tedious processes (such as configuring
utilities and file formats, and ensuring the interoperability of utilities); (iii) coordination and support
for the supervision of all simulation experiments, from the experimental design step to the analysis
of simulation results; and (iv) a user-friendly graphical user interface (GUI) that integrates all the
required tools and allows researchers to easily define simulation setups, run simulations, visualise the
results in a graphical and interactive way, and generate predefined technical reports from simulations.

The main goal of our simulation framework is to allow researchers to work on specific parts of a
vehicular video delivery system, and to evaluate the performance of their proposed schemes not only
when working in an isolated simulation environment, but also (and most importantly) when working
on a part of the whole system. In this way, interactions between their proposed systems and other parts
of the video delivery system can be better analysed to improve the overall performance of the system.
In our opinion, our simulation framework will be useful for researchers working on specific parts of a
vehicular video delivery system, such as the design of new video coding tools, the use of innovative
video packet forwarding approaches or new error concealment (EC) approaches, among others.

The remainder of the paper is organised as follows. In Section 2, we carry out a literature
review of existing frameworks in the field of vehicular network simulation, with a particular focus
on those intended for the evaluation of video streaming. In Section 3, we present an overview of
the proposed VDSF-VN environment, including the different elements contained in the framework.
Finally, in Section 4, some conclusions are drawn and directions for future research are highlighted.

2. Related Work

A literature review shows that several frameworks or tools have been developed with the aim
of making it easier to conduct experiments with VANETs by means of simulation. As explained
below, many configuration files and tools need to be used when building a VANET network scenario
with Simulation of Urban MObility (SUMO) [7]. Despite the set of utilities provided by SUMO, it is
sometimes necessary to manually write or edit configuration files, which is often an error-prone and
time-consuming task, especially for a novice user. In view of this, several applications have been
developed with the aim of making SUMO more accessible by including a GUI to reduce the time and
effort required for these tasks. Examples of such GUIs include eNetEditor [8], TrafficModeler [9,10],
SUMOPy [11], CityMob for Roadmaps (C4R) [12], and OSMWebWizard. However, the majority of
these applications are intended to be used only with SUMO, and numerous errors may appear when
running simulations with the OMNeT++ simulator [13] or the VEhicles In Network Simulation (Veins)
framework [14].

The need to use several individual components (simulation packages, custom scripts, etc.) and the
difficulties in visualising and analysing the obtained results are described in [15]. In order to overcome
existing drawbacks, a framework called WGL-VANET (Web-based Visualization Tool for VANET
Simulations) was developed, which offers an interactive and easy-to-use web interface for the ns-3 [16]
simulator and the SUMO traffic simulator. In [17], a framework named ELVS (Efficient Large-scale
VANET Simulator) was proposed, based upon the JiST/SWANS [18] and SUMO simulators and some



Electronics 2020, 9, 1970 3 of 15

other third party software. This is an open-source framework that was developed in Java and has
a graphical interface that allows the user to visualise vehicles in realistic scenarios. It was intended
to allow users to view the internal states of their components (simulators) and to facilitate analysis
of the output data. In [19], another framework was developed for a specific application in VANET
simulations, and was also mainly based on the JiST/SWANS simulator.

In addition to these frameworks, several others have been developed for the specific purpose of
evaluating video transmission over vehicular networks in cases where more elements need to be used
(video encoders/decoders, packetisers, etc.). For example, EvalVid [20] performs a quality evaluation
of video transmissions encoded with MPEG4 [21] based on a calculation of the peak signal-to-noise
ratio (PSNR) and other network metrics such as delay, jitter, and loss rate. This framework has been
extended to support several other network simulators, such as ns-2 [22], ns-3, and OMNeT++ with the
Castalia framework [23]. The latter was implemented in a simulation framework based on EvalVid,
called Mobile Multi-Media Wireless Sensor Networks (M3WSN) [24]. Another framework based on
EvalVid is QoE Monitor [25], an extension that supports the ns-3 simulator.

The main differences between our simulation framework and the other simulation tools available
in the literature are as follows: (i) our proposal includes the most accurate and realistic vehicular
simulation models by means of the OMNeT++ and Veins simulation frameworks; (ii) it includes a
state-of-the-art video coding system based on the High Efficiency Video Coding (HEVC) standard [26],
and can be easily updated with the future video coding standard H.266/VCC; (iii) it is the only system
to fully integrate all of the tools required for the video delivery simulation chain (such as those for the
definition of vehicular scenarios, traffic mobility, video packetisers, video codecs, interactive graphic
plots, report generators, etc.), and to be defined in a modular way that allows for easy integration of
new modules into the simulation framework (e.g., a forward error correction (FEC) module); (iv) it
was designed as a multiplatform tool for different operating systems (Windows, Linux and Mac OS X);
and (v) it includes multi-threading support to allow several tasks to be run in parallel, in order to
reduce user response times.

The existing difficulties in carrying out experiments with vehicular networks and the absence of
an integrated environment that met our needs formed the motivation for the development of our new
framework, VDSF-VN, which is described in detail in the next section.

