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Abstract

Three-dimensional wavelet transform (3D-DWT) has focused the attention of the
research community, most of all in areas such as video watermarking, compression of
volumetric medical data, multispectral image coding, 3D model coding and video cod-
ing. In this work, we present several strategies to speed-up the 3D-DWT computation
through multicore processing. An in depth analysis about the available compiler opti-
mizations is also presented. Depending on both the multicore platform and the GOP
size, the developed parallel algorithm obtains efficiencies above 95% using up to four
cores (or processes), and above 83% using up to twelve cores. Furthermore, the ex-
tra memory requirements are under 0.12% for low resolution video frames, and under
0.017% for high resolution video frames.

Key words: wavelet transform, video coding, parallel algorithms, OpenMP, in-place
computing.

1 Introduction

In the last years, the three-dimensional wavelet transform (3D-DWT) has focused the at-
tention of the research community, most of all in areas such as video watermarking [1] and
3D coding (e.g., compression of volumetric medical data [2] or multispectral images [3], 3D
model coding [4], and especially, video coding). 3-D subband video coding is an alternative
to the traditional motion-compensated Discrete Cosine Transform (DCT) coding. The 3D
subband coding uses the discrete wavelet transform (DWT), which achieves better energy
compaction, instead of the DCT.

Podilchuk, et al., utilized 3-D spatio-temporal subband decomposition and geometric
vector quantization (GVQ) [5]. Taubman and Zakhor presented a full color video coder
based on 3-D subband coding with camera pan compensation [6]. Adapted versions of
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wavelet image encoders can be also used, taking into account the new dimension. For in-
stance, the two dimensional (2D) embedded zero-tree (IEZW) method has been extended
to 3D IEZW for video coding by Chen and Pearlman [7], and showed promise of an effective
and computationally simple video coding system without motion compensation, obtaining
excellent numerical and visual results. A 3D zero-tree coding through modified EZW has
also been used with good results in compression of volumetric images [8]. In [9] and [10], in-
stead of the typical quad-trees of image coding, a tree with eight descendants per coefficient
is used to extend both SPIHT and LTW image encoders to 3D video coding.

Several attempts has been made in order to accelerate the DWT, specially the 2D
DWT, exploiting both multicore architectures and graphic processing units (GPU). In [11],
a SIMD algorithm runs the 2D-DWT on a GeForce 7800 GTX using Cg and OpenGL, with
a remarkable speed-up. A similar effort in [12] combined Cg and the 7800 GTX to report
a 1.2x-3.4x speed-up versus a CPU counterpart. In [13], a CUDA implementation for the
2D-FWT running more than 20 times as faster the sequential C version on a CPU, and more
than twice as faster the optimized OpenMP and Pthreads versions implemented on multicore
CPUs. In a previous work [14], we presented both multicore and GPU implementations for
the 2D-DWT obtaining speed-ups up to 7.1 and 8.9 on a multicore platform using eight and
ten processes, respectively when compared to the CPU sequential algorithm.

This work extends our analysis to the 3D-DWT, analyzing the compiler flags impact as
well as the different optimizations applied. We analyze the computational behavior in order
to set the optimal performance parameters. Also, we compare our results against [15].

The rest of the paper is organized as follows. Section 2 presents the foundations of
the 3D-DWT. Section 3 describes our implementation proposal on multicore CPUs, and
Section 4 analyzes its performance. Finally in Section 5 some conclusions are drawn.

2 3D Wavelet Transform

The DWT is a multiresolution decomposition scheme for input digital signals, see detailed
description in [16]. The source signal is firstly decomposed into two frequency subbands,
low-frequency (low-pass) subband and high-frequency (high-pass) subband. For the classical
DWT, the forward decomposition of a signal is implemented by a low-pass digital filter H
and a high-pass digital filter G. Both digital filters are derived using the scaling function
Φ(t) and the corresponding wavelet functions at different frequency scales Ψ(t). The system
downsamples the signal to half of the filtered results in the decomposition process. If four-
tap and non-recursive FIR filters are considered, the transfer functions of H and G can be
represented as follows:

H(z) = h0 + h1z
−1 + h2z

−2 + h3z
−3 (1)

G(z) = g0 + g1z
−1 + g2z

−2 + g3z
−3 (2)
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To use the wavelet transform for volume and video processing we must implement a
3D version of the analysis and synthesis filter banks. In the 3D case, the 1D analysis filter
bank is applied in turn to each of the three dimensions.

