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Abstract

Clusters of workstations (COWSs) are becoming increasingly popular as a cost-effective alternative
to parallel computers. In these systems, the interconnection network connects hosts using irregular
topologies, providing the wiring flexibility, scalability, and incremental expansion capability required
in this environment. Myrinet [1] is the most popular network used to build COWs. It uses source
routing with the up*/down* routing algorithm. In previous papers [2, 3] we proposed the In-Transit
Buffer (ITB) mechanism to improve network performance by allowing minimal routing in all cases,
balancing network traffic and reducing network contention. The mechanism is based on ejecting packets
at some intermediate hosts and later re-injecting them into the network. Simulation results showed
that network throughput can be more than doubled. Moreover, the ITB mechanism does not require
additional hardware as it can be implemented on the software running at Myrinet network adapters.

In this paper, we present a first implementation of the ITB mechanism on Myrinet GM software.
We show the changes required in packet format and the modifications performed in the Myrinet Control
Program (MCP). In addition, both the overhead introduced by the new code and the cost of extracting
and re-injecting packets are measured. Results show that, even for this simple implementation, code
overhead is only about 100 ns per packet and the message latency increase for those messages that use
the ITB mechanism is around 1.3us per I'TB. This is the first attempt to implement this mechanism,
and the results shown in this paper confirm the benefits that this mechanism would contribute to real
implementations of Myrinet COWs.
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1 Introduction

Clusters Of Workstations (COWSs) are currently being considered as a cost-effective alternative for small-
scale parallel computing. COWSs do not provide the computing power available in multicomputers and
multiprocessors, but they meet the needs of a great variety of parallel computing problems at a lower cost.

In COWs, network topology is usually fixed by the physical location constraints of the computers,
so the resulting topology is typically irregular. In networks that use source routing [1](as opposed to
distributed routing [5]), the path to destination is built at the source host and it is written into the packet
header before delivery. Switches route packets through the fixed path found at the packet header, being
simpler and faster than those in distributed routing, because no route decisions have to be made in them.
However, the path followed by a message can not be dynamically changed in order to avoid congested
areas. In other words, the routing strategy is static and known before messages are sent. Myrinet network
[1] is an example of a source routing network.
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Different source routing algorithms for irregular networks have been proposed. The most well-known
routing algorithm is the up*/down* routing. It is used in Autonet [5] and Myrinet networks [1]. The
up*/down* routing is quite simple. It is based on an assignment of direction labels to links. To do so,
a breadth-first spanning tree is computed and then, the “up” end of each link is defined as: (1) the end
whose switch is closer to the root in the spanning tree; (2) the end whose switch has the lower ID, if both
ends are connected to switches at the same tree level. As a result, each cycle in the network has at least
one link in the “up” direction and one link in the “down” direction. Thus, cyclic dependences between
channels are avoided by prohibiting packets to traverse links in the “up” direction after having traversed
one in the “down” direction.

In [2, 3] we evaluated up*/down* routing in networks with source routing. From this study, we identified
three major factors that limit performance:

e Non-minimal routing. As network size increases, routing algorithms based on spanning trees, like
up*/down*, tend to use paths longer than the minimal ones. The use of long paths increases network
contention as messages use, on average, more links in the network.

e Traffic un-balancing. Routings based on spanning-trees also increase traffic unbalance as network
size increases. These routings tend to saturate the zone near the root switch, making low use of
channels out of this zone. Therefore, the utilization of network links is non-uniform, and the network
throughput will be low.

e Network contention. If wormhole switching is used and virtual channels are not supported (as oc-
curs in current Myrinet networks), contention on one link can instantly block other links, cascading
throughout the network. This serious limiting factor increases latency and reduces overall perfor-
mance.

In previous papers [2, 3] we presented a new mechanism (In transit Buffer, ITB) for source routing
networks. Basically, this mechanism avoids routing restrictions by ejecting some packets at intermediate
hosts (in-transit hosts) and later re-injecting them into the network. For instance, applied to up*/down*
routing, an invalid path with one “down” — “up” transition is split into two valid up*/down* subpaths.
The dependence between “down” and “up” channels is broken by means of the in-transit buffer.

T "up" direction T "up" direction

¥ up*/down* path

! minimal path

Figure 1: Using ITBs to get minimal routes.

