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1. Introduction

Consider the n� n linear system

Ax ¼ b; ð1Þ

where A is a matrix such that b is in RðAÞ, the range of A.
Given a splitting A ¼ M � N (M nonsingular), a classical iterative

method produces the following iteration

xðlþ1Þ ¼ M�1NxðlÞ þM�1b; l ¼ 0;1; . . . ; ð2Þ

where M�1N is called the iteration matrix of the method. On the
other hand, a two-stage method consists of approximating the lin-
ear system (2) by using another iterative procedure (inner itera-
tions). That is, consider the splitting M ¼ F � G and perform, at
each outer step l; sðlÞ inner iterations of the iterative procedure in-
duced by this splitting. Thus, the resulting method is

xðlþ1Þ ¼ ðF�1GÞsðlÞxðlÞ þ
XsðlÞ�1

j¼0

ðF�1GÞjF�1ðNxðlÞ þ bÞ; l ¼ 0;1; . . . ; ð3Þ

cf. [1]. Two-stage iterative methods have been studied, e.g., in [2–5].
In this paper, a two-stage iterative process is developed for the solu-
tion of the linear system (1), where at each outer iteration l; l ¼
0;1; . . . ; the linear system (2) is approximated by using an alternat-
ing iterative procedure. More specifically, let M ¼ P � Q ¼ R� S be
two splittings of the matrix M. In order to approximate the linear
d. and Elsevier Ltd. All rights reser

+34 965 903902.
system (2), for each l; l ¼ 0;1; . . . ; we perform sðlÞ inner iterations
of the general class of iterative methods of the form

zðkþ
1
2Þ ¼ P�1QzðkÞ þ P�1ðNxðlÞ þ bÞ;

zðkþ1Þ ¼ R�1Szðkþ
1
2Þ þ R�1ðNxðlÞ þ bÞ; k ¼ 0;1; . . . ; sðlÞ � 1

with zð0Þ ¼ xðlÞ, or equivalently

zðkþ1Þ ¼ R�1SP�1QzðkÞ þ R�1ðSP�1 þ IÞðNxðlÞ þ bÞ;
k ¼ 0;1; . . . ; sðlÞ � 1:

Thus, the alternating two-stage method can be written as follows

xðlþ1Þ ¼ ðR�1SP�1QÞsðlÞxðlÞ þ
XsðlÞ�1

j¼0

ðR�1SP�1QÞjR�1ðSP�1 þ IÞðNxðlÞ þ bÞ;

l ¼ 0;1; . . . : ð4Þ

In a similar manner as the two-stage methods, we say that an alter-
nating two-stage method is stationary when sðlÞ ¼ s, for all l, while
an alternating two-stage method is non-stationary if the number of
inner iterations changes with the outer iteration l.

Clearly, given an initial vector xð0Þ, the alternating two-stage
iterative method (4) produces the sequence of vectors

xðlþ1Þ ¼ T ðlÞxðlÞ þ csðlÞ; l ¼ 0;1; . . . ; ð5Þ

where

TðlÞ ¼ ðR�1SP�1QÞsðlÞ þ
XsðlÞ�1

j¼0

ðR�1SP�1QÞjR�1ðSP�1 þ IÞN; ð6Þ

and csðlÞ ¼
PsðlÞ�1

j¼0 ðR
�1SP�1QÞjR�1ðSP�1 þ IÞb.
ved.
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In order to analyze the convergence of the alternating two-stage
method (5) and taking into account that A ¼ M � N and
M ¼ P � Q ¼ R� S, the iteration matrices TðlÞ; l ¼ 0;1; . . . ; defined
in (6), are written as follows:

TðlÞ ¼ ðR�1SP�1QÞsðlÞ þ
XsðlÞ�1

j¼0

ðR�1SP�1QÞjR�1ðSP�1 þ IÞN

¼ ðR�1SP�1QÞsðlÞ þ
XsðlÞ�1

j¼0

ðR�1SP�1QÞjR�1ðSP�1 þ IÞðP � QÞM�1N

¼ ðR�1SP�1QÞsðlÞ þ
XsðlÞ�1

j¼0

ðR�1SP�1QÞjR�1SðI � P�1QÞM�1N

þ
XsðlÞ�1

j¼0

ðR�1SP�1QÞjðI � R�1SÞM�1N ¼ ðR�1SP�1QÞsðlÞ

þ ðI � ðR�1SP�1QÞsðlÞÞM�1N; l ¼ 0;1; . . . ð7Þ

In this paper, our study concentrates on these alternating two-stage
methods. Specifically, in Section 3, we give convergence results of
these methods for nonsingular linear systems, when the matrix A
of the linear system is monotone, H-matrix or Hermitian positive
definite. In Section 4, we also prove the convergence of these meth-
ods for consistent singular linear systems, when M-matrices or
symmetric positive semidefinite matrices are considered. In Section
5, we explore the use of parallel implementation of these alternat-
ing two-stage methods for the solution of Markov chains. Previ-
ously, in Section 2, we present some definitions and preliminaries
that are used later in the paper.

2. Notation and preliminaries

The notation and terminology adopted in this paper are along
the lines of those used by Berman and Plemmons [6]. We say that
a vector x is nonnegative (positive), denoted x P 0ðx > 0Þ, if all of
its entries are nonnegative (positive). Similarly, a matrix B is said
to be nonnegative, denoted B P O (where O is the zero matrix), if
all its entries are nonnegative. Given a matrix A ¼ ðaijÞ, we define
the matrix jAj ¼ ðjaijjÞ. It follows that jAjP O and that jABj 6 jAjjBj
for any two matrices A and B of compatible size. By qðAÞwe denote
the spectral radius of the square matrix A. A general matrix A is
called an M-matrix if A can be expressed as A ¼ sI � B, with
B P O, s > 0, and qðBÞ 6 s. The M-matrix A is singular when
s ¼ qðBÞ. The M-matrix A is nonsingular when s > qðBÞ. Let Zn�n de-
note the set of all real n� n matrices which have all non-positive
off-diagonal entries.