3. VDSF-VN Simulation Framework

In this section, we describe the VDSF-VN framework. It consists of traffic and network
simulators, intermediate frameworks, video codecs, packetisers, platform-dependent scripting languages,
data visualisation packages, spreadsheets, and additional third party software packages, which are
managed via two graphical applications, GatcomSUMO and GatcomVideo, as shown in Figure 1.
GatcomSUMO is used in the setup of a network simulation scenario, including all the configuration
parameters needed to properly run a network simulation. This application can be used to manage and
configure: (i) the OMNeT++ network simulator with the Veins framework, which controls the simulation
of the data exchange between the network nodes; (ii) the SUMO traffic mobility simulator, which is
responsible for the design and coordination of the vehicle mobility patterns in a particular vehicular
network scenario, and includes many console commands and scripts that extend its functionality, such as
importing external maps, computing vehicle routes, etc.; and (iii) other third party software utilities like
OpenStreetMap (OSM), which provide real city street maps that can be imported by SUMO as part of a
network scenario. Through the use of GatcomSUMO, the user can define the network scenario to be used
and the details of the vehicle mobility patterns. The resulting configuration files will be used when the
next application starts the OMNeT++ network simulator.

The second application, GatcomVideo, can be considered the front-end application of the
VSDF-VN framework, since it allows the user to configure, coordinate and manage all the steps
in the vehicular video delivery process from content generation at the source node to video rendering
at the destination node. The only configuration task it delegates to GatcomSUMO application is the



Electronics 2020, 9, 1970 4 of 15

definition and configuration of the network scenario and the traffic mobility of the vehicular node.
GatcomVideo is composed of three main steps (modules): (i) the pre-process module, which is used to
encode the source video via the HEVC video encoder, to convert the resulting bit stream into a Real-time
Transmission Protocol (RTP) video packet sequence (the packetisation process), and to provide a traffic
trace that is readable by the OMNeT++ network simulator; (ii) the OMNeT++ simulation module,
which is used to launch simulations for a predefined network scenario (using configuration files from
GatcomSUMO) and to provide the results of all simulations for analysis; and (iii) the post-process
module, which gathers all the simulations results to (a) decode the received bit stream and render the
resulting decoded video; (b) interactively plot the desired simulation results; and (c) export the results
in the form of graphics files and technical reports.

Both the GatcomSUMO and GatcomVideo applications were developed in Java and offer a
user-friendly graphical interface (front-end). However, as explained below, both applications invoke
several other command-line programs (back-end) to perform their tasks. In the following subsections,
we will analyse these graphical applications in detail.

Network
scenario

Traffic
demand

Pre-
process Simulation

Post-
process

Config. files <

GatcomSUMO GatcomVideo

Figure 1. Video Delivery Simulation Framework over Vehicular Networks (VDSF-VN): General view.

3.1. GatcomSUMO

A network scenario in the SUMO simulator is composed of several Extensible Markup Language
(XML) files and some other plain text files that must follow strict syntax rules. SUMO supports maps
from different sources, such as real maps downloaded from OpenStreetMap [27] in XML format
(*.osm.xml), and abstract or synthetically generated maps with various geometric structures (grid,
spider or random). Maps downloaded from OpenStreetMap need to be imported into SUMO by means
of the netconvert utility, which generates a network file (*.net.xml). The obstacles file (*.poly.xml)
can be generated from previous files via the polyconvert utility, in order to include information
about different obstacles (e.g., buildings) that can affect communications. Abstract scenarios can
be generated with the netgenerate utility. In addition to the network files, SUMO also requires a
traffic demand file (*.rou.xml), which can be generated with the utilities that SUMO provides, such as
duarouter, or the Python scripts randomTrips.py and dua-iterate.py. All of these files must be
specified in a global configuration file (*.sumo.cfg) in order to be used with SUMO, as shown in
Figure 2. When simulations are run with OMNeT++ and SUMO, the Veins framework is needed,
as this implements the traffic control interface (TraCI) [28] application program interface (API) that
allows for bidirectional communication between the two simulators. Communication is possible if the
SUMO server program (sumo or sumo-gui) is running in the background (daemon), and this requires
a knowledge of the SUMO simulation setup. This setup is written into another configuration file in
XML format (*.launchd.xml), which is defined in the omnetpp.ini file (see Figure 2) and includes all
the parameters necessary for network communications and the numerous other parameters needed
by OMNeT++.



Electronics 2020, 9, 1970 5 of 15

SUMO

elche.net.xml

elche.poly.xml

elche.rou.xml

elche.sumo.cfg

sumo/sumo-gui

OMNeT++

elche.launchd.xml

omnetpp.ini

OMNeT++
Veins

SUMO Files

TraCI

Figure 2. Configuration files for Simulation of Urban MObility (SUMO) and OMNeT++.

As can be seen, many configuration files are required in order to build a VANET network scenario;
the task of building these scenarios including vehicle mobility is tedious, and mistakes are very
frequently made during the configuration of the simulations, which can cause unexpected execution
failures. The motivation for the development of the GatcomSUMO [29] application was therefore
to offer a simple GUI to automate as many tasks as possible for the creation of scenarios and traffic
demand for VANET environments, in order to smooth the learning curve for the proper use of the
simulators and utilities associated with SUMO, OMNeT++ and Veins.

