
ARTICLE IN PRESS
Contents lists available at ScienceDirect
Signal Processing: Image Communication

Signal Processing: Image Communication 23 (2008) 637–648
0923-59

doi:10.1

� Cor

E-m

(M.O. M

mels@u
journal homepage: www.elsevier.com/locate/image
M-LTW: A fast and efficient intra video codec
Otoniel M. López a,�, Miguel O. Martı́nez-Rach a, Pablo Piñol a, Manuel Perez Malumbres a,
José Oliver b

a Universidad Miguel Hernández, Avda. Universidad s/n, 03202 Elche, Spain
b Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
a r t i c l e i n f o

Article history:

Received 30 November 2007

Received in revised form

26 June 2008

Accepted 4 July 2008

Keywords:

Intra-video coding

DWT integer transform

Rate control

Performance evaluation
65/$ - see front matter & 2008 Elsevier B.V. A

016/j.image.2008.07.001

responding author. Tel.: +34 96 665 8392.

ail addresses: otoniel@umh.es (O.M. López)

artı́nez-Rach), pablop@umh.es (P. Piñol),

mh.es (M. Perez Malumbres), joliver@disca.u
a b s t r a c t

Intra-video coding is a common way to process video material for applications like

professional video editing systems, digital cinema, video surveillance applications,

multi-spectral satellite imaging, HQ video delivery, etc. Most practical intra-coding

systems employ JPEG encoders due to their simplicity, low coding delay and low

memory requirements. JPEG2000 is the main candidate to replace JPEG in this kind of

application due to its excellent rate/distortion (R/D) performance and high coding

flexibility. However, its complexity and computational resource requirements for proper

operation could be a limitation for certain applications. In this work, we propose an

intra-video codec, M-LTW, which is able to obtain very good R/D performance results, as

good as JPEG2000 or H.264 INTRA, with faster processing and lower memory usage.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

A wide variety of video compression schemes have
been reported in the literature. Most of them are based on
the DCT transform and motion estimation and compensa-
tion techniques. Nevertheless, a lot of research interest
has been focused on developing still image and video
wavelet coders due to the excellent properties of wavelet
transform. Most wavelet-based video encoding proposals
are strongly based on inter-coding approaches, which
require high-complexity encoder designs as a counterpart
to the excellent R/D (rate/distortion) performance bene-
fits. On the other hand, some applications like professional
video editing, digital cinema, video surveillance applica-
tions, multi-spectral satellite imaging, HQ video delivery,
etc. would rather use an intra-coding system that is able
to reconstruct a specific frame of a video sequence as fast
as possible and with high visual quality.
ll rights reserved.

, mmrach@umh.es

pv.es (J. Oliver).
The strength of an intra-video coding system relies on
the ability to efficiently exploit the spatial redundancies of
each video sequence frame avoiding complexity in the
design of the encoding/decoding engines. There are
several still image codecs that get very good R/D results.
Unfortunately, most of them propose complex algorithms
to achieve the pursued R/D performance. As a conse-
quence of the higher computational complexity de-
manded by these coders, their software (even hardware)
implementations require powerful processors with en-
ough computational resources to cope with the algorithm
requirements. For example, the JPEG2000 [10] standard
uses a large number of contexts and an iterative time-
consuming optimization algorithm (called PCRD) to
improve coding efficiency, increasing the complexity of
the encoding engine. Something similar happens with
H.264/AVC [11] INTRA coding, where a powerful spatial
prediction scheme with context modeling and R/D
optimization is employed in order to efficiently exploit
spatial redundancies.

In this paper, we propose a new lightweight and
efficient intra-video coder, M-LTW (motion lower-tree
wavelet), based on the LTW algorithm [15]. The main

www.sciencedirect.com/science/journal/image
www.elsevier.com/locate/image
dx.doi.org/10.1016/j.image.2008.07.001
mailto:otoniel@umh.es
mailto:mmrach@umh.es
mailto:mmrach@umh.es
mailto:pablop@umh.es
mailto:mels@umh.es
mailto:joliver@disca.upv.es

ARTICLE IN PRESS

O.M. López et al. / Signal Processing: Image Communication 23 (2008) 637–648638
contribution of LTW is the way that it builds the
significance map when coding each video frame. As other
tree-based wavelet coders, it is based on the construction
and efficient coding of wavelet coefficient trees. Never-
theless, it does not use an iterative loop in order to
determine the significant coefficients and to assign bits to
them. It builds the significance map in only one step by
using two symbols for pruning tree branches, and also
codes the significant coefficients in one step. Other
encoders (like the one proposed in [20]) achieve very
good coding efficiency with the introduction of high-order
context modeling, being the model formation a really slow
process. Even bit-plane coding employed in many en-
coders (like [16,5]) results in a slow coding process since
an image is scanned several times, focusing on a different
bit-plane in each pass, which in addition causes a high
cache miss rate in software implementations.

Another very fast non-embedded image encoder has
been proposed in [4]. This encoder is called PROGRES. It
follows the same ideas of [15], avoiding bit-plane coding
and using coefficient trees to encode wavelet coefficients
in only one pass. In this encoder, all the coefficients
(and not only the zero coefficients) are arranged in trees.
The number of bits needed to encode the highest
coefficient in each tree is computed and all the coeffi-
cients at the current subband level are binary encoded
with that number of bits. Then, the following subband
level is encoded (in decreasing order), simply by comput-
ing again the number of bits needed to represent each
sub-tree at that level and using that number of bits again.

Recently, the BCWT image encoder [9] was proposed.
It offers high coding speed, low memory usage and good
R/D performance. The basis of BCWT algorithm is building
a map of the maximum quantization levels of descendants
(MQD map), which is a variation of Shapiro’s zerotree map
[17]. MQD map calculation and coefficient encoding are all
carefully integrated avoiding memory waste and reducing
computational cost.
1.1. Contributions and paper organization

In this paper we propose a new lightweight intra-video
codec, which is competitive with other state-of-the-art
intra-video coders, requiring low memory resources and
showing very low coding/decoding delay.