A nonsingular matrix A 2 Zn�n is an M-matrix if and only if A is a
monotone matrix ðA�1 P OÞ. For any matrix A ¼ ðaijÞ 2 Rn�n, we
define its comparison matrix hAi ¼ ðaijÞ by aii ¼ jaiij;aij ¼
�jaijj; i – j. A nonsingular matrix A is said to be an H-matrix if hAi
is an M-matrix.

Lemma 1 [7,8]. Let A;B 2 Rn�n.

(a) If A is an H-matrix, then jA�1j 6 hAi�1.
(b) If jAj 6 B then qðAÞ 6 qðBÞ.
Definition 2 [6,2,9]). Let A 2 Rn�n. A splitting A ¼ M � N is called

(a) regular if M�1 P O and N P O,
(b) weak regular if M�1 P O and M�1N P O,
(c) H-splitting if hMi � jNj is a nonsingular M-matrix, and
(d) H-compatible splitting if hAi ¼ hMi � jNj.
Lemma 3 [3]. Given a nonsingular matrix A and a matrix T such that
ðI � TÞ�1 exists, there is a unique pair of matrices P;Q such that P is
nonsingular, T ¼ P�1Q and A ¼ P � Q. The matrices are
P ¼ AðI � TÞ�1 and Q ¼ P � A.

In the context of Lemma 3, it is said that the unique splitting
A ¼ P � Q is induced by the iteration matrix T. We point out that
when the matrix A is singular, the induced splitting is not unique;
see e.g., [10].

Lemma 4 [6,2]. Let A ¼ M � N be a splitting.

(a) If the splitting is weak regular, then qðM�1NÞ < 1 if and only if
A�1 P O.

(b) If the splitting is an H-splitting, then A and M are H-matrices
and qðM�1NÞ 6 qðhMi�1jNjÞ < 1.

(c) If the splitting is an H-compatible splitting and A is an H-matrix,
then it is an H-splitting and thus convergent.
The transpose and the conjugate transpose of a matrix A 2 Cn�n

are denoted by AT and AH , respectively. Similarly, given a vector
x 2 Cn; xT and xH denote the transpose and the conjugate transpose
of x, respectively. A matrix A 2 Cn�n is said to be symmetric if
A ¼ AT , and Hermitian if A ¼ AH . Clearly a real symmetric matrix
is a particular case of a Hermitian matrix. A complex, not necessar-
ily Hermitian matrix A, is called positive definite (positive semidef-
inite) if the real part of xHAx is positive (nonnegative), for all
complex x – 0. When A is Hermitian, this is equivalent to requiring
that xHAx > 0ðxHAx P 0Þ, for all complex x – 0. A general matrix A
is positive definite (positive semidefinite) if and only if the Hermi-
tian matrix Aþ AH is positive definite (positive semidefinite). Given
a matrix A 2 Cn�n, the splitting A ¼ M � N is called P-regular if the
matrix MH þ N is positive definite.

Let T 2 Rn�n, by rðTÞ we denote the spectrum of the matrix T.
We define cðTÞ ¼maxfjkj : k 2 rðTÞ; k – 1g. We say that two sub-
spaces S1 and S2 on Rn are complementary if S1 � S2 ¼ Rn, i.e., if
S1 \ S2 ¼ f0g and S1 þ S2 ¼ Rn. The index of a square matrix T, de-
noted indT , is the smallest nonnegative integer k such that
RðTkþ1Þ ¼ RðTkÞ. By ind1T we denote the index associated with
the value one, i.e., ind1T ¼ indðI � TÞ. Note that when qðTÞ ¼ 1;
ind1T 6 1 if and only if ind1T ¼ 1. We say that a matrix T 2 Rn�n,
is convergent if limk!1Tk ¼ O. It is well known that a matrix T is
convergent if and only if qðTÞ < 1. By NðTÞ we denote the null
space of T.

We say that T is semiconvergent if limk!1Tk exists, although it
need not be the zero matrix. If, on the other hand, qðTÞ ¼ 1, two
different conditions need to be satisfied to guarantee semiconver-
gence, as the following result shows.

Theorem 5 [11]. Let T 2 Rn�n, with qðTÞ ¼ 1. The matrix T is
semiconvergent if and only if the following two statements hold.

(a) 1 2 rðTÞ and cðTÞ < 1, (b) NðI � TÞ �RðI � TÞ ¼ Rn.

Condition (b) is equivalent to the existence of the group inverse
ðI � TÞ#, and it is also equivalent to having ind1T ¼ 1; see, e.g., [6].
We review in what follows the definition of some generalized
inverses.

Definition 6 [6]. Let A 2 Rn�n, and consider the following matrix
equations.

(1) AXA ¼ A,
(2) XAX ¼ X, and
(3) AX ¼ XA.

A f1;2g-inverse of A is a matrix X which satisfies conditions (1) and
(2). If, in addition, X satisfies condition (3), X is said to be a group
inverse of A.

We would like to note that the group inverse A# of a matrix A, if
it exists, is unique. When A is nonsingular, each generalized inverse
coincides with A�1.
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Theorem 7 [6]. Let T 2 Rn�n, with T P O, and let C be a f1;2g-
inverse of I � T with RðCÞ complementary to NðI � TÞ, such that C is
nonnegative on RðI � TÞ, i.e., the matrix C satisfies the following
conditions.

(i) I � T ¼ ðI � TÞCðI � TÞ,
(ii) C ¼ CðI � TÞC,

(iii) NðI � TÞ �RðCÞ ¼ Rn,
(iv) If x 2 RðI � TÞ; x P 0 then Cx P 0.