By avoiding routing restrictions, the ITB mechanism allows the use of minimal paths for every source-
destination pair. As a consequence, messages do not need to frequently cross the root switch, allowing
a good traffic balance, not achieved by routings based on spanning trees. One example of this is shown
in Figure 1. There is a minimal path between switch 4 and switch 1 (4 — 6 — 1), but it is forbidden
by up*/down* because it uses an ‘up’ link after a ‘down’ link at switch 6. However, this path is allowed
with the ITB mechanism by using one host at switch 6 as an in-transit host to break the dependence. In
this case, the original up* /down* route (4 — 0 — 2 — 1) is split in two valid up*/down* routes (4 — 6
and 6 — 1) using the ITB mechanism. Notice than more than a single ITB can be inserted into a path.
Therefore, by using I'TBs, minimal routing can be guaranteed while keeping the deadlock-free condition.



Finally, by ejecting and re-injecting packets at some hosts, network contention is reduced because
ejected packets free the channels they have reserved, thus allowing other packets requiring these channels to
advance through the network (otherwise, they would become blocked). On the other hand, the mechanism
can be easily implemented by modifying the network control program without changing the network
hardware. Although it was originally proposed to use up*/down* routing, it can be efficiently applied to
any source-based routing algorithm [2, 3].

The main drawback of the mechanism is that ejecting and re-injecting packets at some hosts introduces
an overhead that may increase message latency. An efficient implementation may help in keeping this
overhead low. Obviously, as the number of ITBs used by a message increases, packets may suffer a higher
latency penalty. However, this latency penalty is only noticeable for short messages, and as network size
increases, this penalty also decreases [2, 3].

2 Motivation

In [2, 3], we evaluated by simulation the behavior of the ITB mechanism using a network model based
on Myrinet. Results showed that network performance can be improved. In particular, compared with
up*/down*, network throughput can be easily doubled, and, in some cases, tripled. In addition to this
performance improvement, we claimed that only the software that runs on each Myrinet network adapter
(Myrinet Control Program, MCP) needs to be modified. In particular, we showed that the MCP has
to detect in-transit packets in order to handle the ejection and re-injection procedure. To minimize the
introduced overhead, we proposed programming a DMA transfer to re-inject the packet as soon as the
in-transit packet header is processed and the required output channel is free. Then the delay to forward
the packet will be the time required to process the header and start the DMA. In [2, 3], we used a delay
of 275 ns (equivalent to 44 bytes received) to detect an in-transit packet and 200 ns (32 bytes received) to
program the DMA that re-injects the packet. These timings were estimated by analyzing message delays
on a real Myrinet network. Notice that they were an approximation, as no implementation was available.

In order to obtain with more accuracy these timings and to demonstrate that it is feasible to implement
the ITB mechanism without degrading the network performance, this paper presents a first implemen-
tation of ITB on a current version of Myrinet GM software [4]. We have checked the correctness of the
ITB implementation, verifying that the mechanism works correctly. On the other hand, we have taken
measurements about the introduced overhead of the new code in the sending and receiving tasks of the
MCP software. Notice that this overhead was not considered in the model used in our previous work [2, 3].
Also, we have measured the additional delay of a message when uses an ITB, obtaining that it is quite
similar to the one assumed in our previous work [2, 3].

The rest of the paper is organized as follows. In section 3 we present the GM software organization
and the network adapter architecture. In section 4 the implementation of ITB is shown, describing the
modifications performed on the GM/MCP software. In section 5 some evaluation results are presented,
analyzing the viability of our ITB implementation. Finally, in section 6 some conclusions are drawn and
future work is anticipated.

3 GM software organization and Myrinet NIC architecture

GM is a message-based communication system for Myrinet. The GM system provides protected user-level
access to the Myrinet (secure in multi-user, multiprogramming environments), reliable and ordered message
delivery in presence of network faults, network mapping and route computation, and other features that
support robust and error-free communication services. Other software interfaces such as MPI, VIA, and
TCP/IP are layered efficiently over GM. The GM system includes a driver, the Myrinet Control Program
(MCP), a network mapping program, and the GM API, library, and header files.

The MCP executes on the processor inside the network interface card (NIC). The NIC architecture is
based on a custom-VLSI chip, called LANai, which is comprised of a network interface, a packet DMA,
a host DMA and a 32-bit RISC processor (see Figure 2). The host I/O bus, the packet receive DMA,
and the packet send DMA can request a maximum of one memory access per clock cycle. The on-chip
processor requests up to two memory accesses per clock cycle (instruction and data). However, memory
bandwidth is limited to two memory accesses per clock cycle, based on the following priority (highest to
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Figure 2: Myrinet network interface card block diagram.

lowest): host I/O bus, packet receive DMA, packet send DMA, and the processor. Since every host I/0
bus memory access is granted, the LANai chip along with the memory on its local bus appears as a block
of synchronous memory from the host point of view.