Since the LTW encoding engine is non-SNR-embedding,
we have proposed a low complexity rate control tool to
encode the original video sequence at a user-defined
target bitrate, in order to increase the flexibility of M-LTW
video encoder and allowing M-LTW to work with rate-
adaptive applications. Also, we have changed the whole
codec to work with fixed-point arithmetic. Consequently,
the discrete wavelet transform (DWT) implemented may
use the original lifting floating-point approach or an
equivalent DWT integer lifting version which will speed
up the DWT transform step. As a secondary benefit, the
required memory space is halved (16-bit integer data
types instead of 32-bit floats).

In Section 2 the LTW algorithm is described in depth,
making special emphasis in the LTW Integer version.
In Section 3, we describe a rate control algorithm for non-
embedded wavelet image encoders based on the LTW
coding engine. In Section 3.2, an extension for video
coding of the proposed rate control and its evaluation is
presented. In Section 4 we show some evaluation results
using R/D, complexity and memory requirements as
performance metrics. For further evaluation, we have
compared the performance of M-LTW with a fully
optimized version of JPEG2000 (Kakadu). Finally, in
Section 5 some conclusions are drawn.
2. Texture coding: fast and efficient LTW proposals

For the most part, digital images are represented with a
set of pixel values, P. The LTW encoder can be applied to a
set of coefficients C resulting from a dyadic decomposition
Oð�Þ, so that C ¼ OðPÞ. The most commonly used dyadic
decomposition for image compression is the hierarchical
wavelet subband transform [2], therefore an element
Ci;j 2 C, is called transform coefficient. In a wavelet
transform, we denote the subbands resulting from the
first level of the image decomposition as LH1, HL1 and
HH1, corresponding to horizontal, vertical and diagonal
frequencies. The rest of the image transform is performed
by recursive wavelet decomposition on the remaining low
frequency subband, until a desired decomposition level
(N) is achieved (LLN is the remaining low frequency
subband).

One of the main drawbacks in previous wavelet image
encoders is their high complexity. Many times, this is
mainly due to bit-plane processing, which is performed
across different iterations, using a threshold that focuses
on a different bit plane in each iteration. In this way, it is
easy to achieve an embedded bit-stream with progressive
coding, since the more bit planes are added the more SNR
resolution is obtained in the recovered image.

Although embedded bit-stream with SNR scalability
is a nice feature in an image coder, it is not always
needed and other alternatives, like spatial scalability,
may be more valuable according to the final purpose.
In this section, we describe the LTW algorithm, which is
able to encode wavelet coefficients without perfor-
ming one loop scan per bit plane. Instead of it, only
one scan of the transform coefficients is needed. Further-
more, in this section we present a very fast integer version
of LTW.

In LTW, the quantization process is performed by
means of two strategies: one coarser and another finer.
The finer one consists of applying a scalar uniform
quantization, Q, to wavelet coefficients. The coarser one
is based on removing the least significant bit planes,
rplanes, from wavelet coefficients.

A tree structure (similar to that of [16]) is used not only
to reduce data redundancy among subbands, but also as a
simple and fast way of grouping coefficients. As a
consequence, the total number of symbols needed to
encode the image is reduced, decreasing the overall
execution time. This structure is called lower tree and it
is a coefficient tree in which all its coefficients are lower
than 2rplanes.

ARTICLE IN PRESS

O.M. López et al. / Signal Processing: Image Communication 23 (2008) 637–648 639
Our algorithm consists of two stages. In the first one,
the significance map is built after quantizing the wavelet
coefficients (by means of both Q and rplanes parameters).
In Fig. 1 (right), we show the significance map built from
wavelet decomposition shown in Fig. 1 (left). The symbol
set employed in our proposal is the following one: a
LOWER symbol (L) represents a coefficient that is the root
of a lower-tree, the rest of coefficients in a lower-tree are
labeled as LOWER_COMPONENT ð�Þ, but they are never
encoded because they are already represented by the root
coefficient. If a coefficient is insignificant (i.e., lower than
2rplanes) but it does not belong to a lower-tree because it
has at least one significant descendant, it is labeled as an
ISOLATED_LOWER symbol (I). For a significant coefficient,
we simply use a symbol indicating the number of bits
needed to represent it (i.e. 4). For a significant coefficient
that is root of a lower-tree we use a special symbol
indicating the number of bits needed to represent it with
an L superscript (i.e. 4L).

Let us describe the coding algorithm. In the first stage
(symbol computation), all wavelet subbands are scanned
in 2� 2 blocks of coefficients, from the first decomposi-
tion level to the N th (to be able to build the lower-trees
from leaves to root). In the first level subband, if the four
coefficients in each 2� 2 block are insignificant (i.e., lower
than 2rplanes), they are considered to be part of the same
lower-tree, labeled as LOWER_COMPONENT. Then, when
scanning upper level subbands, if a 2� 2 block has four
insignificant coefficients and all their direct descendants
are LOWER_COMPONENT, the coefficients in that block
are labeled as LOWER_COMPONENT, increasing the lower-
tree size.

However, when at least one coefficient in the block is
significant, the lower-tree cannot continue growing.
6 6
5 5L

4 L
4L 4

4 L
4L I

* *
* *

3 3 * *
L * *
* * 3 L
* * L

3 L * *
L * *
* * L
* * L 4

* * * *
* * * *
* * * *
* * * *

51 42
25 17

-9 2
10 11

12 3
-9 -3

 3 -2
 3 -3

4 4 0 -1
3 1 0 2
2 -2 -5 3
0 3 -1 2

-4 1 1 -2
2 -3 0 2
1 3 2 1
-2 -3 3 -12

0 2 1 3
1 -1 -1 -2
1 2 -3 1
2 0 2 1

L
L

L

L

Fig. 1. Left: 2-level wavelet transform of an 8� 8 example image, right:

map symbols.