Then, qðTÞ 6 1, and ind1ðTÞ 6 1.

Lemma 8 [6]. Let T 2 Rn�n be semiconvergent. Then

lim
k!1

Tk ¼ I � ðI � TÞðI � TÞ#:

Definition 9 [6]. A general M-matrix A is said to have property c if
for some representation of A ¼ sI � B; s > 0;B P O, the matrix s�1B
is semiconvergent.

Obviously, a nonsingular M-matrix always has property c.

Theorem 10 [11]. Let A 2 Zn�n. Let A ¼ M � N be a regular splitting,
and let T ¼ M�1N. Then A is an M-matrix with property c if and only if
qðTÞ 6 1, and NðI � TÞ �RðI � TÞ ¼ Rn.

Theorem 11 [6]. Let A ¼ M � N be a P-regular splitting of a symmet-
ric matrix A. Then the matrix M�1N is semiconvergent if and only if A is
positive semidefinite.
3. Convergence for nonsingular linear systems

Consider that A is a nonsingular matrix, and let x� be the exact
solution of (1) and let �ðlþ1Þ ¼ xðlþ1Þ � x� be the error at the lþ 1 iter-
ation of the alternating two-stage iterative method (4). It is easy to
prove that x� is a fixed point of (5). Thus

�ðlþ1Þ ¼ TðlÞ�ðlÞ ¼ � � � ¼ TðlÞTðl�1Þ � � � Tð0Þ�ð0Þ; l ¼ 0;1; . . . :

Thus, the sequence of error vectors f�ðlÞg1l¼0 generated by the itera-
tion (5) converges to the vector 0 if, and only if,
liml!1T ðlÞTðl�1Þ � � � T ð0Þ ¼ O.

Lemma 12 [12]. Let AðlÞ; l ¼ 0;1; . . . ; be a sequence of nonnegative
matrices in Rn�n. If there exist a real number 0 6 h < 1, and a vector
v > 0 in Rn, such that AðlÞv 6 hv; for all l ¼ 0;1; . . . ; then
qðVjÞ 6 hj < 1, where Vj ¼ AðjÞ � � �Að1ÞAð0Þ, and limj!1Vj ¼ O.

Theorem 13 [10]. Let A be a nonsingular matrix such that A�1 P O.
Let A ¼ M � N ¼ P � Q be weak regular splittings. Consider the matrix
T ¼ P�1QM�1N, then qðTÞ < 1. Furthermore, there is a unique pair of
matrices B;C, such that A ¼ B� C is a weak regular splitting and
T ¼ B�1C.

Theorem 14 [2]. Let A ¼ M � N be a convergent regular splitting,
and let M ¼ F � G be a convergent weak regular splitting. Then, the
two-stage iterative method (3) converges to the solution of the linear
system (1), for any initial vector xð0Þ and for any sequence of inner iter-
ations sðlÞP 1; l ¼ 0;1; . . ..

Theorem 15. Let A�1 P O. Consider the splitting A ¼ M � N is regu-
lar and the splittings M ¼ P � Q ¼ R� S are weak regular. Then, the
alternating two-stage method (5) converges to the solution of the lin-
ear system (1), for any initial vector xð0Þ and for any sequence of inner
iterations sðlÞP 1; l ¼ 0;1; . . ..

Proof. Since A ¼ M � N is a regular splitting, M�1 P O, then from
Theorem 13 there exists a unique pair of matrices B;C, such that
R�1SP�1Q ¼ B�1C and M ¼ B� C is a weak regular splitting. That
is, the iteration matrices defined in (7) can be written as
TðlÞ ¼ ðB�1CÞsðlÞ þ ðI � ðB�1CÞsðlÞÞM�1N; l ¼ 0;1; . . .

Thus, TðlÞ; l ¼ 0;1; . . . ; are the iteration matrices of a non-
stationary two-stage method for the matrix A, with the regular
splitting A ¼ M � N, and M ¼ B� C being a weak regular splitting.
Therefore, using Lemma 4(a) and Theorem 14, the proof is
complete. h

Now we study the convergence of the alternating two-stage
method (5) when A is an H-matrix and therefore not necessarily
a monotone matrix. In the following theorem the fact that A is an
H-matrix follows from Lemma 4(b).

Theorem 16. Let A ¼ M � N be an H-splitting and let
M ¼ P � Q ¼ R� S be H-compatible splittings. Then, the alternating
two-stage method (5) converges to the solution of the linear system
(1), for any initial vector xð0Þ and any sequence of inner iterations
sðlÞP 1; l ¼ 0;1; . . ..

Proof. By Lemma 4(b) and (c), the matrices P and R are H-matrices.
We use Lemma 1(a) to obtain the following bounds from (6).

jTðlÞj6 ðjR�1kSkP�1kQ jÞsðlÞ þ
XsðlÞ�1

j¼0

ðjR�1kSkP�1kQ jÞjjR�1jðjSkP�1jþ IÞjNj

6 ðhRi�1jSjhPi�1jQ jÞsðlÞ þ
XsðlÞ�1

j¼0

ðhRi�1jSjhPi�1jQ jÞjhRi�1ðjSjhPi�1þ IÞjNj:

ð8Þ

Let us denote by bT ðlÞ, the matrix in (8). Clearly bT ðlÞ P O. Moreover,
this is the iteration matrix of an alternating two-stage method for
the matrix hMi � jNj with the regular splittings hMi � jNj and
hMi ¼ hPi � jQ j ¼ hRi � jSj. Therefore, from (7), bT ðlÞ ¼ ðhRi�1jSj
hPi�1jQ jÞsðlÞ þ ðI � ðhRi�1jSjhPi�1jQ jÞsðlÞÞhMi�1jNj is obtained.

