
World Wide Web (2011) 14:105–131
DOI 10.1007/s11280-010-0101-5

An up-to-date survey in web load balancing

Katja Gilly · Carlos Juiz · Ramon Puigjaner

Received: 6 October 2009 / Revised: 21 October 2010 /
Accepted: 19 November 2010 / Published online: 2 December 2010
© Springer Science+Business Media, LLC 2010

Abstract This survey is an up-to-date state-of-the-art in Web load balancing mech-
anisms that includes all the possible classifications and focuses on the advantages of
using load balancing solutions to increase the performance of the Web system. A
general description of the Web load balancing solutions is included and organised
by differentiating the OSI protocol stack layer the load balancing is based on. The
most important request distributing polices that are proposed in the literature are
also included. This article summarises all previous surveys on the Web load bal-
ancing subject and updates the state-of-the-art with the most recent load balancing
proposals.

Keywords internet · performance · web load balancing

1 Introduction

The main reason for the increasing popularity of server-based clusters, also called
server farms, is due to the fact that Web applications must be able to run on multiple
servers in order to accept an increasing number of users that demand Web content.

This work was partially funded by the Spanish Ministry of Education and Science under Grant
TIN2006-02265.

K. Gilly (B)
Miguel Hernández University, Avenida de la Universidad, s/n, Elche, Alicante, Spain
e-mail: katya@umh.es

C. Juiz · R. Puigjaner
University of Balearic Islands, Cra. de Valldemossa, km 7.5, Palma, Balearic Islands, Spain

C. Juiz
e-mail: cjuiz@uib.es

R. Puigjaner
e-mail: putxi@uib.es

106 World Wide Web (2011) 14:105–131

In essence, load balancing is the ability to make several servers participate in the
same service and do the same work, since the capacity of servers is finite. This
implies important benefits such as scalability, availability, manageability and security
of Web sites. First and foremost, load balancing improves scalability of an application
or server cluster by distributing the load across multiple servers. Load balancing is
also able to direct the traffic to alternate servers if a server or application fails. The
ability of maintaining service unaffected during a predefined number of simultaneous
failures is called availability. Manageability is improved by load balancing in several
ways by allowing network and server administrators to move an application from one
server to another easily. Last, but not least, load balancing solutions provide security
improvement by protecting the server clusters against multiple forms of Denial-of-
Service (DoS) attacks, as the request that arrives to the Web system can be analysed
before sending it to a server for being served.

The rest of this article is organised as follows:

– Section 2 briefly revises the load balancing classifications that appear in the
literature.

– Section 3 introduces the concept of scalability as a main requirement of a modern
Web-based system.

– Section 4 covers the load balancing scheduling solutions that are based on the
Transmission Control Protocol (TCP) layer, also called layer-4 or content-blind
load balancing solutions.

– Section 5 deals with the architectures that balance the load based on the
application layer, also called content-based platforms.

– Section 6 describes the existing content-aware distribution policies.
– Finally, we include the conclusions and open problems.

2 Load balancing classifications

Several classifications of load balancing techniques exist in the literature. In this
section we sum them up.

– Depending on the taxonomy of the Web-server architectures, a distinction is
made between the local scale-out and global scale-out approach [11]. The main
difference is based on the geographical locations where the set of server nodes
resides. In the global scale-out approach, the nodes are located at different
geographical locations while the nodes are in the same location in local scale-
out architecture. An example of a global scale-out organisation are Content
Distribution Networks (CDNs) [7, 47]. The local scale-out architectures are also
called locally distributed Web systems.

– Another distinction can be made in this group depending on the visible Internet
Protocol (IP) addresses the Web system presents to the client. If the IP addresses
of the Web server nodes are visible to the clients, then we are referring to a
Distributed Web System. When the only visible address to the client application
is the Virtual IP (VIP) of the front-end of the Web system, then the architecture
is a Cluster-based Web System (or Web cluster).