6,
{100B}

6,
{100B}

5,
{10B}

5L,
{00B}

LL2
Se

3,+,
{}

3,+,
{}

L
3,-,
{}

L

First level wave

4, -,
{0B}

L
4
{

L L L

Fig. 2. Example image en
In that case, a symbol for each coefficient is computed
one by one. Each insignificant coefficient in the block is
assigned a LOWER symbol if all its descendants are LOWER_
COMPONENT, otherwise it is assigned an ISOLATED_LOWER

symbol. On the other hand, for each significant coefficient,
a symbol indicating the number of bits needed to
represent that coefficient is employed. However, if all
descendants of a significant coefficient are insignificant
(LOWER_COMPONENT), we use a special symbol indicating
the number of bits needed to represent it and a superscript
L (4L in Fig. 1 (right)).

Finally, in the second stage, subbands are encoded
from the LLN subband to the first-level wavelet subbands,
as shown in Fig. 2. Observe that this is the order in which
the decoder needs to know the symbols, so that lower-tree
roots are decoded before its leaves. In addition, this order
provides resolution scalability, because LLN is a low-
resolution scaled version of the original image and as
more subbands are being received, the low-resolution
image can be doubled in size. In each subband, for each
2� 2 block, the symbols computed in the first stage are
entropy coded by means of an arithmetic encoder. Recall
that no LOWER_COMPONENT is encoded. In addition,
significant bits and sign are needed for each significant
coefficient and therefore binary encoded.

For more details about LTW, and a formal description
of the algorithm, the reader is referred to [15].

2.1. LTW_Int: lower tree wavelet integer

To carry out a fast integer version of LTW, we have
developed the DWT with an integer-to-integer lifting
scheme based on [3,7]. We have implemented the nor-
malization factor of the lifting scheme (K) as an approx-
imation to integer operations (multiply and shift). In this
manner we avoid three extra lifting steps at the expense of
making the DWT not reversible. Since we are interested in
lossy compression, the fact of performing that approx-
imation does not introduce a meaningful error, being the
difference respect to the regular lifting scheme negligible.

Concerning the LTW encoder engine, we have con-
verted all float operations to integer ones.

Relating to the quantization process, this is similar to
the one used by LTW described previously. The main
difference lies in the scalar uniform quantization process,
which is performed using only fixed-point arithmetic
operations.
cond level wavelet subbands

3,-,
{}

L L
4,-,

{1B}

let subbands

L,+,
0B}

4,+,
{0B}

4,+,
{1B}

L
4L, -,
{0B}

I

L L L L

coded using LTW.

ARTICLE IN PRESS

22

24

26

28

30

32

34

36

0
bpp

PS
N

R
 (d

B
)

9/7F_Float-point
9/7F_Integer

0.25 0.5 0.75 1

Fig. 4. R/D evaluation for different DWT proposals for Barbara ð512�

512Þ test image.

O.M. López et al. / Signal Processing: Image Communication 23 (2008) 637–648640
Before adopting this approach, we tried other integer-
to-integer DWT filters so as to obtain a fast version of
DWT with similar R/D values. From the study carried out
by Adams and Kossentini in [1], we decided to implement
13/7T and 9/7M filters because these filters only use two
lifting steps instead of the four lifting states required by
9/7F filter. After evaluating the filters we concluded that
the use of other filters lead us to a R/D loss of approxi-
mately 1 dB with respect to 9/7F filter, as shown in Fig. 3.
However, we do not use the original 9/7F filter but an
approximation (9/7F_int_Aprox.), which replaces the
three extra lifting steps required for the normalization
factor (K) by an integer approximation that truncates the
wavelet coefficients to integers and thus introducing a
small quantization noise. Contrary to what could be
thought, it does not introduce any R/D loss, even showing
a slightly better behavior than the original one at low
compression rates. This behavior is similar in all tested
images and appears only at low to very low compression
rates ðrplanes ¼ 2Þ.

This curious effect is due to the asymmetric error
produced by the proposed integer approximation of the
normalization factor. In the DWT, the introduced error is
slightly greater in low frequency subbands than in high
frequency subbands (error propagation in successive
decomposition levels). However, this error has higher
influence over the high frequency subbands producing a
bit plane change in several significant coefficients (notice
that at low compression rates there are many small
significant coefficients in those subbands), and as a
consequence fewer bits are needed to represent them.
On the other hand, the inverse discrete wavelet transform
(IDWT) introduces a greater error over high frequency
subbands. So, the previously DWT introduced error is
further compensated, obtaining a slightly better behavior
than in the full reversible DWT version. This behavior
disappears at higher compression rates ðrplanes42Þ when
the encoder quantization noise is greater than the error
introduced by the DWT.

In order to determine the most appropriate DWT
kernel, we have implemented three versions of the LTW
encoder. The first one implements the DWT 9/7F filter
with a traditional convolution, the second one imple-
ments a lifting scheme of DWT with floating-point
36

37

38

39

40

41

0.5
bpp

PS
N

R
 (d

B
)

9/7F_Int
9/7F_Int_Aprox.
13/7T
9/7M

0.75 1 1.25 1.5 1.75

Fig. 3. R/D evolution using different filters for Lena ð512� 512Þ.
arithmetic operations and the third one implements an
integer-to-integer lifting scheme of DWT with an integer
approximation of the normalization factor (K). So as to
measure the R/D loss due to fixed-point arithmetic opera-
tions, in Figs. 4 and 5 we compare the R/D performance for
both floating-point and fixed-point implementations. As
shown in Fig. 4, for Barbara test image there is almost no
difference in R/D between all proposals (note that both
floating-point DWT implementations obtain the same
PSNR because they use the same filter D(9/7F), so only
convolution implementation is represented in Figs. 4 and
5), but if we focus in Fig. 5, for Lena test image there is a
loss of approximately 0.5 dB at a compression rate of
0.5 bpp. These results are in concordance with the ones
presented by Grangetto in [8].