It follows from Theorem 13 that there is a unique pair of
matrices B;C, such that hRi�1jSjhPi�1jQ j ¼ B�1C and hMi ¼ B� C is a
weak regular splitting. Thus,

bT ðlÞ ¼ ðB�1CÞsðlÞ þ ðI � ðB�1CÞsðlÞÞhMi�1jNj

¼ I � ðI � ðB�1CÞsðlÞÞhMi�1
� �

ðhMi � jNjÞ: ð9Þ

Consider any fixed vector e ¼ ð1;1; . . . ;1ÞT > 0 and x ¼
ðhMi � jNjÞ�1e > 0. Since B�1e > 0, and hMi�1 ¼ ðI � B�1CÞ�1B�1 ¼P1

j¼0ðB
�1CÞjB�1, from (9) it follows bT ðlÞx ¼ x�

PsðlÞ�1
j¼0 ðB

�1CÞjB�1e 6
x� B�1e < x. Therefore, there exists 0 6 h < 1 such thatbT ðlÞx 6 hx; l ¼ 1;2; . . ., and from Lemmata 12 and 1(b) the proof is
complete. h

We will now deal with the convergence of the alternating two-
stage method when A is a Hermitian positive definite matrix.

Theorem 17 [13]. Let A be a Hermitian positive definite matrix. Let
A ¼ M � N ¼ P � Q be P-regular splittings. Consider the matrix
T ¼ P�1QM�1N, then qðTÞ < 1. Moreover, the unique splitting
A ¼ B� C induced by the iteration matrix T, such that T ¼ B�1C, is
also P-regular.

Theorem 18 [4]. Let A be a Hermitian positive definite matrix. Con-
sider A ¼ M � N such that M is Hermitian and N is positive semidefi-
nite. Let M ¼ F � G be a P-regular splitting. Assume further that the
sequence of inner iterations fsðlÞg1l¼0 remains bounded. Then, the
two-stage iterative method (3) converges to the solution of the linear
system (1), for any initial vector xð0Þ.

Theorem 19. Let A be a Hermitian positive definite matrix. Consider
A ¼ M � N such that M is Hermitian and N is positive semidefinite. Let
M ¼ P � Q ¼ R� S be P-regular splittings. Assume further that the
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sequence of inner iterations fsðlÞg1l¼0 remains bounded. Then, the alter-
nating two-stage method (5) converges to the solution of the linear
system (1), for any initial vector xð0Þ.

Proof. By hypotheses M is positive definite and therefore nonsin-
gular. From (7) it follows that the iteration matrix of the corre-
sponding alternating two-stage method (5) can be written as
follows:

TðlÞ ¼ ðR�1SP�1QÞsðlÞ þ ðI � ðR�1SP�1QÞsðlÞÞM�1N:

Moreover, from Theorem 17, there is a unique pair of matrices B;C,
such that R�1SP�1Q ¼ B�1C and M ¼ B� C is a P-regular splitting.
Thus, TðlÞ is the iteration matrix of a non-stationary two-stage meth-
od for the matrix A ¼ M � N, with M Hermitian and N positive semi-
definite and M ¼ B� C being P-regular. Therefore, using Theorem
18, the proof is complete. h
4. Convergence for consistent singular linear systems

Under certain conditions, discussed in this section, the alternat-
ing two-stage iterative method (5) can be extended to the case
where the matrix of the linear system (1) is singular but the equa-
tions are consistent. In this case, the alternating two-stage iterative
methods may be used to approximate a solution to the problem. In
other words, if x� is a solution of (1), and eðlþ1Þ ¼ xðlþ1Þ � x�, then
eðlþ1Þ ¼ T ðlÞeðlÞ, for l ¼ 0;1; . . . Thus, to study the convergence of
the alternating two-stage method (5) we need to show that
TðlÞTðl�1Þ � � � Tð0Þeð0Þ converges to an element in NðAÞ, the null space
of A, when l tends to infinity.

Theorem 20 [14]. Let AðlÞ; l ¼ 0;1; . . . ; be a sequence of square
complex matrices such that each group inverse ðI � AðlÞÞ# exists.
Suppose that there is a subspace S satisfying NðI � AðlÞÞ ¼ S;
l ¼ 0;1; . . .. If there exists a matrix norm k � k such that the set
fkAðlÞkg1l¼0 remains bounded and kAðlÞðI � AðlÞÞðI � AðlÞÞ#k 6 h < 1;
l ¼ 0;1; . . . ; then limi!1AðlÞAðl�1Þ � � �Að0Þ ¼ P, where P is a projection
matrix onto the subspace S.

We proceed now to discuss the convergence of the alternating
two-stage method when the coefficient matrix of the linear system
is an M-matrix with property c.

Theorem 21. Let A be an M-matrix with property c. Let the splitting
A ¼ M � N be regular, and the splittings M ¼ P � Q ¼ R� S be weak
regular. Then, the matrices TðlÞ; l ¼ 0;1; . . . ; defined in (6), satisfy
qðTðlÞÞ 6 1 and ind1TðlÞ 6 1.

Proof. From (7), it follows that I � T ðlÞ ¼ ðI � ðR�1SP�1QÞsðlÞÞ
ðI �M�1NÞ; l ¼ 0;1; . . . : Since M�1 P O and the splittings M ¼
P � Q ¼ R� S, are weak regular, then we have ðR�1SP�1QÞsðlÞ P O,
and from Theorem 13, qððR�1SP�1QÞsðlÞÞ < 1. Therefore,
ðI � ðR�1SP�1QÞsðlÞÞ�1 exists and is a nonnegative matrix.