– Cardellini et al. in [12] proposed a classification depending on where the distribu-
tion decision is taken when routing a request to one server of a locally distributed

World Wide Web (2011) 14:105–131 107

Web-server system: at the client, at the Domain Name System (DNS), at the
network and at the Web system. In this work, we only consider the last option,
dispatcher-based clusters, where a dispatching entity of the Web system receives
the incoming requests and distributes them among the servers. More information
about the other options can be found in [6, 10, 12, 26, 41]. Considering the
dispatcher-based clusters, the dispatching policies are also organised in [12]
depending on the information used to select the target server. Hence, they distin-
guish between client-aware and server-aware policies. Client-aware mechanisms
consider the content of the incoming request; e.g. Client-Aware Policy (CAP)
[14] that estimates the impact a request will have on the system resources and
classifies it consequently. Server-aware policies take into account the servers’
status when making distribution decisions. We deal with these mechanisms in
Section 6.

– The classification proposed by Choi in [21] depends on the level the load bal-
ancing is applied to: hardware level (referred basically to commercial products),
system software level (also called kernel level, as it implies modifications at
the Operating System (OS) level of the Web system), middleware software
level and application software level. Most implementations of load balancing
mechanisms are at application level (e.g. [49]) or kernel level (e.g. [45, 73, 81]).
Despite being a very interesting classification, we do not use it in this work as
sometimes the proposals that appear in the literature do not specify the level they
are implemented in. However, we introduce in this survey the implementation
details of the proposals when they are available in the original documentation.

– Focusing on Web cluster load balancing, it is also quite usual to group the
load balancing solutions depending on the Open Systems Interconnection (OSI)
protocol stack layer the load balancer, also named Web switch or front-end,
is based on. In the next sections we classify the load balancing solutions by
distinguishing the layer they are based on.

– Also referring to Web cluster load balancing, there is an alternative classification
depending on the return way of the data flow from the object server to the client.
The response from the server can either go through the load balancer (two-way
architecture) or it can follow an alternative path directly to the client avoiding
the load balancer (one-way architecture or single arm server load balancing).
This last one mainly consists of a different path of traffic flow from the server
to the client rather than passing through the load balancer in order to avoid a
possible bottleneck in the load balancer.

3 Introducing scalability in load balancing

Among all the reasons for using load balancing solutions, we are going to focus on
scalability as user demands placed on Web services continue to grow and Web server
systems are becoming more stressed than ever. There should therefore no longer be
a limit on the performance of an application that is running on a single server. Load
balancing avoids this bound by the ability of growing the number of servers that host
the application.

Even though both network and server capacities have improved in recent years
and new architectures have been developed, there are still some problems to be

108 World Wide Web (2011) 14:105–131

solved from the user point of view in terms of perceived response time. When a
server is congested, the response times obtained by the user increase and this can
lead to a lost sale operation when we are referring to an e-business site. Therefore
response time continues to challenge the server system and cluster related research.

We are going to focus in this paper on the Web system infrastructure as it is
the only component that can be under the direct control of the site administrator
in a distributed network system as is the Internet. Other elements that compose the
network such as DNS systems, backbones and routers are not controllable by a single
organization and are beyond the scope of this work.

The Web system architecture we consider consists of a collection of server
computers that are locally distributed and interconnected through a high speed
network. This architecture provides a single interface to the outside; hence, it can
be seen as a single host. The users are not aware of the names and addresses of the
servers that compose the Web architecture, they access the applications hosted in the
system directing their requests to the VIP address corresponding to the device that
acts as the front-end of the Web architecture. This kind of architecture is also named
Cluster-based Web System [11].

4 Content-blind load balancing

The load balancing solutions covered in this section are called content-blind because
the load balancer is unaware of the application information contained in incoming
requests. Load balancers that perform content-blind routing are normally referred
to as layer-4 load balancers. The selection of the target server that is going to attend
the request is done based on the information contained in the TCP SYN packet at
the load balancer. The OSI layer used to forward the incoming packet to the target
server can be either the link or the network layer.

Table 1 summarises all the solutions covered in this section.
We have divided this section into three subsections:

– Sections 4.1 and 4.2 detail the techniques that balance the load depending on the
OSI layer (-2 or -3, respectively) the front-end uses to forward the packets to the
servers.

– Section 4.3 details the scheduling policies that can be applied in a content-blind
load balancing solution.