GatcomSUMO allows for the creation of both abstract and real network scenarios (Figure 3),
including obstacles, and even for abstract grid networks, which are not supported by the netgenerate
utility. In terms of traffic demand, the user can manually define both a list of vehicles and routes for
them by selecting each edge in a sequential fashion. Once an edge has been selected, the subsequent
edge in the route is then selected from a list that shows only the adjacent edges, and the route is
visualised on the selected network map. In this way, the possibility of defining a discontinuous route
is avoided. Another option is to automatically generate any number of routes between a specific or
randomly chosen source and the destination edges, and possibly to include a list of intermediate edges
that all routes must include. This is known as a trip in SUMO terminology. To properly generate the
traffic demand, GatcomSUMO (i) invokes the utilities provided by SUMO for this task, thus avoiding
the use of the system command line; and (ii) ensures the validity of the generated traffic demand,
hence preventing simulation crashes at run-time. As mentioned above, when a route is manually
created in an interactive way using GatcomSUMO, there is no possibility of inserting an unknown
edge or creating a discontinuous route; that is, each edge in a route is followed by an adjacent edge.

Further issues that should be taken into account when generating valid traffic routes include
the following: (i) a single route needs at least two edges, even if the vehicle’s trip is very short or if
the vehicle has stopped; (ii) the order within the routes file (*.rou.xml) is important, and all vehicles
specified in this file must be sorted based on their departure time; (iii) it is necessary to check vehicles
leaving the area defined for the network scenario, since run-time errors will arise if this condition is
met; (iv) it would be helpful to define filters at route creation time, in order to select the desired lengths
of the routes (i.e., less or greater than a specified value), or to specify the type of vehicle that is allowed
to cross the edges, as a run-time error occurs if a vehicle tries to move along an edge that does not
allow that type of vehicle (e.g., a pedestrian street).



Electronics 2020, 9, 1970 6 of 15

Figure 3. GatcomSUMO: Real network from OpenStreetMap.

All of these conditions are checked by GatcomSUMO in a way that is transparent to the user.
The application is able to generate any number of random routes, and to ignore those that do not
match all the conditions and filters that have been set up. Finally, all the generated routes can be
pre-visualised on the map (see Figure 4).

Figure 4. GatcomSUMO: Elche road network.

Another interesting feature of GatcomSUMO is the possibility of computing suitable coordinates
for placing fixed objects such as a road-side units (RSUs). A fixed object can be placed in two ways:



Electronics 2020, 9, 1970 7 of 15

(i) by defining a “mobile” vehicle without mobility in SUMO (with the maximum speed set to zero);
and (ii) by defining an object within OMNeT++ (by specifying its static position in the omnetpp.ini
configuration file). In the first approach, it is not possible to place the RSU in an exact position, as it
will be located at the beginning of the first edge of the assigned route and oriented towards the second
(a route therefore needs at least two edges). In addition, the main problem with this option is that the
object will be considered a vehicle in the same way as the others; its presence may therefore affect the
other vehicles and it may cause a traffic jam. Although SUMO allows vehicles to be parked alongside
the road, Veins does not support this feature, and a run-time error arises when the simulation is run.
In the second alternative, since the RSU is defined as an object in OMNeT++ (as an instance of the
BaseMobility class), rather than as a Veins object, it can be placed in any position (e.g., a location with
real coordinates). However, SUMO and OMNeT++ use different coordinate systems, which differ from
real geodetic coordinates (latitude and longitude) and UTM coordinates. GatcomSUMO allows for
a conversion between all of these coordinate systems, taking into account the bounding box and the
necessary projection and translation of the corresponding values. This can be done by typing in the
exact values to be converted, or simply by clicking on the map. As shown in Figure 4, the coordinates
obtained for OMNeT++ can be written directly into the omnetpp.ini configuration file. One minor
inconvenience is that the RSU is not shown in the graphical interface of SUMO (sumo-gui), so it is
difficult to validate its position. However, this issue is solved by creating a SUMO point of interest
(POI) using the ’TraCIDemo11p’ module, which is shown as a small circle.

In addition to the network scenario and the traffic demand, GatcomSUMO also generates the
remaining configuration files needed by the SUMO and OMNeT++ simulators, as shown in Figure 2.
Finally, the application also includes a set of utilities that are useful for setting the appropriate values
for certain parameters in the omnetpp.ini configuration file, such as unit converters (dBm-Watts, speed,
etc.), and a communication range calculator that supports two physical models, based on the free-space
path loss (FSPL) and two-ray approaches (Figure 5).

Figure 5. GatcomSUMO: Communication range utility.

GatcomSUMO is a general purpose application that is useful whenever SUMO is used, although it
is particularly valuable when used in conjunction with OMNeT++ and Veins. If the scenario built
with GatcomSUMO is intended to be used for the specific purpose of evaluating video transmission
over VANETs, additional steps need to be taken before and after running the simulations in order to
perform a realistic and detailed evaluation study of all the elements that can be found in a vehicular
video delivery system. This formed the motivation for the development of GatcomVideo, which is
introduced in the next subsection.



Electronics 2020, 9, 1970 8 of 15

3.2. GatcomVideo

When evaluating the video transmission in a vehicular network, in addition to defining the
network scenario and simulation models, other tasks need to be done. Firstly, the source video
sequences must be encoded and packetised, to generate the corresponding video packet trace file
to be used in the network simulations (pre-process). Then, after running the simulations, the video
sequence needs to be reconstructed and decoded (post-process). All three of these steps, pre-process,
simulation, and post-process, can be done with the GatcomVideo application, as illustrated in Figure 6.
The graphical interface includes a set of tabs: one for each of these steps, plus an additional tab for the
general configuration of GatcomVideo.