The MCP is loaded in the network adapter local memory by the device driver at boot time. Then, this
software interacts concurrently with both the host processor and the network. The MCP is composed of
four state machines: SDMA, RDMA, Send and Recv. SDMA and RDMA control memory transactions
between the host and the sending/receiving buffers located in the NIC memory. Send and Recv are
responsible for controlling transactions to and from the network. On the other hand, the MCP is also
responsible for setting up and detecting the completion of transactions on each interface. It can do this
by means of start and finish events that modify the state of the system. The overall state of the system
is managed through a number of status bits, some of them are maintained by the LANai hardware while
the remaining ones are software controlled. An event handler is in charge of monitoring the state of the
MCP, giving control to the state machine that handles the highest priority pending event.

4 ITB implementation on Myrinet GM software

First of all, a new packet type (ITB packet) has to be created to distinguish between normal Myrinet
packets and in-transit packets. New packet types are assigned by Myricom upon request. The format of
a Myrinet packet is illustrated in Figure 3-a. The Myrinet mapper compute the routes among all hosts
and stores them in the NIC RAM of each network node. The MCP accesses the routing table every time
a packet is stored in the send queue for delivery, stamping the route required to reach its destination in
the message header. When a packet enters a switch, the leading byte of the header is used to select the
outgoing port. Once the output port is assigned to this packet the leading byte is removed from the packet.
When a packet enters a NIC, the leading two bytes identify the type of packet (a normal GM packet, a
mapping packet, a packet with an IP packet as its payload or an ITB packet).

As it has been shown in previous sections, a route with in-transit buffers is split into several up*/down*
paths. Figure 3-b shows how such a route is accommodated in the Myrinet packet header for the case
of using two up*/down* paths with one ITB. At each in-transit node, an ITB tag and the length of the
remaining route are required by the MCP to identify and re-inject the packet as quick as possible. The
Myrinet mapper has to be adapted to calculate routes with the proposed mechanism.

In order to support in-transit messages, the MCP has been modified. The modifications have been
made in such a way that the introduced overhead be as low as possible. Therefore, we need a fast detection
mechanism of incoming in-transit messages in order to reprogram a DMA transfer and re-inject it as soon
as possible (even if the packet is still being received), thus providing Virtual Cut-Through switching for
ITB packets.

The MCP Recv state machine, which deals with the packet reception tasks, has to detect in-transit
messages and then check whether the Send state machine (actually the send DMA) is free. Figure 4 shows
the changes required in the MCP. Once an incoming ITB packet is detected, if the Send state machine is
free, the send DMA has to be programmed to re-inject the packet. Notice that in this case the Recv state
machine is responsible for the in-transit packet re-injection in order to minimize the overhead (avoiding
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Figure 3: Packet format: a) Original Myrinet b) With ITBs.

one dispatching cycle delay). This is shown in Figure 4 as dashed lines. If the Send state machine is busy,
the packet will be sent as soon as it becomes free, as indicated in Figure 4 in dotted lines.

Notice that the length of both sending and receiving queues have been kept without changes from
the original MCP (two buffers each). This may result in buffer receive overflows. This situation could be
avoided by supplying a buffer pool for ITB packets, as proposed in [2, 3]. However, it has not been included
in order to keep the implementation as simple as possible, trying to reduce the number of changes to the
original code. Future implementations of in-transit buffers on Myrinet will include the above mentioned
ITB buffer pool.

On the other hand, to detect as soon as possible an in-transit packet, a new high priority event has
been included (Early Recv Packet event). It is triggered by the LANai hardware when the first four bytes
of a packet are received. Then, the event handler or dispatcher activates the code associated with this
event (which is included in the Recv state machine) that checks if the packet that is being received is an
ITB packet. If not, dispatching is resumed. If so, the availability of the send DMA is verified either to
start the re-injection of the in-transit packet or to turn on a new state flag, ITB packet pending, for a
later, but high priority, re-injection. When the ITB packet sending process is finished, resources are freed
and next reception is programmed. Figure 5 illustrates in detail these modifications.

5 Evaluation results

The implementation described in section 4 has been made on the GM-1.2prel6 software distribution for
Linux. The testbed is comprised of three 450 MHz Pentium III-based computers running SuSE Linux 6.1
with kernel 2.0.36 attached to a Myrinet network with two M2FM-SW8 switches (8-Port Myrinet Switch
with 4 LAN ports and 4 SAN ports) according to Figure 6. Host 1 and in-transit host use M2L-PCI64A-2
NICs (universal, 64/32-bit, 66/33MHz, Myrinet-LAN/PCI interface, PCI short card - 2 MB) and host 2
uses a M2M-PCI64A-2 (universal, 64/32-bit, 66/33MHz, Myrinet-SAN/PCI interface, PCI short card - 2
MB).