4.1 Layer-2 forwarding

Layer-2 forwarding (or bridging Server Load Balancing (SLB)) is the most simplistic
solution for load balancing and can be considered when all interfaces of the Web
system architecture are in the same Virtual LAN (VLAN) and IP network, including
the client-side router. There is no need to alter the topology of the network or

Table 1 Content-blind load
balancing solutions.

Layer-2 forwarding Layer-3 forwarding

Two-way – Network address translation
One-way – Direct routing – IP tunneling

World Wide Web (2011) 14:105–131 109

redefine the IP addressing map. It is only necessary to include a bridge device
between the client-side router and the server side.

The client basically establishes a TCP connection with the server that is going
to attend its request through the VIP of the Web site. The function of the front-
end device, that acts as the load balancer, is to select the server and translate the
destination Media Access Control (MAC) address to leave no evidence that there is
an intermediary device in the communication [77].

Figure 1a illustrates an example of layer-2 forwarding, detailing the role of the
load balancer that has to re-write the layer-2 destination address to the MAC address
of the selected Web server and then forward the incoming request to that server.
The destination MAC address of the response that comes from the server has to
be re-written with the MAC address of the dispatcher in two-way implementations.
It is important to notice that the load balancer does not change the IP address of
the incoming request because all the devices in the IP subnet (the load balancer
and the servers) share the same IP address. Hence, there is no need to change
the network information of the packet and consequently, there is also no need to
recompute the IP checksum, which means less overhead. It is important to disable
the Address Resolution Protocol (ARP) when using layer-2 forwarding to avoid a
possible collision because the same IP address has been assigned to all the nodes of
the system. A layer-2 load balancer uses the MAC address available in the data link
layer information to determine the output interface port for that packet [34, 46].

Layer-2 forwarding has been widely used in commercial solutions in its one-way
architecture version, and is normally named layer-4 switching with layer-2 packet
forward (L4/2) [17, 37, 69] or Direct Routing (DR) [82, 90]. As the same IP address
has been assigned to all the devices of the subnet, the outgoing packets can be
sent directly from the server to the clients without going through the load balancer.
Figure 2a shows the TCP connection establishment with the DR technique.

Some pioneering prototype implementations of one-way L4/2 load balancing were
ONE-IP [29] and LSMAC [34]. Nortel Networks also consider this mechanism in
their actual Nortel Application Switches [58]. Linux Virtual Server (LVS) is a layer-4
load balancing solution that is included in an open source project that was started by

client load
balancer

server 1

server 2

server n

...

application
....
transport
network
data link
physical

application
....
transport
network
data link
physical

DNS

www.uib.es ?

changes in destination
MAC address

IP subnet

TCP CONNECTION
OK

INTERNET

transport
network
data link
physical

a) Layer-2 forwarding b) Layer-3 forwarding

load
balancer

server 1

server 2

server n

...

application
....
transport
network
data link
physical

IP subnet

TCP CONNECTION
OK

transport
network
data link
physical

changes in source
and destination MAC,

and destination IP address

IP subnet

IP subnet

IP subnet

Figure 1 An example of layer-2 and -3 forwarding implementations.

110 World Wide Web (2011) 14:105–131

b) NAT Technique (layer-3 forwarding)

Client L4 LB Web Server

a) DR Technique (layer-2 forwarding)

SYN

Change dest .
IP address SYN

SYN, ACK

SYN, ACK

Change dest .
IP address

ACK

Change dest .
IP address ACK

GET

Change dest .
IP address GET

Client L4 LB Web Server

SYN

No change
SYN

SYN, ACK

ACK

ACK
GET

GET

Client L4 LB Web Server

SYN

IP
encapsulation SYN

ACK

ACKGET

GET

No change

IP
encapsulation

data, ACK

 .

data, ACK

ACK

ACK
No change

IP
encapsulation

c) IPTun Technique (layer-3 forwarding)

SYN, ACK

Change dest.
IP address

ACK

ACK

data, ACK

data, ACK

IP
encapsulation

No change

Figure 2 TCP connection establishment when using layer-2 and -3 forwarding techniques.

Zhang in 1998 [70, 90]. It can be configured to support DR, and also other forwarding
techniques that are included in the next subsection.