After applying the 3D-DWT on a group of video pictures (GOP), a 2D spatial DWT
and a 1D temporal DWT, we obtain eight first level wavelet subbands (named as LLL1,
LHL1, LLH1, LHH1, HLL1, HHL1, HLH1, HHH1). Further decompositions can be
done, focusing on the low-frequency subband (LLL1), achieving in this way a second-level
wavelet decomposition, and so on.

In this work we will use the Daubechies 9/7 filter for both the spatial and temporal
decompositions. In addition, the regular filter-bank convolution is considered to develop
the three-dimensional wavelet transform, based on the results obtained in [14] for the two-
dimensional wavelet transform case. In particular, in [14] we obtain best results, in terms of
computational times and in terms of parallel performance, applying the regular filter-bank
convolution than applying the lifting scheme.

3 Multicore 3D Wavelet Transform

As we have said, the Daubechies 9/7 filter, proposed in [16], has been used to perform the
regular filter-bank convolution in order to develop the parallel 3D-DWT algorithm. In [14]
we proposed the convolution-based parallel 2D-DWT using an extra memory space in order
to perform a nearly in-place computation, avoiding the requirement of twice the image size
to store the computed coefficients. This strategy is also followed to develop the parallel
3D-DWT algorithm.

We want to remark that we use four decomposition levels in order to compute the 3D-
DWT, and, as we have said in Section 2, each decomposition level computation is divided
into two main steps. In the first step the 2D-DWT is applied to each frame of the current
GOP, and in the second step the 1D-DWT is performed to consider the temporal axis. We
have used the symmetric extension technique in order to avoid the border effects on both
the frame borders and the GOP borders.

If we consider the first step (i.e. the 2D-DWT applied to each video frame), the extra
memory size depends on both, the row size or column size (the larger one), and the number of
processes in the parallel algorithm. The extra memory stores the current frame row/column
pixels plus the pixels of the symmetric extension. For Daubechies 9/7 filter we must extend
four elements on all borders.

Table 1 shows the extra memory size in pixels and the percentage in memory increase,
for several video frame sizes and number of processes used in the parallel algorithm. Note
that each process stores its own working pixels which are not shared with other processes.
The worst case in Table 1, attending at memory increase, is a very small value equal to
0.1109%. On the other hand, attending to the amount of extra memory size, the worst
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Frame Size Processes Extra memory size Increment (%)
Pixel size GOP: 32

1 360 0.0110
2 720 0.0221

352 x 288 4 1440 0.0443
6 2160 0.0665
10 3600 0.1109

1 1288 0.0024
2 2576 0.0049

1280 x 640 4 5152 0.0099
6 7728 0.0148
10 12880 0.0247
1 1928 0.0016
2 3856 0.0032

1920 x 1024 4 7712 0.0065
6 11568 0.0098
10 19280 0.0164

Table 1: Amount of extra memory size.

case increases the memory size by 0.0164%. If the GOP size is larger than the row size and
column size the amount of extra memory is set by the GOP size. In Table 1 the percentage
has been obtained considering a GOP size equal to 32.

In the second step of the 3D-DWT (i.e. the temporal 1D-DWT), we perform the
symmetric extension in order to avoid the border effects in the temporal domain. In all per-
formed experiments the maximum GOP size considered is 128, therefore the extra memory
used in the first step is enough to be reused in the second step.

We have used OpenMP [17] paradigm in order to develop the parallel 3D-DWT algo-
rithm. The multicore platforms used are:

• Intel Core 2 Quad Q6600 2.4 GHz, with 4 cores.

• HP Proliant SL390 G7 with two Intel Xeon X5660, each CPU with six cores at 2.8
GHz.

We analyze some OpenMP-based techniques to parallelize the two main steps. The
techniques tested to parallelize the 3D-DWT algorithm are:

• Automatic OpenMP parallel loops.

• Parallel sections.