Consider the matrix C ¼ ðI �M�1NÞ#ðI � ðR�1SP�1QÞsðlÞÞ�1,
where ðI �M�1NÞ# is the group generalized inverse of
ðI �M�1NÞ. Its existence follows from Theorem 10. Therefore, in
order to conclude the proof we are going to show that matrix C
satisfies conditions (i)–(iv) of Theorem 7. Clearly, using Definition
6, the matrix C satisfies conditions (i) and (ii). Furthermore, it is
easy to show that RðCÞ ¼ RððI �M�1NÞ#Þ ¼ RðI �M�1NÞ and

NðI � TðlÞÞ ¼NðI �M�1NÞ ¼NðAÞ: ð10Þ

Moreover, from Theorem 10, it follows that RðI �M�1NÞ and
NðI �M�1NÞ are complementary, and then (iii) is shown.Finally,
let x 2 RðI � TðlÞÞ; x P 0, then ðI � ðR�1SP�1QÞsðlÞÞ�1x 2 RðI �M�1NÞ
and also ðI � ðR�1SP�1QÞsðlÞÞ�1x P 0. Since M�1N P O and
ðI �M�1NÞ# exists, it follows from Plemmons [15, Theorem 2] that
ðI �M�1NÞ# is nonnegative on RðI �M�1NÞ. Then Cx P 0 and the
proof is complete. h

Theorem 22. Let A be an M-matrix with property c. Let the splitting
A ¼ M � N be regular, and the splittings M ¼ P � Q ¼ R� S be weak
regular. Assume further that the diagonal entries of the matrices
P�1Q and R�1S, are positive. Then, the matrices TðlÞ; l ¼ 0;1; . . . ;

defined in (6), are semiconvergent.

Proof. From the hypotheses it follows, for all l ¼ 0;1; . . ., that the
matrices

TðlÞ ¼ ðR�1SP�1QÞsðlÞ þ
XsðlÞ�1

j¼0

ðR�1SP�1QÞjR�1ðSP�1 þ IÞN

are nonnegative and have positive diagonal entries. Moreover, from
Theorem 21, the matrices T ðlÞ; l ¼ 0;1; . . . ; satisfy condition (b) of
Theorem 5 Therefore, using the result in [16, Theorem 2], the proof
is complete. h

We would like to point out that in Theorem 22 we have as-
sumed that the matrices P�1Q and R�1S, have positive diagonal en-
tries. However, the iteration matrices of some classical alternating
iterative methods do not have this property. In order to ensure that
condition (a) of Theorem 5 holds, we use a standard device by
shifting the matrix, so that the value 1 is the only eigenvalue on
the unit circle; see e.g., [6].

Theorem 23. Let A be an M-matrix with property c. Let the splitting
A ¼ M � N be regular, and the splittings M ¼ P � Q ¼ R� S be weak
regular. Then, for each d 2 ð0;1Þ, the matrices TðlÞd ¼ dTðlÞ þ ð1� dÞI;
l ¼ 0;1; . . . ; with TðlÞ defined in (6), are semiconvergent.

Proof. Since I � T ðlÞd ¼ dðI � TðlÞÞ; l ¼ 0;1; . . . ; from Theorem 21 it
follows, for each d 2 ð0;1Þ, that qðT ðlÞd Þ 6 1 and NðI � TðlÞd Þ�
RðI � T ðlÞd Þ ¼ Rn; l ¼ 0;1; . . . : Moreover, by the hypotheses on the
splittings and from (6), TðlÞ P O. Thus (see e.g., [6, Exercise
6.4.3]), TðlÞd has only the eigenvalue one on the unit circle, and from
Theorem 5 it follows that TðlÞd is semiconvergent for all d 2 ð0;1Þ.
h

Therefore, if need be, Eq. (5) can be replaced in the alternating
two-stage method by

xðlþ1Þ ¼ dðT ðlÞxðlÞ þ csðlÞÞ þ ð1� dÞxðl�1Þ; l ¼ 0;1; . . . : ð11Þ
Theorem 24. Let A be an M-matrix with property c. Let the splitting
A ¼ M � N be regular, and the splittings M ¼ P � Q ¼ R� S be weak
regular. Assume that the sequence of inner iterations fsðlÞg1l¼0 satisfies
sðlÞ ¼ s; l ¼ 0;1; . . .. Then the following two results hold.

(a) If the diagonal entries of the matrices P�1Q and R�1S, are posi-
tive, the stationary alternating two-stage method (5) converges
to a solution of the consistent linear system Ax ¼ b, for any ini-
tial vector xð0Þ:

(b) The stationary alternating two-stage method (5) with the mod-
ification (11), converges to a solution of the consistent linear
system Ax ¼ b, for any initial vector xð0Þ.
Proof. Since sðlÞ ¼ s; l ¼ 0;1; . . . ; then there is a single iteration
matrix, i.e.,

TðlÞ ¼ T ¼ ðR�1SP�1QÞs þ
Xs�1

j¼0

ðR�1SP�1QÞjR�1ðSP�1 þ IÞN;

cf. (6). Let x� be a solution of (1), and eðlÞ ¼ xðlÞ � x�, then
eðlÞ ¼ Teðl�1Þ ¼ Tleð0Þ, for l ¼ 1;2; . . . : In the case (a), from Theorem
22, T is semiconvergent, and from Lemma 8 it follows that
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lim
l!1

eðlÞ ¼ lim
l!1

Tleð0Þ ¼ ½I � ðI � TÞðI � TÞ#�eð0Þ 2NðI � TÞ:

Therefore, from (10) the semiconvergence is proved. The proof of
part (b) is analogous, but using, in this case, Theorem 23. h

Theorem 25. Let A be an M-matrix with property c. Let the splitting
A ¼ M � N be regular, and the splittings M ¼ P � Q ¼ R� S be weak
regular. Suppose that there exists a matrix norm k � k such that
kT ðlÞðI � T ðlÞÞðI � TðlÞÞ#k < 1; l ¼ 0;1; . . . ; where TðlÞ are defined in
(6). Assume further that the sequence of inner iterations fsðlÞg1l¼0

remains bounded. Then, the alternating two-stage iterative method
(5) converges to a solution of the consistent linear system (1), for
any initial vector xð0Þ.