4.2 Layer-3 forwarding

Layer-3 forwarding (also called routing SLB) differs from bridging SLB in that the
client-side router can be in different VLANs and IP subnets in the Web system
architecture. In fact, in this case, the load balancer of the Web system architecture
is now routing rather than bridging the frames between the client and the server.
Figure 1b illustrates an example of layer-3 forwarding and shows that a layer-3 load
balancer de-encapsulates a packet up to the network layer to determine where to
send the packet.

Two forwarding techniques have been implemented in a dispatcher-based web
cluster with layer-3 routing: Network Address Translation (NAT) and IP Tunneling
(IPTun). NAT is the simplest technique and consists of rewriting the layer-3 desti-
nation address of the incoming packet to the IP address of the real server selected
by the load balancer. While NAT is implemented in two-way architecture, IPTun is
implemented in a one-way architecture. This means that the response from the cho-
sen Web server goes directly to the client. IPTun consists of the encapsulation of IP
datagrams within IP datagrams with the source and destination IP address specifying
the VIP address of the system and the target server IP address, respectively. More
information about NAT and IPTun can be found in [11, 82, 84]. Figure 2b and c also
show the TCP connection establishment when using NAT and IPTun, respectively.

The layer-3 forwarding solution based on NAT has also been classified as layer-4
switching with layer-3 packet forwarding (L4/3) by some authors [17, 37, 69].

The main disadvantage of this approach is the fact that the load balancer can
become the bottleneck of the system as the workload increases. This is due to the
overhead of recomputing the IP checksums for every packet that has to go through
the load balancer in both ways.

Most of the commercial content-aware switches on the market today also provide
NAT forwarding, that is the case of the CSS 11500 Series Content Services Switch
of Cisco System, Inc. [23, 24], ServerIron layer 4–7 switches of Foundry Networks
[57] and Nortel Layer 2/7 Gigabit Ethernet Switch Module (GbESM) for IBM

World Wide Web (2011) 14:105–131 111

BladeCenter [40, 58], for example. The Linux software framework, LVS [70], also
can be configured to support NAT and IPTun, but the most efficient mechanism
is DR [19, 51]. Microsoft also implements a layer-3 forwarding mechanism named
Network Load Balancing (NLB) that is included in the Windows Server 2003 Family
[15].

4.3 Content-blind request distribution policies

Content-blind load balancing permits the front-end device to be aware of the TCP
connections between the clients and the servers. Hence, the load balancer dispatches
the requests according to the IP address and the TCP port. There are several load
balancing scheduling policies that are normally used by content-blind load balancers.
Some examples of these policies are:

– Round Robin (RR) Algorithm: the TCP connections are assigned on a RR basis,
with the first connection going to server 1, the second to server 2, and so on. As
the connections are assigned sequentially among the servers, each server receives
the same number of connections over time independently of how fast it is able
to process them. For this reason, RR is one of the best distributing methods
for homogeneous servers but, unless used with a per-server weighting, it is less
effective in environments where the servers are heterogeneous.

– Weighted Round Robin (WRR) Algorithm: the traffic will be assigned to the
servers according to their configured relative capacities, in the case that the
servers are heterogeneous. The administrator specifies the percentage of traffic
to be directed to each of the servers.

– Least Connection (LC) Algorithm: connections are assigned to the server with
the least number of connections. This is a dynamic scheduling algorithm as the
load balancer needs to count the number of connections that are established
between the clients and each Web server in the cluster.

– Weighted Least-Connection (WLC) Algorithm: similar to LC, in this algorithm
apart from counting the number of connections, a weight assigned to each server
is also considered. The servers with higher weight will receive a larger percentage
of connections than the rest of the servers.

– Least Loaded (LL) Algorithm: the dispatcher assigns the next request to the
server that has the lowest load. In this case an agent on the server keeps the
load balancer updated on the server utilization and capacity. Connections are
assigned to the server having the most spare capacity. It is also called baseline
algorithm.

– Random Server Selection: connections are assigned uniformly among the servers
but not in a deterministic sequence.

