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Abstract

The HEVC video coding standard launched on 2013, is able to reduce to the half, on
average, the bit stream size produced by H.264/AVC encoder at the same video quality,
but it requires nearly 70% more time than H.264/AVC to encode a video sequence. In
this paper we propose several parallelization approaches to the HEVC encoder. Our
proposals use MPI programming paradigm working at a coarse grain level paralleliza-
tion, we call GOP-based level. This approach encode simultaneously several groups of
consecutive frames. To obtain good parallel performance, a right GOP conformation
and distribution should be applied.
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1 Introduction

The High Efficiency Video Coding (HEVC) standard [1] has been launched on January 2013
by the Joint Collaborative Team on Video Coding (JCT-VC). This new standard replaces
the current H.264/AVC [2] standard in order to deal with nowadays and future multimedia
market trends like 4K and 8K definition video content and high quality color depth at 10
bit. HEVC greatly improved the coding efficiency over its predecessor (H.264/AVC) by a
factor of almost twice while maintaining an equivalent visual quality [3].

Concerning complexity, in [4], Bossen et al. studied the complexity aspects of HEVC
encoding and decoding software. This study concludes that the encoding process is much
more challenging than the decoding process, e.g., encoding one second of a 1080p60 HD
(High Definition) video with the reference software encoder can take longer than one hour
running in an off-the-shelf desktop computer.
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We can find in the literature several works about complexity analysis and paralleliza-
tion strategies for the emerging HEVC standard as in [4, 5, 6]. Most of the parallelization
proposals are focused in the decoding side, looking for the most appropriate parallel op-
timizations at the decoder that provide real-time decoding of High-Definition (HD) and
Ultra-High-Definition (UHD) video contents. In [7] and [8] the authors present a technique
called Overlapped Wavefront (OWF) for the HEVC decoder which is a variant of Wavefront
Parallel Processing (WPP) in which the executions over consecutive pictures are overlapped.
In a multi-threaded approach of the HEVC decoder, a picture is decoded by several threads
at the same time, and each thread decodes different Coding Tree Block (CTB) rows. In
these works, authors claim that a single thread may continue processing the next picture
when it finishes the current one, without waiting for the other threads. These variations
allow a better parallel processing efficiency, reducing the overall decoding time. Recently,
in [9] the authors combine Tiles, WPP with SIMD (Single-Instruction Multiple-Data in-
struction set extension to the x86 architecture) instructions to develop a real-time HEVC
decoder.

At the present time, there are few works focused at the HEVC encoder. In [10] authors
propose a fine-grain parallel optimization in the motion estimation module of the HEVC
encoder allowing to perform the motion vector prediction in all prediction units (PUs)
available at the Coding Unit (CU) at the same time. In [11] authors propose a paralleliza-
tion inside the Intra prediction module that consist on removing data dependencies among
subblocks of a CU, obtaining interesting speed-up results. Other proposals are focused on
changes in the scanning order. For example, in [12] the authors propose a CU scanning order
based on a diamond search obtaining a good scheme for massive parallel processing. Also in
[13] the authors propose to change the HEVC deblocking filter processing order obtaining
time savings of 37.93% over many-core architectures. In [14] authors combine a GPU-based
motion estimation algorithm with two different parallelization techniques: WPP and group
of pictures (GOP). This approach allows a multicore system to process multiple coding tree
units (CTUs) by splitting the frame in rows or the sequence in GOPs, respectively. In
either case, the motion estimation of these regions is issued to the GPU device obtaining
speed-ups of up to 3.93x for 4 processes.

In this paper, we will focus on applying parallel processing techniques to the HEVC
encoder in order to significantly reduce the computational power requirements without
disturbing the coding efficiency. Our proposals use MPI (Message-Passing Interface) pro-
gramming paradigm working at a coarse grain parallelization level called GOP-based level.
GOP-based approaches encode simultaneously several GOPs and depending on how these
GOPs are conformed and distributed it is critical to obtain good parallel performance.

The remainder of this paper is organized as follows, in Section 2 an overview of the
available profiles and parallel strategies in HEVC are presented. Section 3 present the
parallel strategies proposed for distributed memory architectures, while in Section 4 an

c©CMMSE ISBN: 978-84-617-2230-3
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evaluation of the proposed parallel algorithms is presented. Finally, in Section 5 some
conclusions are drawn.