Proof. The proof is an immediate consequence of Theorems 21 and
20. h

Next we study the symmetric positive semidefinite case. Firstly,
we give an auxiliary result needed later.

Lemma 26 [13]. Let A be a symmetric positive definite matrix and let
A ¼ B� C be a P-regular splitting. Given s P 1, the unique splitting
induced by ðB�1CÞs is also a P-regular splitting.

Theorem 27. Let A be a symmetric positive semidefinite matrix. Let
the splitting A ¼ M � N be such that M is a symmetric positive definite
matrix and N is a positive semidefinite matrix. Let M ¼ P � Q ¼ R� S
be P-regular splittings. Assume that the sequence of inner iterations
fsðlÞg1l¼0 satisfies sðlÞ ¼ s; l ¼ 0;1; . . . : Then the stationary alternating
two-stage method (5) converges to a solution of the consistent linear
system Ax ¼ b, for any initial vector xð0Þ.

Proof. Since sðlÞ ¼ s; l ¼ 0;1; . . . ;, then there is a single iteration
matrix, i.e.,

TðlÞ ¼ T ¼ ðR�1SP�1QÞs þ ðI � ðR�1SP�1QÞsÞM�1N;

cf. (7). Moreover, from Theorem 17, there is a pair of matrices B;C,
such that R�1SP�1Q ¼ B�1C;M ¼ B� C is a P-regular splitting and
qðB�1CÞ < 1. Therefore, I � ðB�1CÞs is a nonsingular matrix. Thus,
from Lemmas 3 and 26 it follows that the splitting induced by
ðB�1CÞs, namely M ¼ bB � bC , with bB ¼ MðI � ðB�1CÞsÞ�1, is P-regular.
Then, TðlÞ ¼ T ¼ bB�1bC þ ðI � bB�1bCÞM�1N ¼ bB�1ðbC þ ðbB � bCÞM�1NÞ
¼ bB�1ðbC þ NÞ. Thus, the splitting A ¼ bB � ðbC þ NÞ is a (non-unique)
splitting induced by T. Since bBT þ bC is positive definite and N is po-
sitive semidefinite, bBT þ bC þ N is positive definite and thus this
splitting is P-regular. Therefore, from Theorem 11 it follows that T
is a semiconvergent matrix and the proof is completed. h

Theorem 28. Let A be a symmetric positive semidefinite matrix. Let
the splitting A ¼ M � N be such that M is a symmetric positive definite
matrix and N is a positive semidefinite matrix. Let M ¼ P � Q ¼ R� S
be P-regular splitting. Suppose that there exists a matrix norm k � k
such that kT ðlÞðI � TðlÞÞðI � T ðlÞÞ#k < 1; l ¼ 0;1; . . . ; where TðlÞ are
defined in (6). Assume further that the sequence of inner iterations
fsðlÞg1l¼0 remains bounded. Then, the alternating two-stage iterative
method (5) converges to a solution of the consistent linear system
(1), for any initial vector xð0Þ.

Proof. The proof is an immediate consequence of Theorems 20 and
27. h
5. Numerical experiments

The numerical experiments corresponding to the methods de-
scribed in this paper have been performed on several parallel com-
puting platforms and similar results have been obtained on all of
them. Here, the results obtained in two different parallel operating
systems are presented. One of them is a distributed multiprocessor
IBM RS/6000 SP with 8 nodes. These nodes are 120 MHz Power2
Super Chip and are connected through a high performance switch
with latency time of 40 microseconds and a bandwidth of 110
Mbytes per second. The second system used is an Ethernet network
of 6 Pentiums IV running Linux and connected through a switch
with a bandwidth of 1 Gbit per second. The parallel environment
has been managed using the MPI library of parallel routines [17].
Moreover, the BLAS routines [18] for vector computations and
the SPARSKIT routines [19] for handling sparse matrices, were
used. The algorithms have been applied to the solution of singular
linear systems arising from Markov chain modeling. Concretely,
these algorithms can be used to find the stationary probability dis-
tribution of a Markov chain, i.e., one is looking for a nonnegative
vector x such that Bx ¼ x, where B is a nonnegative column sto-
chastic matrix, i.e., BT e ¼ e, where e ¼ ð1;1; . . . ;1ÞT . This implies
that qðBÞ ¼ qðBTÞ ¼ 1; see e.g., [6]. The vector of probabilities is
normalized so that xT e ¼ 1. In this case, the system to be solved is

ðI � BÞx ¼ 0: ð12Þ

If B is a transition matrix of a Markov chain, the matrix A ¼ I � B is
an M-matrix with property c, and thus the convergence of the alter-
nating two-stage method (5) with the modification (11), if need be,
is guaranteed when the splittings are chosen as in Theorems 24 and
25. In these experiments, alternating block iterative methods for the
solution of the linear system (12) are used. In the methods used for
the solution of (12), the variables are partitioned into r groups, i.e.,
x ¼ ½xT

1; x
T
2; . . . ; xT

r �
T
; xi 2 Rni ; i ¼ 1; . . . ; r;

Pr
i¼1ni ¼ n. Thus, the matrix

A ¼ I � B is partitioned into r � r blocks as follows:

A ¼

A11 A12 � � � A1r

A21 A22 � � � A2r

..

. ..
. ..

.