• Load balancing according the thread rank.
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Figure 1: Compiler efficiency for the multicore 3D-DWT algorithm. Frame size: 1280×640.
Multicore HP Proliant SL390.

In all performed experiments the parallel sections technique has not obtained good
results, while the best results are obtained by balancing the computational load according
the thread rank.

We have also analyzed the behavior depending on the compiler and the flags used to
build the 3D-DWT algorithm. We have tested the ICC [18] compiler, a corporate tool from
Intel, and the GCC [19] compiler, which is a free compiler developed by the GNU project. In
the multicore HP Proliant SL390 compilers available are the GCC 4.1.2 and the ICC 12.0.0,
however in the multicore Q6600 the only available compiler is the GCC 4.4.3. Figure 1
shows the compiler efficiency, respect to the best option, for a grayscale video frame size of
1280 × 640 pixels and a GOP size equal to 64 on the multicore HP Proliant SL390. The
best option is obtained by using the ICC compiler and the flag -fast (note that -fast is
a shorthand that includes the flags -O3 -ipo -static -xHOST -no-prec-div). Note that the
efficiencies showed in Figure 1 are computed respect to the computational time obtained
using the ICC compiler and the compiler flag -fast and the number of processes used in
each experiment. Also in Figure 1 we can observe that the performance of both compilers
remains unchanged as we increase the number of processes. This conclusion can be applied
to the use of the different compiler flags. It is important to remark that both compilers
offer the same performance when we use the same optimization flags and the ICC compiler
obtains a slight performance increase by the flag -fast.
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(b) Efficiency.

Figure 2: 3D wavelet algorithm. Compiler: GCC. Compiler flags: -O3 -openmp. Frame
size: 1280 × 640. Multicore Q6600.

4 Performance Evaluation

In this section we discuss the behavior of the parallel algorithm described in previous sec-
tions and we compare it against a recent optimized multicore proposal presented in [15].
Figure 2 presents the 3D-DWT computational times and their associated efficiencies for a
video frame size of 1280 × 640 varying the GOP size and the number of processes. Fig-
ure 2(a) shows the good computation behavior of the parallel algorithm. In the 3D-DWT
there is an intensive use of the memory, therefore the improvement in the use of the cache
memory and data locality justifies the efficiencies greater than 1 showed in Figure 2(b).
Efficiency values showed in this figure correspond to executions on the multicore Q6600.
However, in Figure 3(b) this fact is not observed for the multicore HP Proliant SL390 due
to the higher memory access performance respect to the multicore Q6600. The HP Proliant
SL390 architecture provides a high-bandwidth memory access, through the Intel QPI Speed
64GT/s, therefore, the global performance improvement is less significant than in the Q6600
platform. In Figure 3 we also present the computational times and their associated effi-
ciencies for the multicore HP Proliant SL390. The efficiencies obtained on both platforms
are similar, however, comparing data obtained from video frames of different sizes we can
conclude that the behavior on the multicore Q6600 becomes worse than on the multicore
HP Proliant SL390, as the GOP size increases, i.e. when the global memory size increases.
Note that the data presented in figures 2(b) and 3(b) correspond to different video frame
sizes.

The GOP size is an important parameter in the 3D-DWT computation, when applied
to video coding, because the average video quality increase as we increase the GOP size
due to the minor GOP boundary effect. However, the computational load and memory
requirements increase. Ideally, the GOP size would be equal to the total number of video
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(b) Efficiency.

Figure 3: 3D wavelet algorithm. Compiler: ICC. Compiler flags: -fast -openmp. Frame
size: 1920 × 1024. Multicore HP Proliant SL390.
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(a) Frame size: 1280 × 640.
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Figure 4: Computational time per frame. Compiler: ICC. Compiler flags: -fast -openmp.
Multicore HP Proliant SL390.

frames, since this is not possible due to the device memory restrictions, we must to select
the GOP size attending to both the video quality and the computational time. As we can
see in figures 2(a) and 3(a) the computational time increases as the GOP size increases.
The minimum GOP size in our algorithm is 16 due to the four wavelet decomposition levels
performed in the 3D-DWT. Note the number of frames (or pictures) computed is the value
of the GOP size.