With regard to execution time, as we can see in Fig. 6,
both lifting scheme DWT implementations are faster than
traditional convolution. In this figure, the execution time
of the floating-point implementations also includes a cast
from float to integer, because the rate control algorithm
presented in the next section operates only with fixed-
point values. This fact causes that differences in execution
time between lifting scheme implementation and tradi-
tional convolution are not as significant as the results
presented by Grangetto in [8]. The integer-to-integer
lifting scheme implementation of DWT is the fastest
one, being a 50% faster than floating-point arithmetic
27

29

31

33

35

37

39

41

0
bpp

PS
N

R
 (d

B
)

9/7F_Float-point
9/7F_Integer

0.25 0.5 0.75 1

Fig. 5. R/D evaluation for different DWT proposals for Lena ð512� 512Þ

test image.

ARTICLE IN PRESS

20

25

30

35

40

45

50

0
bpp

C
PU

 c
yc

le
s

(M
ill

io
ns

)

9/7F_Convolution
9/7F_Lifting_Integer
9/7F_Lifting_Float

0.25 0.5 0.75 1

Fig. 6. Execution time comparison between different proposals of DWT

for Barbara test image.

1

1.5

2

2.5

3

3.5

4

4.5

1.4
LTW Symbols Entropy

B
its

 P
er

 P
ix

el
 (B

pp
)

Estimated
Real
Corrected

2.42.221.81.6

Fig. 7. Estimated vs. real bits per pixel for all Kodak set images for

rplanes ¼ 2.

y = 1.3343x2 - 3.6923x + 3.7194
R2 = 0.9992

0

0.5

1

1.5

2

2.5

0.5
Q (0.5-1.2)

B
it

R
at

e

img23 img10 img8 img3 Polynomical

0.6 0.7 0.8 0.9 1 1.1 1.2

Fig. 8. Bitrate progression of five images from Kodak set from 3 to 4

rplanes.

O.M. López et al. / Signal Processing: Image Communication 23 (2008) 637–648 641
lifting scheme implementation due to the cast to integer
differences mentioned previously.

As a consequence of this study, we have finally planned
to carry out two versions of LTW, one based on floating-
point arithmetic operations that implements DWT with a
lifting scheme and another based on fixed-point arith-
metic operations that implements DWT with an integer-
to-integer lifting scheme approximation.

3. LTW rate control support

Since M-LTW coding engine is based on a non-
embedded wavelet image encoder and also it is based
on DWT transform, we have chosen a lightweight rate-
control algorithm for non-embedded encoders presented
in [13]. This algorithm will predict the proper quantization
values that lead to a final bitrate close to the target one.

3.1. Rate control based on a trivial coding model

We decided to study how the LTW encoder works in
order to define a simplified model of the encoding engine.
This model will lead us to an initial and fast estimation of
the resulting bitrate for different values of the rplanes
parameter (from 2 to 7). In this model, for each specific
value of rplanes, the probability distribution of significant
and non-significant symbols (when a wavelet coefficient
is lower than 2rplanes) is calculated. From the obtained
symbol probability distribution, and using the first order
entropy, we obtain the bitrate estimation of the arithmetic
encoder. This estimation is a lower bound of the real
bitrate. This way, the estimation of the bitrate produced
by the arithmetic encoder and the number of bits required
to store the signs and significant bits (which are binary
coded) form the bitrate estimation (Ebpp). The resulting
estimation gives a biased measure of the real bitrate as
shown in Fig. 7. The error found is due to the way we
perform the probability distribution of LTW symbols
where we do not distinguish the probability distribution
of the LTW non-significant symbols LOWER and ISOLATE-

D_LOWER. These symbols are not known until the
encoding step, so we decided to perform a simple symbol
probability estimation in order to get a fast bitrate
prediction. We reduce the error through a scaling function
obtained from the Kodak image set [6]. This function is
based on the LTW symbol entropy of the image as shown
in Fig. 7.

After that, the target bitrate, Tbpp, will determine
the proper value of rplanes ðEbppðrplanesÞ4Tbpp4
Ebppðrplanesþ 1ÞÞ. The bitrate progression from the cur-
rent rplane to the next one is governed by the Q parameter
which follows a second order polynomial curve. All curves
of the test images in the Kodak set have a very similar
curve minimum value ðKminÞ (as shown in Fig. 8). In this
figure, polynomial line (simple-black) and its quadratic
equation has been obtained by means of curve fitting
(R2 is the coefficient of determination and it indicates the
fitting goodness). Since we know three points of that
curve EbppðrplanesÞ, Ebppðrplanesþ 1Þ and the curve mini-
mum (Kmin), we can build the corresponding expression
that will supply the estimated value of Q for a given
target bitrate.

In the algorithm in Fig. 9, we show the steps of the rate
control algorithm. In step E1, the symbol probability
distribution is computed to find the arithmetic encoder
bitrate estimation. In step E2, we correct the estimation
error by means of a scaling function based on LTW symbol

ARTICLE IN PRESS

Fig. 9. Model-based algorithm.

0.60
M-LTW
M-JPEG2000

O.M. López et al. / Signal Processing: Image Communication 23 (2008) 637–648642
entropy. And finally in steps E3 and E4 we obtain the
rplane value (coarser quantization parameter) and the Q

value (finer quantization parameter), respectively.
In order to reduce the implementation complexity, we

have partially merged the algorithm in the DWT process.
So, every time a new wavelet coefficient is computed we
perform the E1 step. Just after finishing the DWT, the rest
of algorithm steps are executed to obtain the proper
quantization value for LTW encoding engine.
0.00

0.20

0.40

240
Kbps

%
 R

el
at

iv
e

Er
ro

r M-LTW_INTEGER
M-SPIHT

1240 2240 3240 4240 5240

Fig. 10. Rate-control accuracy for Container CIF sequence.