Ar1 Ar2 � � � Arr

2
66664

3
77775 ð13Þ

with the diagonal blocks Aii being square of order ni. In the experi-
ments reported in this paper, the number of obtained groups, r, is
larger than the number of processors p. Thus, we have assembled
blocks from (13) into p groups, each group being assigned to one
processor. There are r‘ blocks assigned to processor ‘; ‘ ¼ 1; . . . ;p,
and thus

Pp
‘¼1r‘ ¼ r. In order to describe the different versions of

the iterative methods tested, we describe the Block Jacobi (BJ) and
the Symmetric Block Gauss–Seidel (SBGS) algorithms, for solving
the singular linear system (12), for a generic number of blocks q
in (13). Taking into account that we concentrate on Markov chains,
we assume that the solution x is normalized so that xT e ¼ 1, where e
is a vector of all components equal to one. In fact, in the algorithms
studied below, such normalization is assumed at every iteration.

Algorithm 1 (Block Jacobi – BJ). Given an initial vector xð0Þ
T ¼ ½xð0Þ1

T
;

xð0Þ2

T
; . . . ;xð0Þq

T
�

For l ¼ 1;2; . . . ; until convergence
For i ¼ 1 to q

Solve ðor approximateÞ Aiix
ðlÞ
i ¼ �

Xq

j¼1j – i

Aijx
ðl�1Þ
j : ð14Þ

The linear systems (14) can be solved independently of each
other. Thus, this algorithm is inherently parallel. This parallelism
is best exploited if the number of blocks matches the number of
processors.

In order to ensure the regularity of the Block Jacobi splitting,
when B is the transition matrix of a finite homogeneous Markov
chain, one can suppose that each column of N ¼ A� diagðA11;



Table 1
Block size of diagonal blocks.

Matrix: QNATM of order 130,068
p ¼ 4 Blocks size 32,517 32,517 32,517 32,517

Nonzeros in diag. blocks 215,254 211,532 209,317 214,097

Matrix: TwoD of order 263,169
p ¼ 2 Blocks size 131,584 131,585

Nonzeros in diag. blocks 524,798 524,802
p ¼ 4 Blocks size 65,792 65,792 65,792 65,793

Nonzeros in diag. blocks 261,888 261,886 261,887 261,890
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. . . ;ArrÞ must have one nonzero entry, or each block Aii must be
irreducible and at least one column, for each corresponding block
in N, must have at least one nonzero entry; see, e.g., [14].

Algorithm 2 (Symmetric Block Gauss–Seidel – SBGS). Given an

initial vector xð0Þ
T ¼ ½xð0Þ1

T
; xð0Þ2

T
; . . . ; xð0Þq

T
�

For l ¼ 0;1; . . . ; until convergence
For i ¼ 1 to q

Solve ðor approximateÞ

Aiix
lþ1

2ð Þ
i ¼ �

Xi�1

j¼1

Aijx
ðlþ1

2Þ
j �

Xq

j¼iþ1

Aijx
ðlÞ
j ; ð15Þ

For i ¼ q to 1
Solve ðor approximateÞ

Aiix
ðlþ1Þ
i ¼ �

Xq

j¼iþ1

Aijx
ðlþ1Þ
j �

Xi�1

j¼1

Aijx
lþ1

2ð Þ
j : ð16Þ

It is clear, from the right hand sides of (15) and (16) that this
algorithm is inherently sequential.

We are ready to describe the different parallel methods ex-
plored in this paper. We assume that there are p processors. As
mentioned earlier, when each solution of (14) in Algorithm 1 is
approximated by an alternating iterative method, this is called an
alternating two-stage method. In particular, each solution of (14)
could be approximated by the Symmetric Block Gauss–Seidel
method.

Algorithm 3. Divide the r blocks of (13) into p groups, each
assigned to a different processor.

1. Perform parallel BJ (with q ¼ p in Algorithm 1), i.e., each proces-
sor approximates the solution of one linear system (14). (This is
the outer iteration).

2. Each solution of (14) in Step 1 is approximated using t steps of
SBGS (with q ¼ r‘ in Algorithm 2).

3. Each solution of (15) and (16) in Step 2 is approximated by a
fixed number m of Gauss–Seidel (GS) iterations.

In Step 3 of Algorithm 3, each solution of (15) and (16) is
approximated using GS iterations. In the following algorithm these
solutions are obtained by a direct method.

Algorithm 4. Divide the r blocks of (13) into p groups, each
assigned to a different processor.

1. Perform parallel BJ (with q ¼ p in Algorithm 1), i.e., each proces-
sor approximates the solution of one linear system (14). (This is
the outer iteration).

2. Each solution of (14) in Step 1 is approximated using t steps of
SBGS (with q ¼ r‘ in Algorithm 2).

3. Each solution of (15) and (16) in Step 2 is obtained using LU
factorizations.

In our experiments, we have used as the global stopping crite-
rion (i.e., in the outer iteration) a test for the error to be less than
a prescribed tolerance. In other words, we test if kAxðlÞk2 < e.

As is well known, BJ, as well as SBGS, and the nested Algorithms
3 and 4, may not converge, especially for singular linear systems. In
order to guarantee convergence, we use the customary device of
shifting the iteration matrix from T to Td ¼ dT þ ð1� dÞI, where
0 < d < 1; T ¼ M�1N and A ¼ M � N is a splitting that represents
the iteration of the corresponding algorithm. This shift is per-
formed at the end of each outer iteration. This is also the point of
the computation where the vector xðlÞ is normalized.
In all experiments reported in this section we have used
e ¼ 10�6 and d ¼ 0:95. We actually run our codes with two models
in [20]. One of the specific models chosen is a biological model de-
scribed in [21]: the 2D epidemic model of Ridler–Rowe. The matrix
we use is of order 263,169 and has 1,050,625 nonzeros, and we la-
bel it TwoD. The other model is a multi-class, finite-buffer, priority
queuing network model with applicability to telecommunications
modelling described, e.g., in [22]. The matrix we use is of order
130,068 and has 875,896 nonzeros, and we label it QNATM.