2 HEVC setups and parallel approaches

In HEVC, the encoding procedure is performed by dividing each video frame into small
squares and processing them in raster scan order. These squares are called Coding Units
(CU). CUs can be encoded by using spatial redundancy (intra CUs) or by using temporal
redundancy (inter CUs). For our evaluations, we have chosen two different HEVC setups:
All Intra (AI) setup and Low-Delay B (LB) setup. AI setup encodes every frame of a
sequence as an I-frame. I-frames only use intra coding. This means that every CU is
encoded exploiting spatial redundancy. Previously encoded CUs within the same frame are
used to make a prediction of the current CU. This prediction is substracted from the current
CU and then the residuum is encoded. In LB setup the coding structure of the sequence
contains an I-frame followed by B-frames. Low-Delay means that reference frames are
always selected from previous frames (in rendering order). B-frames can contain both inter
CUs and also intra CUs. In B (bidirectional prediction) frames, inter CUs are predicted
by an interpolation of two similar CUs chosen from two different reference frames. This
interpolation is substracted from the current CU and then the residuum is encoded. On
the one hand, B-frames are more efficient than I-frames (regarding compression). This
means that, at the same level of quality, bit streams generated by using LB setup will be
much smaller than bit streams generated by using AI setup (at a same level of quality).
On the other hand, processing a B-frame is a heavier task than processing an I-frame. So,
processing the whole video sequence with LB setup will take much longer than processing
the video with AI setup. These two results are the consequence of the same process: motion
estimation. Motion estimation is a hard task but gets very good efficiencies in coding terms.

In order to accelerate the encoding process of HEVC by using a parallelization scheme
we can use different strategies. The coarsest parallelization level approach takes GOPs
and assigns them to different processors. Other approaches introduce the parallelization
scheme into sub-picture divisions and assign each division to a different processor. Three
of these approaches are tile-based parallelization, slice-based parallelization and WPP. The
approach selected in this work is the GOP-based parallelization scheme, which is well suited
for distributed-memory architectures. The other parallelization levels mentioned (tiles,
slices and WPP) are not suitable for distributed memory platforms, because they work
with fragments of a frame. In the following section we will outline the parallel algorithms
proposed, based on the GOP-based approach, which will be implemented and evaluated
using a distributed memory architecture.
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3 Distributed memory parallel strategies based on GOP struc-

ture

In this section, we propose algorithms designed to be executed on distributed memory
platforms, whose parallelization is based on the GOP structure. In these strategies at least
one GOP is assigned to each processor, where one GOP consists of four frames in the LB
mode and one frame in the AI mode. We propose two different strategies in this work. In
one strategy, the work assigned to each processor depends on both the size of the video
sequence to be encoded and the number of processors to be used. In the other strategy, the
coordinator process is responsible for assigning new GOP computation to each encoding
process. We have developed four algorithms, named Distributed Memory GOP (DMG)
algorithms:

• DMG-1G (LB mode): all processes encode the first I-frame and include it in their
reference picture list. When a process has completed its work, it asks the coordinator
process for the next GOP to be encoded.

• DMG-1B (LB mode): the video sequence is divided in as many parts as the number
of available processors. Each processor computes its partial video sequence as an
independent video sequence.

• DMG-GB (LB mode): first, all processes encode the first I-frame (as DMG-1G does)
and then, when a process has completed its work, the coordinator process assigns
a fixed number of contiguous GOPs (GOP BLOCK) to it. The new GOP BLOCK
allocation depends on which process requests workload first.

• DMG-AI (AI mode): following the DMG-1G scheme, the coordinator process assigns
one frame to each process that becomes idle (every frame of the sequence is encoded
as an I-frame).

Figure 1 shows the parallel distribution performed in the DMG-1G algorithm. After
the encoding process of the first GOP (the first I-frame) all processors request another
GOP. When one processor finishes its job and becomes idle, it requests a new GOP. The
coordinator process manages the GOPs sent to each process. It listens to the requests
from the encoding processes and sends each new GOP to be encoded. Note that, both the
coordinator process and the first encoding process are mapped on the same processor. We
have observed that the computational load of the coordinator process is negligible. The
parallel distribution of DMG-AI algorithm, shown in Figure 2, is similar to the parallel
distribution of DMG-1G algorithm, taking into consideration that, in DMG-AI algorithm,
each GOP is composed by one I-frame. One GOP computed by one process is denoted by
G(a b) and IG(a b)

in Figures 1 and 2 respectively, being a the rank of the parallel process and
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Figure 1: DMG-1G: Parallel distribution.