400

600

800

1000

1200

1400

1600

0
Frame

B
it-

ra
te

 (K
bp

s)

NO-RATE
Rate-Control

100 200 300 400 500 600 700 800 900

Fig. 11. Rate-control progression for three concatenated Coastguard

sequences (CIF).
3.2. Extension of the proposed rate control to intra-video

coding

Since the main goal of this work is to develop a fast
intra-video encoder, in order to perform the rate control in
the overall video sequence, we have extended the rate
control algorithm explained in previous section (Fig. 9)
using a very simple approach. Firstly, we apply the rate
control algorithm to the first frame to estimate the values
of rplanes and Q quantization parameters that fit the
frame bitrate budget. After coding the first frame, we
compute the estimation error, so we will try to compen-
sate it when coding the following frames. We will do that
keeping the same value of rplanes and estimating the
appropriate value for Q based on the observed error.
During the video sequence coding, when the observed
error reaches a threshold (SCth), the algorithm launches
the initial estimation algorithm to re-estimate more
suitable rplanes and Q parameters so as to converge to
the desired bitrate as fast as possible; then the accumu-
lated error will be corrected gradually so as to avoid great
R/D alterations. The threshold fixed on a 20% of the target
bitrate has been obtained from the model-based algo-
rithm inherent estimation error that tends to be below
10% as concluded in [12].

In Fig. 10 we show the accuracy of the proposed
algorithm for Container sequence with a CIF size and we
compare it with respect to the embedded encoder SPIHT
and JPEG2000. Both SPIHT and JPEG2000 are embedded
encoders, so they always obtain the exact target bitrate.
With respect to the proposed rate control implemented on
M-LTW and M-LTW_Integer, its accuracy was always
better than 98.5% being the worst case at very low target
bitrates where the average relative error is approximately
of 0.4%. Although not shown here, the proposed rate
control has a similar behavior with other video sequences
and with other frame sizes.

In Fig. 11 we can see the effect of the rate-control
algorithm over the CIF Coastguard sequence. As shown,
during the most part of the sequence, the bitrate remains
constant, but when significant alterations in the scene like
camera movements, appearing objects or illumination
changes occur, the algorithm produces a bitrate that
reaches the fixed threshold. Then, the algorithm detects
this situation and converges quickly to the desired bitrate.
If we focus on frames between 65 and 75 in Fig. 11 we
could see this behavior. This figure also shows the M-LTW
encoder behavior when no rate control is applied.

Note that with the proposed rate-control algorithm, we
choose the quantization parameters of the last encoded
frame as a reference to encode the actual frame and
reduce the accumulated rate-control error. This works fine
while consecutive frames have similar contents (general
case). However, when there are dramatic content changes
with respect the previous frame (frames 65–75 at Fig. 11),
large bit rate oscillations are produced because our

ARTICLE IN PRESS

O.M. López et al. / Signal Processing: Image Communication 23 (2008) 637–648 643
proposal does not know the complexity or similarity of
the next frame.

In order to reduce the rate oscillations, several
approaches may be followed: (1) apply the algorithm
presented in Fig. 9 to all video frames, so rate fluctuations
are confined to the rate-control algorithm precision and as
consequence the encoder becomes slower (45% complex-
ity increment), (2) obtain the mean absolute difference
(MAD) of the lowest frequency subband (LLN) between the
current frame and the previously encoded one so as to
detect scene changes. As Fig. 12 shows the use of MAD
works fine and large rate oscillations are avoided at the
expense of a 1.5% of complexity increment.

The video rate-control algorithm (Fig. 13) will lead as
follows:
�

B
it-

ra
te

 (K
bp

s)

Fig
(foc
Firstly, we obtain rplanes and Q parameters for the first
frame by means of model-based algorithm (see Fig. 9).

�
 Secondly, we encode and evaluate the estimation error

(PErr).

�
 If the previously evaluated error (PErr) is greater than

the threshold input parameter (SCth), then we force a
new rplanes and Q estimation. Then, in the following
frames we will gradually correct the bitrate error
ðAdjust%ðPErrÞÞ.

�
 On the other hand, if the previously evaluated error

(PErr) is lower than the threshold input parameter
(SCth), we correct the bitrate error estimating only a
new Q value and fixing the rplanes parameter to the
one obtained in previous encoded frames.
400
500
600
700
800
900

1000
1100
1200
1300

55
Frame

NO-RATE
Rate-Control
All Rate
Rate-Control(MAD)

60 65 70 75 80 85 90 95 100

. 12. Rate-control proposals progression for Coastguard sequences

used on frames 65–75) (CIF).

Fig. 13. Video rate-control algorithm.
4. Performance evaluation

In addition to R/D performance we will also employ
other performance metrics like coding delay and memory
consumption. All the evaluated encoders have been tested
on an Intel PentiumM Dual Core 3.0 GHz with 1 GB RAM
memory. We have selected H.264 (Baseline, JM10.2)
working in intra-mode, M-JPEG2000 (Jasper 1.701.0), M-
SPIHT (Spiht 8.01), M-LTW and M-LTW_Int (integer
version of M-LTW), since their source code is available
for testing. The correspondent binaries were obtained by
means of Microsoft Visual Cþþ (2005 version) compiler
with the same project options and under the above-
mentioned machine.

The test video sequences used in the evaluation are:
Foreman (QCIF and CIF) 300 frames, Hall (QCIF and CIF)
300 frames, Container (QCIF and CIF) 300 frames, News
(QCIF and CIF) 300 frames, Mobile (ITU 576p30) 40 frames
and Station2 (HD 1024p25) 312 frames.