The optimal values of the GOP size are 64 and 128, setting the GOP size equal to
128 reduces the border effects and setting the GOP size equal to 64 reduces the memory
requirements. Both values obtain the best results, as it can be seen in Figure 4, in terms of
computation times per frame.

We have presented an exhaustive analysis of our parallel algorithm, showing its behavior
according to the possible modifications of all parameters. As we have seen, the parallel
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Figure 5: Computational times for 3D wavelet algorithm. GOP size: 64. Number of
processes: 4.

algorithm obtains good efficiency, with the proper parameters setting, using the available
cores, up to 12 in the multicore HP Proliant SL390 and up to 4 in the multicore Q6600.
At this time we will perform a comparative analysis against the recent algorithm presented
in [15], which presents some interesting optimization techniques. Both compared algorithms
use different methods to compute the 3D-DWT, in particular the reference algorithm uses
the Daubechies W4 filter instead of the Daubechies 9/7 filter used in our algorithm. It
should be noted that our algorithm performs four decomposition levels to compute the
3D-DWT, while the reference algorithm presented in [15] performs only one decomposition
level. Therefore, the optimization techniques used in both algorithms can not be the same.
Furthermore we use the symmetric extension technique to avoid boundary effects, while the
reference algorithm does not apply any specific technique for this purpose.

The platforms used to test both algorithms are very similar. Our platform has an Intel
Q6600 quad-core processor and the reference algorithm has been run on an Intel Q6700
quad-core processor, i.e. the reference algorithm has been tested on a platform with a
slightly higher performance. Figure 5 shows the computational times to compute the 3D-
DWT for several video frame sizes, using 4 processes and a GOP size equal to 64. The
results provided of the reference algorithm depend substantially on the compiler, as we can
see in Figure 5(b), while our algorithm shows a lower compiler dependency, as it showed in
Figure 1. The results shown in Figure 5(a) are obtained with the GCC compiler, because our
multicore Q6600 does not provide the ICC compiler. The computational times presented in
Figure 5 are obtained for different video frame sizes, because we work with standard video
frame sizes and the reference algorithm works with square video frame sizes.

In Figure 6 we analyze the number of megapixels per second in both algorithms. Ana-
lyzing the results shown in this figure, we can conclude that our algorithm shows a greater
performance degradation when the video frame size is increased. This is due to the pre-
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Figure 6: Megapixels per second for 3D wavelet algorithm. GOP size: 64. Number of
processes: 4.

viously discussed differences, both the number of wavelet decomposition levels and the
symmetric extension performed in our algorithm. Techniques used to improve the reference
algorithm does not improve the performance of our algorithm. Note that we use an extra
amount of memory to store the working data as showed in Table 1. We want to remark
that our algorithm avoids the use of twice the video size to store the computed coefficients
through this working memory.

As mentioned both algorithms use different filters in order to compute the 3D-DWT,
which means that the computational load per pixel differs on both algorithms. Therefore in
Figure 7 we present results in terms of GFLOPS. We have computed the GFLOPS of the
experiments reported in [15] considering the video frame size, the GOP size and the filter
Daubechies W4. Attending to the results using the same compiler, our algorithm is able to
compute up to 4 times more the GFLOPS than the reference algorithm. Analyzing different
compilers our algorithm increases the GFLOPS using the free compiler GCC respect to the
corporate ICC compiler.

5 Conclusions

We have presented the multicore-based algorithm, developed using the OpenMP paradigm,
that performs the 3D discrete wavelet transform. We have analyzed the behavior of the
developed algorithm when running on two different shared-memory platforms. Furthermore,
we have compared our algorithm against a recent algorithm proposed in [15]. The multicore-
based algorithm obtains a speed-ups closely ideal depending on the video frame size and the
GOP size, running on a relatively low computing power platform as the Q6600 multicore
platform, when compared to the sequential CPU algorithm. When running on the HP
Proliant SL390 G7, our algorithm obtains good efficiencies even using the maximum number
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Figure 7: GFLOPS for 3D wavelet algorithm. GOP size: 64. Number of processes: 4.

of available cores, depending on the video frame size and the GOP size. In this case
the efficiencies achieved are greater than 83%. Furthermore, we do not require twice the
video size to compute the 3D-DWT and the increased memory, even up to 12 processes, is
negligible.
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