5 Content-aware load balancing architectures

A content-aware load balancer works at the application layer. This means that the
load balancer is aware of the application content of the incoming request. The TCP
connection must be established first between the client and the front-end of the
Web system. It then receives the HyperText Transfer Protocol (HTTP) request and
analyses the content of it (see Figure 3). This makes the content-aware routing more

112 World Wide Web (2011) 14:105–131

application
....
transport
network
data link
physical

application
....
transport
network
data link
physical

www.uib.es ? OKapplication
....
transport
network
data link
physical

TCP
CONNECTION

load
balancer

server 1

server 2

server n

...

IP subnet
IP subnet

IP subnet

IP subnet

TCP
CONNECTION

client

DNS

INTERNET

Figure 3 Example of layer-7 forwarding implementation.

specific to applications that can offer differentiated services, but also more complex
than the content-blind approach.

Despite the fact that some content-aware load balancing commercial solutions
have been implemented, it is a subject that is still being investigated. In this section,
we describe and analyse the most recent architectures that implement content-aware
load balancing. Some works prove that by using the content of requests and loading
information from the servers, more flexible and intelligent distributing algorithms
can be developed [1, 3, 11, 14, 18, 49, 60, 62, 74].

Let us introduce the fact that HTTP/1.1 permits persistent (keep-alive) connec-
tions [33]. This means that several HTTP requests from a client can go through
the same TCP connection. Hence, this causes a reduction in response time, server
overhead and network overhead of HTTP [56]. In order to take advantage of these
benefits, some TCP modifications have been developed to permit an HTTP request
granularity in the content-aware load balancing, instead of a connection granularity.
These modifications depend on the one-way or two-way architecture of the Web
cluster.

Table 2 summarises the solutions covered in this section, indicating if they include
request granularity when using the HTTP/1.1 protocol. We have marked in bold the

Table 2 Request granularity in content-aware load balancing architectures.

HTTP/1.0 Request granularity in HTTP/1.1

2-way – TCP splicing [54] – Asymmetric TCP splicing [44]
– Redirect flows [27] – TCP connection binding [83]

1-way – TCP hand-off [38] – Multiple connection TCP hand-off [3]
– Back-end request forwarding [3]

– TCP Connection hop [65] – One-packet TCP state migration to packet filter [49]
– Socket cloning [73] – Multiple-cloning [73]

– One-way TCP Splicing [55]
– One-way connection binding [53]

– TCP rebuilding [50] – Multiple TCP rebuilding [51]

World Wide Web (2011) 14:105–131 113

options that implement content-aware distribution based on a layer-4 front-end. The
variations of these proposals have been omitted in the table.

Let us divide then this section into one-way and two-way architectures as it is
crucial to describe their TCP behaviour to know how the load balancing is done.
Hence, this section reviews the load balancing proposals depending on the return
path of responses from the Web servers.

5.1 Two-way architectures

This subsection introduces three mechanisms to route the requests from the load
balancer to the target Web server in two-way architecture, that are: TCP Connection
Binding [83], TCP Splicing [54] and Redirect Flows [27].

5.1.1 TCP connection binding

Yang and Luo proposed TCP Connection Binding in [83]. It is also called TCP
Gateway by other authors [11, 25], Relaying front-end in [3] or Relaying with Packet
Rewriting in [74], and basically consists of maintaining two TCP connections: one
between the client and the load balancer, and a second one between the load balancer
and the Web server. Before receiving any request, the load balancer establishes
a persistent connection with each Web server. When the load balancer receives
a request from a client, one of these pre-established TCP connections is used
to transfer the request to the selected target server. The main advantage of this
proposal is that it permits a content-based distribution at the granularity of individual
requests because the persistent connections between the load balancer and the back-
end servers do not depend on the incoming traffic [3]. In a later work [52], the
authors improve the request distribution and the reliability of the TCP Connection
Binding mechanism, and also include a Java implementation of their proposal. The
main problem of this approach is that the packets need to be analysed up to their
application layer information when passing through the load balancer. This implies
an overhead that can be avoided by the other mechanisms detailed below.