Pre-Process

Encoder

Packetizer

Post-Process

Decoder

Depacketizer

Quality Evaluation

QoE Metrics
Calculator

Simulation

RSU
�é��é�

OMNeT++ SUMO
Veins

ppp_qos

Config. < Config. <

QoE Metrics:
Frame loss, MSE, PSNR

Network Metrics:
Packet loss, delay, jitter, . . .

Results

Original video r

Config. q

Encoded video 3

Trace file q Rec. traces q

Reconst. video 3

Distorted video r

Files .sca, .vec <

Figure 6. GatcomVideo: Workflow.

The pre-process step is intended to encode the video sequences with the HEVC standard. We have
selected the HEVC codec because it is the last video coding standard and it is able to compress a video
sequence yielding half the bit-rate than the previous standard H.264/AVC [30] at the same perceptual
quality. However, the future video coding standard called Versatile Video Coding (VVC/H.266)
is close to be finally approved and, in that moment, we aim to give support for this new video
codec. Specifically, the HEVC reference software HM (HEVC Test Model) [31] is used, and it has
been modified to include a module that performs an RTP [32] packetisation of the output video bit
stream. As a result, a video packet trace file is generated [33], providing the information about each
packet to be transmitted: A correlative packet number, the frame type which it belongs to (I, P, or B),
the playback time, the packet size, the frame offset of the packet payload, and the total number
of packets of the frame which it belongs to. All of these external programs are invoked from the
GatcomVideo application, which is managed by the user in an interactive way. GatcomVideo allows to
encode a video sequence with different parameters, such as the encoding mode (All-Intra, Low-delay
P, etc.), the Quantization Parameter (QP), or the number of tiles per frame used [34] (see Figure 7).
The input video sequences must be loaded in YUV video format, the most popular video format
for uncompressed video. As YUV format does not contain video headers, additional info should be
provided to properly read the YUV video sequence like (a) the total number of frames, (b) spatial frame



Electronics 2020, 9, 1970 9 of 15

resolution (width × height pixels), (c) bit-depth (number of bits per pixel), and (d) temporal resolution
(frames per second). For our purpose, we have used several video sequences recommended by the
HEVC common tests conditions reference [35]. As this step requires a great amount of computation,
GatcomVideo is able to launch several tasks in parallel. So, depending on the number of available
CPUs (cores), the required time may be significantly reduced. Even though the simulation framework
is used in an interactive way from the GUI, these long duration task will be run in background.

Figure 7. GatcomVideo: Pre-process.

In order to pass the packet trace file to the OMNeT++ simulator, we have extended the Veins
framework with a new proyect (’ppp_qos’ in Figure 6), since Veins does not support packet traces.
This new simulation model contains a modification of the ’TraCIDemo11p’ application and the Medium
Access Control (MAC) layer included in Veins. Specifically, this project implements the following
functionalities: a) defining input video packet traffic loads based on trace files to simulate the delivery
of real video traffic from a particular video server (e.g., an RSU), b) generating output video trace
files with the received video packets at each client node, c) defining synthetic background network
traffic loads to drive the network to a particular load level, d) collecting statistics about the vehicles
mobility (e.g., distance between any pair of nodes, number of neighbors, etc.), as well as many
global and node network statistics at different levels (application, MAC and PHY), such as Load,
Goodput, Packet Delivery Ratio (PDR), End-to-End Delay (EED), jitter, average number of collisions,
etc. Also, when using traffic differentiation at the IEEE 802.11 MAC-level [36], the statistics are also
grouped by Access Category (AC).

In the simulation step, GatcomVideo provides two additional valuable features: (a) the launch of
the selected simulation runs and, (b) the graphical display of the simulation results. GatcomVideo shows
a list of simulation sets extracted from the OMNeT++ configuration file, and then, the user can select
which ones to launch, as well as the number of CPUs (cores) that will be used in parallel (see Figure 8).
Previously, the user may start the SUMO server within the application without executing commands
from the system console. At the end, a set of predefined graphs can be generated with different formats
(.eps, .png), and resolutions (dpi), which are visualized within the application (see Figure 9). The graphs
are generated by using both the R statistic package [37] and Gnuplot [38], but these programs are
executed in background, that is, the user does not need to know anything about them nor to write
any script. GatcomVideo allows to define any number of graphs by editing a simple ASCII text file or
by using its own graphical wizard. Each graph can show results from a unique simulation, or it can



Electronics 2020, 9, 1970 10 of 15

overlay data from multiple simulations. In addition, the above mentioned statistics are also averaged
every second in order to allow an analysis of any specific part of the simulation (i.e., focusing only in a
specific area of the vehicular network scenario). Finally, if each simulation run is repeated with more
than one pseudo-random seed, the data shown in the graphs can be computed by averaging the results
of all iterations, and if required, confidence intervals (CIs) can also be plotted.

Figure 8. GatcomVideo: Simulation runs.

Figure 9. GatcomVideo: Graphs.