4.1. Objective/subjective quality evaluation

Table 1 shows the R/D evaluation of all proposed
encoders. Although H.264 obtains better results for
sequence sizes smaller than CIF at several compression
rates, it is for ITU and HD sizes where encoders based on
DWT can exploit optimal DWT decompositions obtaining
better results (up to 2 dB with respect to H.264 in Station2
HD at high compression rates). The M-LTW_Int encoder
produces slightly lower PSNR results than H.264. The
lower performance of integer version is mainly due to the
arithmetic precision loss, which is more noticeable at
lower compression rates.
Table 1
Average PSNR (dB) with different bit-rate and coders

Codec/bitrate

(kb/frame)

H.264 M-JPEG

2000

M-SPIHT M-LTW M-LTW_Int

Foreman (QCIF, 30 Hz)

2.36 22.86 21.10 24.16 23.03 23.01

7.40 28.72 28.21 28.69 28.69 28.58

20.49 35.36 34.68 34.59 34.99 34.40

33.73 39.24 38.89 38.47 39.37 37.62

News (CIF, 30 Hz)

9.27 24.43 25.21 25.54 25.57 25.51

14.91 27.37 27.34 27.76 27.73 27.63

36.76 33.97 33.11 33.01 33.37 33.01

89.91 41.14 40.63 40.08 41.00 38.91

Mobile (ITU, 30 Hz)

38.08 27.04 28.48 28.53 28.59 28.48

119.93 32.29 32.41 32.36 32.57 32.26

213.36 35.29 35.09 35.05 35.40 34.75

386.23 38.59 38.43 38.29 38.87 37.21

Station2 (HD, 25 Hz)

93.92 30.49 32.37 32.29 32.45 32.19

180.00 32.58 34.38 34.25 34.49 34.06

604.64 37.55 38.67 38.39 39.02 37.73

1117.53 40.37 40.78 40.44 41.38 39.08

ARTICLE IN PRESS

O.M. López et al. / Signal Processing: Image Communication 23 (2008) 637–648644
We have also compared all proposed encoders using
the VIF distortion metric [18]. We have chosen this metric
because it is one of the best ‘full reference’ metrics as
concluded in [14]. In Figs. 14 and 15 we can observe the
behavior of evaluated encoders for Foreman (CIF) and
Mobile (ITU) sequences. As it can be seen, all encoders
based on DWT have a similar performance at high
compression rates with a lower DMOSp (predicted
differential mean opinion score value) (better quality)
than H.264. Only at lower compression rates H.264
outperforms M-LTW_Int, although at these DMOSp values,
20
25
30
35
40
45
50
55
60

10.00
Kb/frame

D
M

O
Sp

H264
JPEG2000
M_LTW_FLOAT
M_LTW_INT
SPIHT

190.00160.00130.00100.0070.0040.00

Fig. 14. R/D evaluation with VIF metric on DMOSp space for Foreman

(CIF) sequence.

20

25

30

35

40

45

50

55

60

65

0.00
Kb/Fr

D
M

O
Sp

100.00 200.00 300.00

Fig. 15. R/D evaluation with VIF metric on DM

Fig. 16. Subjective comparison between (a) M-LTW and (b) M-LTW_Int for Forem

original.
differences on DMOSp lower than 3 are not visually
perceptible as concluded in [14]. The rest of coders show
very similar results under VIF quality metric, so they can
be considered equivalent in terms of R/D performance.

In Fig. 16 we present a subjective evaluation between
M-LTW and M-LTW_Int in order to determine the R/D loss
in the fixed-point version. Although differences on PSNR
between both M-LTW and M-LTW_Int encoders are
approximately of 0.4 dB, it is difficult to determine which
one has better subjective quality at low compression rates.
On the other hand, at high compression rates differences
of 1 dB on PSNR are visually perceptible as shown in
Fig. 17. All wavelet-based encoders show a similar
behavior, but if we focus on the calendar (number 15),
we could asses that M-LTW (c) and M-LTW_Int (d) have
better subjective quality than JPEG2000 (a) and SPIHT (b).
In spite of the fact that SPIHT shows a better PSNR
value, M-LTW_Int is visually slightly better at this
compression rate.
4.2. Execution time and memory consumption comparison

In Table 2 we show the coding delay for all encoders
under evaluation. As expected, H.264 is the slowest
encoder and M-LTW is one of the fastest. All M-LTW
versions are faster than M-JPEG2000, especially the fixed-
point version that performs the encoding process six
ame

H264
JPEG2000
M_LTW_FLOAT
M_LTW_INT
SPIHT

400.00 500.00 600.00 700.00

OSp space for Mobile (ITU) sequence.

an (QCIF) at 20.49 kb/frame, frame # 33. (a) 34.66db, (b) 34.24db and (c)

ARTICLE IN PRESS

Fig. 17. Subjective comparison between (a) JPEG2000, (b) SPIHT, (c) M-LTW, (d) M-LTW_Int, (e) H.264 and (f) Original for Mobile (ITU) at 38.08 kb/frame,

frame # 20.

O.M. López et al. / Signal Processing: Image Communication 23 (2008) 637–648 645
times faster on average than M-JPEG2000. On the other
hand, M-SPIHT is faster than M-LTW only at HD video
format.

Fig. 18 shows the maximum frame rate for all evaluated
encoders at different sizes for an average PSNR video
quality of 30 dB. Integer version of M-LTW is one of the
fastest encoders and it can encode an ITU size sequence in
real time. For HD images, M-LTW is slower than M-SPIHT.
This behavior is due to the cache page miss fail of the
lifting DWT implementation where a lazy transform is
carried out for both rows and columns. In the lazy
transform, the input samples are split into two data sets,
one with the even samples of a row or column and the
other one with the odd ones. This causes a significative
cache page miss fail increase, being more noticeable for
columns, as the frame size becomes larger. In order to
measure the impact of the cache page miss fail, in Fig. 19
we evaluate the performance of M-LTW implemented
with both lifting and convolution DWT in a processor with
an L2 cache size of 1 MB. As it can be seen, lifting DWT is
16.6% slower than convolution DWT for HD format and
10% slower for ITU format. With the increase of the L2
cache size, these differences are significatively reduced,
being the difference for HD format of 9% as shown in
Fig. 20.