b the number of GOP computed by the process a. Also, on both figures, x, y and z denote
the number of GOPs computed by processes 0, 1 and N respectively (apart from the first
I-frame). The total number of GOPs computed by each process may vary depending on
the computational load assigned to each process. In contrast with DMG-1G and DMG-AI
algorithms, in DMG-1B algorithm the coordinator process is not necessary (see Figure 3). In
this algorithm, each processor encodes a section of the video stream of the same length. Each
processor encodes its section of the video sequence as an independent video sequence, so the
first frame of each section is encoded as an I-frame and the rest of the frames are encoded in
GOPs of 4 frames, following the LB mode. DMG-GB parallel distribution is shown in Figure
4. When an encoding process requests new workload, the coordinator process sends a group
of contiguous GOPs to it. We denote this group of GOPs as GOP BLOCK. The main goals
of DMG-GB algorithm are: a) the number of communications with the coordinator process
is diminished, and b) the Peak Signal-to-Noise Ratio (PSNR) and bit rate differences with
respect to the bit stream produced by the sequential algorithm are reduced. In Figure 4,
one GOP BLOCK computed by one process is denoted by G(a GBd), where a denotes the
rank of the parallel process and GBd denotes the GOP BLOCK number d computed by
the process a.

4 Numerical experiments

In this section we analyze the parallel algorithms described in Section 3, in terms of parallel
performance, PSNR and bit rate. The developed parallel strategies are designed to run
on distributed memory platforms. We have used MPI [15] in order to manage the parallel
system. The parallel platform used is a distributed memory multiprocessor with 24 nodes
HP Proliant SL390 G7. Each node is equipped with two Intel Xeon X5660. Each X5660

c©CMMSE ISBN: 978-84-617-2230-3



MPI-based parallel strategies for HEVC encoder

I

F0

GOP 0

IG(0 1)
P0

P1

.

.

.

PN

P0

P1

.

.

.

PN

IG(1 1)

.

.

.

IG(N 1)

IG(0 2)

IG(1 2)

.

.

.

IG(N 2)

...

...

...

IG(0 x)

IG(1 y)

.

.

.

IG(N z)

I :G(a b) GOP (I-Frame) number b computed by process a

E
n

d
 o

f 
th

e
 e

n
c
o

d
in

g

Procedure of request workload (one I-Frame) to coordinator process

Figure 2: DMG-AI: Parallel distribution.
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Figure 3: DMG-1B: Parallel distribution.

includes six cores at 2.8 GHz. In the experiments reported, we have mapped one MPI
process for each node, except when using a coordinator process, where two MPI processes
are mapped to one node (being one of them the coordinator process).

The video sequences used are BQTerrace (BQ) and FourPeople (FP), both containing
600 frames at 60Hz with a frame size equal to 1920×1080 and 1280×720 pixels, respectively.
We have run the parallel algorithms encoding 600 frames with AI and LB modes.

In Figure 5, we present the computational results for DMG-AI parallel algorithm. Fig-
ures 5(a) and 5(c) show the computational times when encoding 600 frames for BQ and FP
sequences respectively, and figures 5(b) and 5(d) show the corresponding speed-up. Note
that DMG-AI algorithm is the only strategy developed for AI mode, in which there are
no dependencies between frames. Therefore, both the bit stream and PSNR do not differ
from those produced by the sequential algorithm. As we have said, in AI mode there are
no dependencies with future or past frames, so the order in which the frames are encoded
does not change the results, neither the bit stream nor, obviously, the PSNR value.

Regarding Figure 2, the DMG-AI algorithm includes a coordinator process. The co-
ordinator process and an encoding process are mapped in the same node but in different
MPI processes. However, this fact does not reduce the parallel performance, as it can be
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Figure 4: DMG-GB: Parallel distribution.

seen in figures 5(b) and 5(d), in which ideal efficiencies are obtained. This ideal behavior is
expected for this algorithm, since there are no dependencies between different I-frames, and
each one is encoded independently of the other frames. In LB mode, the motion estimation
algorithm performed over B-frames, reduces considerably the output bit rate but signifi-
cantly increases the time needed to encode the sequence, mainly due to the CU searching
and partitioning algorithm. Looking at figures 5(a) and 6(a), for BQ sequence, we can see
that for one processor (sequential algorithm), DMG-1G and DMG-1B algorithms for LB
mode require 3.5× the time required to encode the sequence in AI mode.

In Figure 6 we present the computational times for DMG-1G and DMG-1B parallel
algorithms using LB encoding mode, while in Figure 7 we show the corresponding speed-
ups. As it can be seen, execution times differ in the parallel executions. For both BQ and
FP sequences, DMG-1G algorithm is substantially slower than DMG-1B algorithm. One
of the reasons for this behavior is that all frames assigned to each process in DMG-1B are
contiguous, so the motion estimation algorithm performed in B-frames may converge faster
than in a randomized sequence, as used in DMG-1G.