The main objective of the post-process step is to perform a quality evaluation of the received video
sequences. This is achieved by reconstructing and decoding the received video sequences, and then
by computing certain metrics to measure the objective quality of the video. In our experiments,
since the video servers send each video sequence in a cyclic way, it was necessary to split the ordered
list of received packets into individual video sequences. This could be done in the post-process tab
(see Figure 10), where a data table can be built showing all individual video sequences received by



Electronics 2020, 9, 1970 11 of 15

a particular client node; for each one, this indicates the simulated time at which it was received,
its duration and the number of received and lost packets. In this way, the user can select the area(s)
of interest, i.e., the received video sequences to be analysed. As mentioned previously, the user
can also analyse the network statistics for any defined zone when generating the graphs for the
simulation results. After this, the selected video sequences need to be reconstructed and decoded.
This is done with a modified version of the HEVC (HM software) decoder, in which we have included
a depacketiser and an EC functionality in order to minimise the impact of packet loss on the perceived
quality. A technique known as frame copy concealment [39] was used, which is based on temporal
prediction and replaces the missing parts of a single frame (or even the whole frame) with those
found in the last correctly received frame. Once the selected video sequences have been decoded,
an evaluation of the video quality is carried out based on certain quality of experience (QoE) metrics
such as the frame loss ratio (FLR), the tile loss ratio (TLR), the mean squared error (MSE), and the PSNR.

Figure 10. GatcomVideo: Post-process.

The MSE is computed for each frame n by averaging the differences in the squared intensity
between the pixels (i, j) of the original (YS) and distorted (YD) frames, as shown in Equation (1),
where i ∈ 1 . . . Ncol and j ∈ 1 . . . Nrow, where Ncol and Nrow are the width and height of the video
frames (in pixels). The PSNR is the metric most commonly used to measure the objective quality of
a video. It is based on the MSE, and is computed frame by frame for the luminance (Y) component,
as shown in Equation (2), and is averaged for all frames.

MSE(n) =
1

Ncol · Nrow

Ncol

∑
i=1

Nrow

∑
j=1

[YS(n, i, j)−YD(n, i, j)]2 (1)

PSNR(n)dB = 20 · log10

(
Vpeak√
MSE(n)

)
(2)

Since this step is time-consuming, it was implemented using multithread programming, so that it
can be executed in parallel depending on the available hardware resources, thus reducing the required
processing time.

Finally, the user can define any number of graphs in a similar way to those generated for the
network simulation. In addition to graphs, GatcomVideo can also generate text files in LATEX format
at several places, so that these can be included in reports or manuscripts. These include tables with



Electronics 2020, 9, 1970 12 of 15

relevant data about coded video sequences (in the pre-process tab), tables with a brief summary of the
different simulation sets and parameters for each simulation run (in the simulation tab), or a report
on the selected graphs along with their corresponding numerical data, to make it easier to analyse
the results.

Since both GatcomVideo and GatcomSUMO were developed in Java, they are available for the
main computing platforms (Windows, Linux, and Mac OS X). As described above, third-party software
must be used with both GatcomSUMO and GatcomVideo, i.e., simulators (OMNeT++, SUMO, Veins),
graphing packages (R, Gnuplot), and several binaries related to video processing (e.g., an encoder,
packetiser, depacketiser, decoder, and others). Although some of these binaries are executables
compiled for the Microsoft Windows operating system, the application can be configured for the
proper execution of those binaries on any other platform, thanks to the use of WINE (Wine Is Not an
Emulator) [40] (see Figure 11). This turns VDSF-VN into a multiplatform simulation framework based
on open-source packages that allow for the evaluation of video transmission over VANETs by means
of an efficient and ease-to-use GUI.

Figure 11. GatcomVideo: Configuration.

4. Conclusions and Future Work

In this paper, a simulation framework called Video Delivery Simulation Framework over Vehicular
Networks (VDSF-VN) was introduced. This framework is intended to allow research to be conducted
on video streaming over VANETs through simulation. VDSF-VN includes several command-line
programs, and makes use of other utilities provided by the SUMO and OMNeT++ simulators.
However, the user only needs to use two graphical applications: GatcomSUMO and GatcomVideo.
Both applications invoke the other tools and programs in a transparent way.

VDSF-VN provides the following benefits to the user: (i) it facilitates the setup of the configuration
files needed to conduct the simulations with OMNeT++ and SUMO, and generates them automatically
from the graphical environment rather than using different command-line utilities or manually writing
text files with strict syntax; (ii) it automates many tasks, thus avoiding the introduction of errors,
particularly by inexperienced users; (iii) it substantially reduces the time needed to encode video
sequences and run the simulations, which are highly time-consuming tasks, by launching the necessary
jobs in parallel; and (iv) it reduces the effort involved in visualising the obtained results, as it allows
the user to define and generate graphs within its own interface and to combine other statistics collected
from any simulation run, thus avoiding the use of complex spreadsheets or other scripting languages



Electronics 2020, 9, 1970 13 of 15

like R or Gnuplot (although both are used transparently by the applications). The level of expertise
required is therefore lowered, while the time spent on each experiment is drastically reduced.