Once the modified GM/MCP has been verified to deliver messages correctly, several tests have been
made using the gm allsize test distributed by Myricom with GM-1.2prel6. Firstly, the overhead intro-
duced by the new code in the normal MCP operation has been measured. This test evaluates the impact
of adding ITB support to the network. Notice that this overhead will be suffered in both normal and ITB
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Figure 4: MCP state machines.

messages, but only once per message, as it only affects to the receiving part of the MCP. The test has
been done comparing the point-to-point half-round-trip latency of the original MCP with the modified one
when sending messages between hosts 1 and 2, using up*/down* routes. Several tests were made using
100, 1000, and 10000 iterations per message size. The obtained results does not differ significantly. Figure
7 shows the average measured latencies for 100 iterations per message size.

As it can be seen, overhead is very low. Difference in measured latencies does not exceed 300 ns and,
on average, is equal to 125 ns. Notice that, as message latency increases (more switches to cross and/or
longer messages) the relative impact of this overhead decreases. In this case, with messages traversing 2.5
switches, the relative overhead (not shown) ranges from 1 % for very short messages to 0.4 % for very long
messages.

In order to measure the overhead experienced by messages that use ITBs, a second test has been
made. This test evaluates the delay associated to the detection of the in-transit packet, its ejection from
the network and its re-injection into the network. It has been calculated by subtracting the point-to-point
half-round-trip latency of messages being sent between hosts 1 and 2 using the up*/down* path (shown
in Figure 6 as dashed lines) from the equivalent latency of messages that use an ITB at the in-transit
host (shown in Figure 6 as dotted lines). Care has been taken to assure that both the in-transit path and
the up*/down* path have the same number of switches (5 switches). Notice that the up*/down* path
requires a loop in switch 2 for this purpose. On the other hand, given that the test program measures
the half-round-trip latency and only one ITB is used, the overhead due to this ITB has been obtained
multiplying the result of the above difference by two. In the same way it has been done for the first test,
100 iterations have been averaged for each message size.

To guarantee that this comparison shows only the overhead due to the ITB, both routes (the first one
with up*/down* paths and the second one with one ITB) have been generated not only for messages to
traverse the same number of switches but also to cross the same kind of ports (LAN or SAN). It has to
be stated that the latency through a switch depends on the type of used ports.

Figure 8 shows the point-to-point half-round-trip latency for messages sent between host 1 and 2
without in-transit buffers and with one ITB versus the length of messages. The resulting absolute overhead
is also plotted. As it can be seen, the cost of detecting an ITB packet and handling its re-injection is
around 1.3ps. This value is higher than our estimations used in previous studies (around 0.5us)[2, 3].
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Figure 5: Modifications in the MCP state machines.

Thus, some of the simulations should be rerun. However, notice that this increased delay only will be
important when, after detecting an in-transit message, the required output port be free. In other case,
the in-transit message has to wait until it is freed. Hence, we expect that results for medium and high
network loads will not significantly change. On the other hand, the relative overhead introduced by each
ITB decreases as message latency increases, and it ranges from 10 % for short messages to 3 % for long
messages in our test. Moreover, the measured message latency in our experiment does not account the
delay due to contention in the network. So, the actual relative overhead of ITBs will be lower.

6 Conclusions

The ITB mechanism was proposed to improve performance on networks with source routing and wormhole
switching. In particular, we demonstrated by simulation that the ITB mechanism significantly improves
network performance in Myrinet networks. In this paper, we have implemented the ITB mechanism in the
Myrinet GM software in order to obtain accurate measurements of its associated delays. We have changed
the MCP code taking into account that the overhead introduced by ITB code be as low as possible and
the implementation keep the main structure of the MCP.

Once the MCP has been modified with the ITB code, several tests have been run in order to check its
correct functionality. Then, we measured the temporal overhead that I'TB code introduces in the normal
operation of MCP, showing that is around 125 ns per message on average. Also, several tests have been
performed to calculate the additional latency of a message that uses an in-transit host. Results show
that each ITB increases message latency by 1.3us. On the other hand, the relative importance of these
overheads reduces as the traversed distance in the network and/or message length is increased.

In summary, in this paper an implementation of ITB has been developed. Several measurements
and tests have been carried out, checking the correctness of the ITB implementation and obtaining its
associated delays. Next step in our work will be improving the current implementation and testing it
in medium-sized Myrinet networks in order to corroborate previous simulation results and evaluate the
impact of using ITBs in the execution time of distributed applications.
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