In order to run the algorithms considered in this paper, three
different permutation and partition methods were used to obtain
the block structure (13), namely TPABLO [23], the near-complete
decomposability test of the Markov chain analyzer (MARCA) [24],
and the equal partitioning that forms (approximately) equal size
blocks. However, for these models (they are not nearly completely
decomposable, [25]), the use of partitions such as MARCA or TPAB-
LO provides a substantial increase in computational time.
Concretely, since the matrices are not nearly completely decom-
posable, MARCA does not find more than one strongly connected
component after removing some elements according to a drop tol-
erance; therefore, MARCA permutation is the identity. On the other
hand, our runs with TPABLO permutations using different parame-
ters (blocking, threshold and minimum/maximum block sizes, see
[23] for an explanations of these parameters) obtain more that one
diagonal partition only when a maximum block size is indicated;
after the corresponding permutation, the best computational time
is between two/five times the one obtained for the algorithm that
uses equal size blocks obtained from the original matrix.

Therefore, we concentrate our experiments on the performance
of the algorithms using equal size blocks obtained from the original
matrix. These equal size blocks were obtained in the following
way: firstly, we consider a block diagonal structure depending on
the number of processors (Table 1 reports the order of these diag-
onal blocks, for the QNATM and TwoD matrices), and finally we
construct, at each diagonal block, blocks of a predetermined and
constant size ni ¼ g. Obviously, if the order of a diagonal block is
not a multiple of g, there will be an extra block of order less than
g.

In Fig. 1 we report results corresponding to Algorithm 3 on both
parallel environments, for the QNATM matrix of order 130,068
varying the number of inner iterations m and using 4 processors.
In this figure, the diagonal blocks have been divided into blocks
of order g ¼ 50. The best results are obtained for m ¼ 1 or m ¼ 2.
It can also be observed in Fig. 1 that for a fixed number of proces-
sors and for each m the computational time starts to decrease as
the number of SBGS steps, t, increases up to an optimal value of t
after which the time starts to increase (in Fig. 1a, t ¼ 15 for
m ¼ 1 and t ¼ 10 for m > 1, and in Fig. 1b, the optimal value is
t ¼ 20 for m ¼ 1 and t ¼ 15 for m > 1Þ. This behaviour is character-
istic of two-stage methods, and it appears in all the results pre-
sented here.

Although this optimal value is hard to predict, a good choice for
the value of t is one which balances the realization of more inner
updates with the decrease of the global iterations (and its associ-
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Fig. 2. Algorithm 3. Matrix QNATM of order 130,068. Four processors.
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Fig. 1. Algorithm 3. Matrix QNATM of order 130,068. Four processors.
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ated computational cost). As we can see, the choice for the value of
t depends on the characteristic of the parallel computer system
used. Thus, according to the characteristic of the IBM RS/6000 SP,
that is, minor speed of process but greater speed in the intercon-
nection network than the cluster of Pentiums, the optimal number
of local steps must decrease (see e.g., Fig. 1). Our experience indi-
cates that, for our problem models, good choices of the value of t
are between 10 and 15 on the IBM RS/6000 SP, and between 15
and 20 when the cluster of Pentiums is used.
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As can be seen in Fig. 2 there are no significant differences when
another block size g is used. Nevertheless, we find that a good
choice for the size of these blocks is g ¼ 150. Hence, unless indi-
cated otherwise, the results presented in the rest of this section
have been performed with g ¼ 150.

In Fig. 3, we illustrate the performance of Algorithm 4 on both
parallel environments. The results reported in this figure are repre-
sentative of other runs we have performed. For all values of t the
timings are always better than those of Algorithm 3. That is, the
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use of LU factorizations to solve (15) and (16) instead of using
Gauss–Seidel iterations provides a substantial reduction in compu-
tational time when solving these singular linear systems.

On the other hand, if in Step 2 of Algorithms 3 and 4 we use BGS
iterations instead of SBGS iterations to approximate each solution
of (14) we are in the presence of a two-stage method. Fig. 4 com-
pares the use of two-stage and alternating two-stage methods for
Algorithm 4. In Fig. 4a we report results corresponding to the
QNATM matrix and Fig. 4b corresponds to the TwoD matrix. We
note that for small t values, the use of SBGS alternating iterations
is always preferable, and for high t values both methods have sim-
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ilar performance. This conclusion can be extended to Algorithm 3
as we can see from the results in Fig. 5.

In Fig. 6 we present results comparing the execution time of
Algorithm 4 setting p ¼ 1;2;4, that is, with 1, 2 or 4 processors,
for the matrix TwoD and using a block size of g ¼ 150. We note
that when Algorithm 4 is used with a different number of proces-
sors, p, a different computational method is obtained, in terms of
performed operations. In fact, Algorithm 4 with p ¼ 1 corresponds
to a SBGS algorithm in which the diagonal blocks (of order gÞ are
solved by using LU factorizations; note that, in this case (i.e.,
p ¼ 1Þ, the parameter t used in Algorithm 4 is not relevant, that
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is, for all values of t the same method is obtained. Fig. 6 shows a
significant reduction of the execution time for Algorithm 4 when
the number of processors increases, specially when a reasonable
value of t is considered.

6. Conclusion

In this paper, a convergence theory of two-stage iterative meth-
ods for the solution of both nonsingular linear systems and consis-
tent singular linear systems has been developed. Convergence of
these methods, for nonsingular linear systems, is shown for
monotone matrices, H-matrices and Hermitian positive definite
matrices. Furthermore, for consistent singular linear systems, con-
vergence theorems when the matrix of the linear system is either
M-matrix or symmetric positive semidefinite are given. Although
the theory has been demonstrated in a sequential context, it can
be extended without difficulty to a parallel environment, as pre-
sented in the numerical experiments. The experiments performed
for singular systems, arising from Markov chain models, show that
the use of two-stage methods with alternating methods and direct
methods in inner levels, provide a substantial reduction in computa-
tional time.
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