A preliminary core version of the VDSF-VN framework was used in previous studies, in which
various experimental setups were used to test different aspects of the HEVC video encoder.
For example, in [41–43], we applied techniques such as (i) intra-refresh video coding modes; (ii) frame
partitioning (tiles/slices); and (iii) quality of service at the medium access control (MAC) level,
in order to reduce the degradation in video quality produced by impairments arising from vehicular
transmission. These works present the simulation results in the form of plots and tables provided by
the VDSF-VN tool, giving consistent results that are coherent with those provided by other authors in
the literature, and as a consequence from different simulation tools.

The development of VDSF-VN is a work in progress, and in future work, the following
improvements are planned: (i) A new module for error protection techniques such as FEC; (ii) an
adaptive video protection scheme based on the availability of network resources during the video
delivery sessions; (iii) the optimisation of several tasks on specific supported platforms; and (iv) the
development of support for next-generation video coding standards such as VVC.

Author Contributions: Funding acquisition, O.L.G.; Investigation, P.P.G.A.; Software, P.P.G.A. and P.P.; Supervision,
M.P.M. and P.P.; Validation, M.P.M. and P.P.; Writing—original draft, P.P.G.A., M.P.M., P.P. and O.L.G.; Writing—review
& editing, P.P.G.A., M.P.M., P.P. and O.L.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been supported by Spanish Ministry of Science, Innovation and Universities under Grant
RTI2018-098156-B-C54, co-financed by FEDER funds (MINECO/FEDER/UE).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Joshi, J.; Jain, K.; Agarwal, Y.; Deka, M.J.; Tuteja, P. VWS: Video surveillance on wheels using cloud in
VANETs. In Proceedings of the 2015 IEEE 12th Malaysia International Conference on Communications
(MICC), Kuching, Malaysia, 23–25 November 2015; pp. 129–134. [CrossRef]

2. Agarwal, Y.; Jain, K.; Karabasoglu, O. Smart vehicle monitoring and assistance using cloud computing in
vehicular Ad Hoc networks. Int. J. Transp. Sci. Technol. 2018, 7, 60–73. [CrossRef]

3. Kumar, N.; Kaur, K.; Jindal, A.; Rodrigues, J.J. Providing healthcare services on-the-fly using multi-player
cooperation game theory in Internet of Vehicles (IoV) environment. Digit. Commun. Netw. 2015, 1, 191–203.
[CrossRef]

4. Liu, X.; Quan, H.; Zhang, Y.; Zhao, Q.; Liu, L. SVC: Secure VANET-Assisted Remote Healthcare Monitoring
System in Disaster Area. KSII Trans. Internet Inf. Syst. 2016, 10, 1229–1248. [CrossRef]

5. Olaverri-Monreal, C.; Gomes, P.; Fernandes, R.; Vieira, F.; Ferreira, M. The See-Through System:
A VANET-enabled assistant for overtaking maneuvers. In Proceedings of the 2010 IEEE Intelligent Vehicles
Symposium, San Diego, CA, USA, 21–24 June 2010; pp. 123–128. [CrossRef]

6. Uhrmacher, A.M.; Brailsford, S.; Liu, J.; Rabe, M.; Tolk, A. Reproducible Research in Discrete Event
Simulation: A Must or Rather a Maybe? In Proceedings of the 2016 Winter Simulation Conference WSC ’16,
Arlington, VA, USA, 11–14 December 2016; pp. 1301–1315.

7. Krajzewicz, D.; Erdmann, J.; Behrisch, M.; Bieker, L. Recent Development and Applications of SUMO—Simulation
of Urban MObility. Int. J. Adv. Syst. Meas. 2012, 5, 128–138.

8. Kurczveil, T.; López, P.A. eNetEditor: Rapid prototyping urban traffic scenarios for SUMO and evaluating
their energy consumption. In SUMO 2015—Intermodal Simulation for Intermodal Transport; Deutsches Zentrum
für Luft und Raumfahrt e.V.: Berlin-Adlershof, Germany, 2015; pp. 137–160. [CrossRef]

9. Papaleondiou, L.G.; Dikaiakos, M.D. TrafficModeler: A Graphical Tool for Programming Microscopic Traffic
Simulators through High-Level Abstractions. In Proceedings of the VTC Spring 2009—IEEE 69th Vehicular
Technology Conference, Barcelona, Spain, 26–29 April 2009; pp. 1–5. [CrossRef]

10. Arellano, W.; Mahgoub, I. TrafficModeler extensions: A case for rapid VANET simulation using, OMNET++,
SUMO, and VEINS. In Proceedings of the 2013 High Capacity Optical Networks and Emerging/Enabling
Technologies, Magosa, Cyprus, 11–13 December 2013; pp. 109–115. [CrossRef]

http://dx.doi.org/10.1109/MICC.2015.7725421
http://dx.doi.org/10.1016/j.ijtst.2017.12.001
http://dx.doi.org/10.1016/j.dcan.2015.05.001
http://dx.doi.org/10.3837/tiis.2016.03.016
http://dx.doi.org/10.1109/IVS.2010.5548020
http://dx.doi.org/10.13140/RG.2.1.2874.2563
http://dx.doi.org/10.1109/VETECS.2009.5073891
http://dx.doi.org/10.1109/HONET.2013.6729767