In Table 3 the memory requirements of different
encoders under test are shown. M-LTW needs only the
amount of memory to store the source image (in-line
processing) and an extra of 100 kb basically used to store
the histogram of significant symbols required by the

ARTICLE IN PRESS

Table 2
Execution time comparison of the coding process including DWT (time in seconds)

Codec/bitrate (kb/frame) H.264 M-JPEG 2000 M-SPIHT M-LTW M-LTW_Int

CODING Hall (QCIF, 30 Hz)

2.70 121.92 4.04 1.62 0.86 0.51
7.77 137.18 4.39 2.01 1.07 0.71
19.54 165.67 4.55 2.70 1.57 1.10
29.50 184.67 4.87 3.22 1.97 1.41

CODING News (CIF, 30 Hz)

14.91 531.40 15.63 3.77 3.96 2.62
23.62 559.45 15.20 4.33 4.26 2.81
57.73 650.47 15.54 6.67 5.98 3.94
89.91 720.44 16.43 8.23 7.17 4.95

CODING Mobile (ITU, 30 Hz)

38.08 233.27 8.99 1.06 1.83 1.25

119.94 266.94 7.88 1.83 2.38 1.68
213.37 297.11 8.02 2.63 2.93 2.13
386.23 351.41 8.29 4.24 3.97 2.96

CODING Station2 (HD, 25 Hz)

93.93 11840.89 326.05 34.13 75.78 53.86

180.01 12106.46 327.18 41.12 79.24 56.59

604.64 13573.54 326.04 73.75 104.67 76.13

1117.53 15067.72 330.81 113.66 129.25 93.13

4,1

28,2

5,5

18,0

5,0

1,0

2,19

0,54

0,16

0,03

128,8
71,9

28,3

9,7

229,9

75,0

19,5

342,8

106,0
68,4

0.01

0.1

1

10

100

1000

QCIF

Fr
am

es
/s

ec
.

M-LTW
M-LTW-INTEGER
M-JPEG2000
H264
M-SPIHT

CIF ITU HD

Fig. 18. Maximum frames/s for an average R/D of 30 dB.

O.M. López et al. / Signal Processing: Image Communication 23 (2008) 637–648646
rate-control algorithm, variables and structures needed to
accomplish the coding process. M-JPEG2000 requires
twice the memory amount of M-LTW, and H.264 needs
six times the memory amount of M-LTW for QCIF format
and eight times for CIF format. M-SPIHT uses 1.7 times the
memory amount of M-LTW. Note that M-LTW_Int could
be implemented using 16-bit integer, reducing to the half
the amount of memory requirements.
4.3. Optimized encoders

The M-LTW implementation was developed finding the
optimizations for maximizing R/D performance, so its
software code is not optimized, just like H.264 and
JPEG2000 reference software. However, we have com-
pared its performance with respect to a full optimized
implementation of JPEG2000: Kakadu [19], in order to
evaluate whether a full optimization of M-LTW is worth
the effort. For that purpose, we have used two versions of
Kakadu software: (a) version 2.2.3, compiled without
optimization options and (b) the last version 5.2.5 which
is fully optimized including multi-thread and multi-core
hardware capabilities, processor intrinsics like MMX/SSE/
SSE2/SIMD and fast multi-component transforms.

As shown in Fig. 21, M-LTW is a very fast encoder even
though not being fully optimized. The speed of M-LTW
lies on the simple engine coding model. M-LTW is

ARTICLE IN PRESS

0.039

0.204

0.043

0.238

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24

HD

Ti
m

e
(s

ec
on

ds
)

DWT-Convolution
DWT-Lifting

ITU

Fig. 19. Execution time comparison between DWT lifting and DWT

convolution (1 frame, 1 MB L2 cache).

0.022

0.144

0.024

0.157

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

0.2
0.22
0.24

HDITU

Ti
m

e
(s

ec
on

ds
)

DWT-Convolution
DWT-Lifting

Fig. 20. Execution time comparison between DWT lifting and DWT

convolution (1 frame, 2 MB L2 Cache).

Table 3
Memory requirements for evaluated encoders (kb) (results obtained

with the Windows XP task manager, peak memory usage column)

Codec/format H.264 M-JPEG 2000 M-SPIHT M-LTW M-LTW_Int

QCIF 6508 2264 1864 1104 1104
CIF 13016 3920 2880 1540 1540

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

CIF

Ti
m

e
(s

ec
)

Kkdu-2.2.3
Kkdu-5.2.5
M-LTW
M-LTW-Convolution

ITU HD

Fig. 21. Execution time comparison (end-to-end) of the coding process.

Table 4
PSNR (dB) comparison between Kakadu and M-LTW

Codec/(kb/frame) KAKADU 2.2.3 KAKADU 5.2.5 M-LTW

News (CIF, 30 Hz)

14.91 27.63 27.44 27.74
23.62 30.27 29.96 30.42
36.75 33.33 33.31 33.36
57.73 37.26 37.10 36.89

Mobile (ITU, 30 Hz)

38.08 28.59 28.39 28.61
119.93 32.56 32.52 32.62
213.36 35.34 35.34 35.47
386.23 38.85 38.89 38.90

Station2 (HD, 25 Hz)

93.92 33.79 33.70 33.62

180.00 36.16 36.15 36.08

604.64 41.11 41.11 40.96

1117.53 43.18 43.18 42.94

O.M. López et al. / Signal Processing: Image Communication 23 (2008) 637–648 647
approximately twice faster than Kakadu-5.2.5 for News
CIF sequence for a PSNR of 32 dB. For HD images, M-LTW
is slower than Kakadu-2.2.3, due to the cache page miss
fail of the lifting DWT implementation as shown in the
previous subsection. Therefore, if we use a convolution
implementation of DWT, M-LTW would be slightly faster
than Kakadu-2.2.3 and 1.8 times faster than Kakadu-5.2.5
for Station2 HD sequence.

Regarding to memory requirements, M-LTW needs
only the amount of memory to store the source image as it
was said before, while Kakadu memory requirements are
independent of the image size due to its DWT block-based
implementation and it is on average 1420 kb.