As mentioned in Section 3, the parallel algorithm does not provide the same results
than the ones produced by the sequential algorithm, as shown in Figure 8. The bit rate
increases as the number of processes does in DMG-1G and DMG-1B parallel algorithms.
If we compare the output bit stream size between both parallel algorithms, the bit rate in
DMG-1G is considerably bigger than in DMG-1B. This is due to the reallocation process
of B-frames in DMG-1B, performed by the coordinator process. As there are no adjacent
frames, the residuum obtained in the motion estimation process is higher and so the bit
rate increases. On the other hand, in DMG-1G algorithm, all the frames assigned to each
process are contiguous, so adjacent frames may be similar and the residuum will be lower.
As previously mentioned, in DMG-AI algorithm the generated bit stream is independent
of the number of processes used to encode the sequence, because no motion estimation is
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(a) Time (s.), BQ sequence. (b) Speed-up, BQ sequence.

(c) Time (s.), FP sequence. (d) Speed-up, FP sequence.

Figure 5: DMG-AI parallel algorithm when computing 600 frames.

(a) BQ sequence. (b) FP sequence.

Figure 6: Computational times for DMG-1G and DMG-1B parallel algorithms.
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(a) BQ sequence. (b) FP sequence.

Figure 7: Speed-up for DMG-1G and DMG-1B parallel algorithms.

(a) BQ sequence. (b) FP sequence.

Figure 8: Percentage of bit rate increase for DMG-1G and DMG-1B parallel algorithms.

performed.

Another important value that we must consider is PSNR. That is, the generated bit
stream is different for each algorithm and PSNR indicates us the distortion introduced by
the algorithm in relation to the number of processes used in a parallel execution. Figure
9 shows the PSNR value as the video quality measurement for DMG-1G and DMG-1B
parallel algorithms. We can observe that the video quality decreases when using DMG-1G
algorithm, even if the bit rate increases, as shown in Figure 8. However, when using DMG-
1B parallel algorithm, the PSNR value remains unchanged for BQ video sequence and, in
some cases, the quality slightly improves for FP video sequence, with a lower increment in
the bit rate than the one introduced by the DMG-1G parallel algorithm.

In order to analyze the DMG-GB parallel algorithm, we will take into account the GB
(GOP BLOCK) size. In the DMG-GB parallel algorithm, one block of consecutive GOPs
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(a) BQ sequence. (b) FP sequence.

Figure 9: PSNR for DMG-1G and DMG-1B parallel algorithms.

(a) Bit rate. (b) PSNR.

Figure 10: Bit rate and PSNR for DMG-GB algorithm varying the GB size, for FP video
sequence.

is assigned to each process, so the number of GOPs of each block (GB) is a new parameter.
Note that if the GB size is equal to 1, both DMG-1G and DMG-GB parallel algorithms are
identical. Figure 10 shows bit rate and PSNR values for DMG-GB algorithm varying the
GB size parameter. As we can see, bit rate decreases and video quality improves as the GB
size increases.

5 Conclusions

In this paper we have proposed several parallel algorithms of the HEVC video encoder,
specially suited for distributed memory platforms. The algorithms proposed are based on
a coarse grain parallelization approach with the organization of video frames in GOPs and

c©CMMSE ISBN: 978-84-617-2230-3
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the proposal of different GOP allocation schemes. We have presented results using both AI
and LB encoding modes, defined in the HEVC reference software, and we have analyzed
their performance. Ideal parallel behavior has been shown in the experiments reported for
DMG-AI parallel algorithm. Moreover, both DMG-1G and DMG-GB algorithms achieve
good parallel performance. In DMG-GB algorithm we can tune the GB parameter to adjust
the PSNR and bit rate behavior. After implementing the algorithms in the HEVC software,
some experiments were performed showing interesting results as (a) the best approach is
the DMG-AI (AI mode) algorithm when comparing both sequential and parallel versions in
terms of speed-up, obtaining the sam bit stream than for the sequential algorithm; (b) for
the rest of the algorithms, the GOP organization determines the final coding performance,
causing a bit rate overhead as the number of processors increases but the overall parallel
performance (except for DMG-1G proposal) makes them a good approach; and (c) all
strategies which include a coordinator process, have the ability of load-balancing the input
workload among the available processors. As future work, we will combine GOP-based
approaches with slice and tile parallelization levels, which are aimed to exploit the shared
memory parallelism rather than the distributed memory parallelism.
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