Electronics 2020, 9, 1970 14 of 15

11. Schweizer, J. SUMOPy: An Advanced Simulation Suite for SUMO; Lecture Notes in Computer Science (LNCS);
Springer: Berlin/Heidelberg, Germany, 2014; pp. 71–82. [CrossRef]

12. Fogue, M.; Garrido, P.; Martinez, F.J.; Cano, J.; Calafate, C.T.; Manzoni, P. Using roadmap profiling to enhance
the warning message dissemination in vehicular environments. In Proceedings of the 2011 IEEE 36th Conference
on Local Computer Networks, Bonn, Germany, 4–7 October 2011; pp. 18–20. [CrossRef]

13. Varga, A.; Hornig, R. An Overview of the OMNeT++ Simulation Environment. In Proceedings of the 1st
International Conference on Simulation Tools and Techniques for Communications, Networks and Systems
& Workshops Simutools ’08, Marseille, France, 3–7 March 2008; pp. 60:1–60:10.

14. Sommer, C.; German, R.; Dressler, F. Bidirectionally Coupled Network and Road Traffic Simulation for
Improved IVC Analysis. IEEE Trans. Mob. Comput. 2011, 10, 3–15. [CrossRef]

15. Gocmenoglu, C.; Acarman, T.; Levrat, B. WGL-VANET: A web-based visualization tool for VANET simulations.
In Proceedings of the 2015 IEEE International Conference on Vehicular Electronics and Safety (ICVES),
Yokohama, Japan, 5–7 November 2015; pp. 62–63.

16. Riley, G.F.; Henderson, T.R. The ns-3 Network Simulator. In Modeling and Tools for Network Simulation;
Springer: Berlin/Heidelberg, Germany, 2010; pp. 15–34. [CrossRef]

17. Barberis, C.; Gueli, E.; Le, M.T.; Malnati, G.; Nassisi, A. A customizable visualization framework for VANET
application design and development. In Proceedings of the 2011 IEEE International Conference on Consumer
Electronics (ICCE), Las Vegas, NV, USA, 9–12 January 2011; pp. 569–570. [CrossRef]

18. Barr, R.; Hass, Z.J.; van Renesse, R. JiST/SWANS: Java in Simulation Time/Scalable Wireless Ad hoc
Network Simulator. Available online: http://jist.ece.cornell.edu (accessed on 21 November 2020).

19. Finnson, J.; Zhang, J.; Tran, T.; Minhas, U.F.; Cohen, R. A Framework for Modeling Trustworthiness of Users in
Mobile Vehicular Ad-Hoc Networks and Its Validation through Simulated Traffic Flow. In Proceedings of the 20th
International Conference on User Modeling, Adaptation, and Personalization UMAP’12, Montreal, QC, Canada,
16–20 July 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 76–87. [CrossRef]

20. Klaue, J.; Rathke, B.; Wolisz, A. EvalVid—A Framework for Video Transmission and Quality Evaluation; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 255–272. [CrossRef]

21. ISO/IEC JTC1. ISO/IEC 14496-2. Coding of Audio-Visual Objects. 2001. Available online: https://www.iso.
org/standard/36081.html (accessed on 21 November 2020).

22. ns-2. The Network Simulator. Available online: http://www.isi.edu/nsnam/ns/ (accessed on
21 November 2020).

23. Pediaditakis, D.; Tselishchev, Y.; Boulis, A. Performance and scalability evaluation of the Castalia wireless
sensor network simulator. In Proceedings of the 3rd International ICST Conference on Simulation Tools and
Techniques, Malaga, Spain, 15–19 March 2010; p. 53. [CrossRef]

24. Rosário, D.; Zhao, Z.; Silva, C.; Cerqueira, E.; Braun, T. An OMNeT++ Framework to Evaluate Video
Transmission in Mobile Wireless Multimedia Sensor Networks. In Proceedings of the 6th International ICST
Conference on Simulation Tools and Techniques, Cannes, France, 5–7 March 2013; pp. 277–284. [CrossRef]

25. Saladino, D.; Paganelli, A.; Casoni, M. A tool for multimedia quality assessment in NS3: QoE Monitor.
Simul. Model. Pract. Theory 2013, 32, 30–41. [CrossRef]

26. High Efficiency Video Coding (HEVC). ITU-T Recommendation H.265. 2013. Available online: https:
//www.itu.int/rec/T-REC-H.265 (accessed on 21 November 2020).

27. Haklay, M.M.; Weber, P. OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Comput. 2008, 7, 12–18.
[CrossRef]

28. Wegener, A.; Piórkowski, M.; Raya, M.; Hellbrück, H.; Fischer, S.; Hubaux, J.P. TraCI: An Interface for
Coupling Road Traffic and Network Simulators. In Proceedings of the 11th Communications and Networking
Simulation Symposium CNS ’08, Ottawa, ON, Canada, 14–17 April 2008; ACM: New York, NY, USA, 2008;
pp. 155–163. [CrossRef]

29. Garrido Abenza, P.P.; Malumbres, M.P.; Piñol Peral, P. GatcomSUMO: A Graphical Tool for VANET
Simulations Using SUMO and OMNeT++. In Proceedings of the SUMO User Conference 2017 (SUMO2017),
Berlin-Adlershof, Germany, 8–10 May 2017; Volume 31, pp. 113–133.