In terms of R/D, there are slightly differences between
all codecs as Table 4 shows. For small and medium size
images, M-LTW outperforms Kakadu at medium and high
compression rates. For larger images, M-LTW provides
slightly lower PSNR than both versions of Kakadu.
So, a full optimization of M-LTW codec will certainly
increase coding speed and will reduce even more memory
requirements, making the codec a very competitive intra-
video coding solution.
5. Conclusions

In this paper we have presented a fast an efficient
intra-video coder, M-LTW, which is based on the non-
embedded LTW image coder. We have proposed a fast and
lightweight rate-control algorithm for both M-LTW en-
coder versions, a float-point implementation and another
one implemented with integers. After evaluating M-LTW
performance in terms of R/D, execution time and memory
consumption, it exhibits the best trade-off between R/D
performance, coding delay (three times faster than
M-JPEG2000 and 108 times faster than H.264) and overall
memory usage (half the amount of memory of
M-JPEG2000 and six times fewer than H.264). In addition,
the M-LTW coder is able to encode an ITU video signal in
real time with very low memory demands and good R/D
performance at moderate to high compression rates (2 dB
better than H.264 for HD video format).

ARTICLE IN PRESS

O.M. López et al. / Signal Processing: Image Communication 23 (2008) 637–648648
For further evaluation, we have compared M-LTW
coder with a highly optimized version of JPEG2000
(Kakadu), being also competitive in terms of coding delay
(up to two times faster than Kakadu for small and medium
size images) and R/D performance (0.4 dB for CIF, and
0.1 dB for ITU at medium and high compression rates). So,
a fully optimization process will make M-LTW even faster
and with lower memory requirements. These optimiza-
tions will be mainly focused on the DWT coding step by
using fast and low memory demanding DWT techniques
like line-based or block-based ones and exploiting the
parallel capabilities of modern processors (like multi-
threading and SIMD instructions).
Acknowledgments

This work was funded by Spanish Ministry of educa-
tion and Science under grant DPI2007-66796-C03-03 and
by Valencia Government under grant ARVIV/2007/045.

References

[1] M. Adams, F. Kossentini, Reversible integer-to-integer wavelet
transforms for image compression: performance evaluation and
analysis, IEEE Trans. Image Process. 9 (6) (June 2000) 1010–1024.

[2] M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, Image coding
using wavelet transform, IEEE Trans. Image Process. 1 (2) (1992)
205–220.

[3] A. Calderbank, I. Daubechies, W. Sweldens, B.-L. Yeo, Wavelet
transforms that map integers to integers, Appl. Comput. Harmonic
Anal. 5 (3) (July 1998) 332–369.

[4] Y. Cho, W.A. Pearlman, A. Said, Low complexity resolution
progressive image coding algorithm: PROGRES (progressive resolu-
tion decompression), in: IEEE International Conference on Image
Processing, September 2005.
[5] C. Chrysafis, A. Said, A. Drukarev, A. Islam, W. Pearlman, SBHP-a low
complexity wavelet coder, in: IEEE International Conference on
Acoustics, Speech and Signal Processing, 2000.

[6] CIPR, hhttp://www.cipr.rpi.edu/resource/stills/kodak.htmli, center
for Image Processing Research.

[7] I. Daubechies, W. Sweldens, Factoring wavelet transforms into
lifting steps, J. Fourier Anal. Appl. 4 (3) (1998) 247–268.

[8] M. Grangetto, E. Magli, M. Martina, G. Olmo, Optimization and
implementation of the integer wavelet transform for image coding,
IEEE Trans. Image Process. 11 (6) (2002).

[9] J. Guo, S. Mitra, B. Nutter, T. Karp, A fast and low complexity image
codec based on backward coding of wavelet trees, in: Data
Compression Conference, 2006.

[10] ISO/IEC 15444-1, JPEG2000 image coding system, 2000.
[11] ISO/IEC 14496-10:2003, Coding of audio-visual objects part 10:

advanced video coding, 2003.
[12] O. López, M. Martı́nez-Rach, J. Oliver, M. Malumbres, A heuristic

bitrate control for non-embedded wavelet image encoders, in:
ELMAR-2006, June 2006.

[13] O. López, M. Martinez-Rach, J. Oliver, M. Malumbres, Impact of rate
control tools on very fast non-embedded wavelet image encoders,
in: Visual Communications and Image Processing 2007, January
2007.

[14] M. Martinez-Rach, O. Lopez, P. Piñol, J. Oliver, M. Malumbres,
A study of objective quality assessment metrics for video codec
design and evaluation, in: IEEE International Symposium on
Multimedia, 2006, pp. 517–524.

[15] J. Oliver, M. Malumbres, Low-complexity multiresolution image
compression using wavelet lower trees, IEEE Trans. CSVT 16 (11)
(November 2006) 1437–1444.

[16] A. Said, A. Pearlman, A new, fast and efficient image codec based on
set partitioning in hierarchical trees, IEEE Trans. CSVT 6 (3) (1996)
243–250.

[17] J. Shapiro, A fast technique for identifying zerotrees in the EZW
algorithm, in: Proceedings of the IEEE International Conference
Acoustic, Speech, Signal Processing, vol. 3, May 1996,
pp. 1455–1458.

[18] H. Sheikh, A. Bovik, Image information and visual quality, IEEE
Trans. Image Process. 15 (2) (February 2006) 430–444.

[19] Software Kakadu, hhttp://www.kakadusoftware.comi.
[20] X. Wu, Compression of wavelet transform coefficients, in:

The Transform and Data compression Handbook, CRC Press, 2001,
pp. 347–378.

http://www.cipr.rpi.edu/resource/stills/kodak.html
http://www.kakadusoftware.com

	M-LTW: A fast and efficient intra video codec
	Introduction
	Contributions and paper organization

	Texture coding: fast and efficient LTW proposals
	LTWInt: lower tree wavelet integer

	LTW rate control support
	Rate control based on a trivial coding model
	Extension of the proposed rate control to intra-video coding

	Performance evaluation
	Objective/subjective quality evaluation
	Execution time and memory consumption comparison
	Optimized encoders

	Conclusions
	Acknowledgments
	References