30. Advanced Video Coding (AVC) for Generic Audiovisual Services. ITU-T Recommendation H.264. 2003.
Available online: https://www.itu.int/rec/T-REC-H.264 (accessed on 21 November 2020).

31. Joint Collaborative Team on Video Coding (JCT-VC). HEVC Reference Software HM (HEVC Test Model) and
Common Test Conditions. Available online: https://hevc.hhi.fraunhofer.de (accessed on 21 November 2020).

http://dx.doi.org/10.1007/978-3-662-45079-6_6
http://dx.doi.org/10.1109/LCN.2011.6115184
http://dx.doi.org/10.1109/TMC.2010.133
http://dx.doi.org/10.1007/978-3-642-12331-3_2
http://dx.doi.org/10.1109/ICCE.2011.5722743
http://jist.ece.cornell.edu
http://dx.doi.org/10.1007/978-3-642-31454-4_7
http://dx.doi.org/10.1007/978-3-540-45232-4_16
https://www.iso.org/standard/36081.html
https://www.iso.org/standard/36081.html
http://www.isi.edu/nsnam/ns/
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8727
http://dx.doi.org/10.4108/icst.simutools.2013.251706
http://dx.doi.org/10.1016/j.simpat.2012.11.011
https://www.itu.int/rec/T-REC-H.265
https://www.itu.int/rec/T-REC-H.265
http://dx.doi.org/10.1109/MPRV.2008.80
http://dx.doi.org/10.1145/1400713.1400740
https://www.itu.int/rec/T-REC-H.264
https://hevc.hhi.fraunhofer.de


Electronics 2020, 9, 1970 15 of 15

32. Wang, Y.; Sanchez, Y.; Schierl, T.; Wenger, S.; Hannuksela, M. RTP Payload Format for High Efficiency Video
Coding; RFC 7798; Internet Engineering Task Force: Fremont, CA, USA, 2016. [CrossRef]

33. Seeling, P.; Reisslein, M. Video Transport Evaluation With H.264 Video Traces. IEEE Commun. Surv. Tutor.
2012, 14, 1142–1165. [CrossRef]

34. Misra, K.; Segall, A.; Horowitz, M.; Xu, S.; Fuldseth, A.; Zhou, M. An Overview of Tiles in HEVC. IEEE J. Sel.
Top. Signal Process. 2013, 7, 969–977. [CrossRef]

35. Bossen, F. Common test conditions and software reference. In Proceedings of the 11th Meeting of the Joint
Collaborative Team on Video Coding (JCT-VC), Shanghai, China, 10–19 October 2012.

36. LAN/MAN Standards Committee of the IEEE Computer Society, IEEE Standard for Information
Technology—Telecommunications and Information Exchange between Systems Local and Metropolitan Area
Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications; IEEE Std 802.11-2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–3534. [CrossRef]

37. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2016. Available online: https://www.r-project.org/ (accessed on 21 November 2020).

38. Williams, T.; Kelley, C. Gnuplot 4.6: An Interactive Plotting Program. 2013. Available online: http://gnuplot.
sourceforge.net/ (accessed on 21 November 2020).

39. Bandyopadhyay, S.K.; Wu, Z.; Pandit, P.; Boyce, J.M. An Error Concealment Scheme for Entire Frame Losses
for H.264/AVC. In Proceedings of the 2006 IEEE Sarnoff Symposium, Princeton, NJ, USA, 27–28 March 2006;
pp. 1–4. [CrossRef]

40. Julliard, A. Wine. Available online: https://www.winehq.org/ (accessed on 21 November 2020).
41. Abenza, P.P.G.; Malumbres, M.P.; Piñol, P.; López-Granado, O. Source Coding Options to Improve HEVC

Video Streaming in Vehicular Networks. Sensors 2018, 18, 3107. [CrossRef] [PubMed]
42. Garrido Abenza, P.P.; Malumbres, M.P.; Peral, P.P.; López-Granado, O. Evaluating the Use of QoS for Video Delivery

in Vehicular Networks. In Proceedings of the 2020 29th International Conference on Computer Communications
and Networks (ICCCN), Honolulu, HI, USA, 3–6 August 2020; pp. 1–9. [CrossRef]

43. Abenza, P.P.G.; Peral, P.P.; Malumbres, M.P.; López-Granado, O. Simulation Framework for Evaluating Video
Delivery Services over Vehicular Networks. In Proceedings of the 2018 IEEE 88th Vehicular Technology
Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–5. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.17487/RFC7798
http://dx.doi.org/10.1109/SURV.2011.082911.00067
http://dx.doi.org/10.1109/JSTSP.2013.2271451
http://dx.doi.org/10.1109/IEEESTD.2016.7786995
https://www.r-project.org/
http://gnuplot.sourceforge.net/
http://gnuplot.sourceforge.net/
http://dx.doi.org/10.1109/SARNOF.2006.4534755
https://www.winehq.org/
http://dx.doi.org/10.3390/s18093107
http://www.ncbi.nlm.nih.gov/pubmed/30223525
http://dx.doi.org/10.1109/ICCCN49398.2020.9209735
http://dx.doi.org/10.1109/VTCFall.2018.8691008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	VDSF-VN Simulation Framework
	GatcomSUMO
	GatcomVideo

	Conclusions and Future Work
	References