Figure 4a shows the TCP Connection Binding procedure, detailing Initial Send
Sequence (ISS) number of the client and the Initial Receive Sequence (IRS) number
of the load balancer used in the three-way handshake [30] of the client connection
with the load balancer. Different numbers, ISS2 and IRS2, are used in the pre-forked
connection between the load balancer and the Web server. All these numbers do not
need to have any relation at all as the load balancer is responsible for changing the
ISS and IRS TCP header field numbers depending on which connection it is using to
transmit the packets.

IBM Network Dispatcher [39] is an example of a TCP Connection Binding
commercial implementation, but was withdrawn from the market some years ago.

5.1.2 TCP splicing

The second mechanism, TCP Splicing, was proposed by Maltz and Bhagwat in
[54]. This proposal is similar to TCP Connection Binding, but the performance
is improved due to the fact that the TCP client connection and the TCP server
connection with the load balancer are spliced together (at the TCP layer) and all
the work can be carried out directly by the OS forwarding the data at the IP level.

114 World Wide Web (2011) 14:105–131

b) TCP Splicing

Client L7 LB Web Server

a) TCP Connection Binding

TCP splicing

Client L7 LB Web Server

GET seq=ISS+1,
ack=IRS+1

binding

SYN seq=ISS

data, seq=IRS2+1,
ack=ISS2+1+len(GET)

rewrite packet

SYN seq=IRS,
ack=ISS+1

ACK seq=ISS+1,
ack=IRS+1

SYN seq=ISS2

SYN seq=IRS2,
ack=ISS2+1

ACK seq=ISS2+1,
ack=IRS2+1

pre-fork
connection

GET seq=ISS2+1,
ack=IRS2+1

connection
reuse

data, seq=IRS+1,
ack=ISS+1+len(GET)

ACK
seq=ISS+1+len(GET)
ack=IRS+1+len(data)

rewrite packet

ACK
seq=ISS2+1+len(GET)
ack=IRS2+1+len(data)

SYN, seq=ISS

SYN seq=IRS,
ack=ISS+1

ACK seq=ISS+1,
ack=IRS+1

GET seq=ISS+1,
ack=IRS+1

SYN, seq=ISS2

SYN, seq=IRS2,
ack=ISS2+1

ACK seq=ISS2+1,
ack=IRS2+1

GET seq=ISS2+1,
ack=IRS2+1

data, seq=IRS2+1,
ack=ISS2+1+len(GET)

data, seq=IRS+1,
ack=ISS+1+len(GET)

ACK
seq=ISS+1+len(GET)
ack=IRS+1+len(data) ACK

seq=ISS2+1+len(GET)
ack=IRS2+1+len(data)

Figure 4 Layer-7 load balancing techniques in two-way architecture: a TCP connection binding and
b TCP splicing.

Figure 4b shows an example of TCP Splicing detailing the ISS and IRS TCP header
field numbers of both connections.

Some software and hardware implementation designs of Web switches that use
TCP Splicing have been proposed. Cohen et al. in [25] describe the implementation
details of a Web switch based on Linux OS. Rosu and Rosu in [67] propose a socket-
level implementation of TCP Splicing and compare it to an IP-level implementation
on AIX RS/6000 machines concluding that the socket-level implementation provides
more flexibility and improves the transfer rates. Other authors like Apostolopoulos
et al. [2], Zhao et al. [92] and Kachris and Vassiliadis [42] propose a hardware
design for a Web switch based on a PowerPC 603e processor, an Intel IXP2400
network processor and a multi-processor reconfigurable logic platform (Xilinx Virtex
4 FPGA), respectively.

An extension of TCP Splicing is documented by Chang et al. in [16]. It consists
in having pre-forked connections between the load balancer and the Web Servers
that are spliced to the connections between the clients and the load balancer when
a request is received in the system. This approach is very similar to the TCP
Connection Binding approach described above.

Kobayashi and Murase in [44] deal with persistent TCP connections trying to
provide a request granularity in the load balancing. They propose an asymmetric
TCP Splicing that permits it to receive pipelined HTTP requests through a TCP
connection. After analysing the application layer of the requests, their proposal
changes the target server that is serving the requests coming through that TCP
connection for a more appropriated server in case it is necessary.

World Wide Web (2011) 14:105–131 115

Similar mechanisms to TCP Splicing have been implemented in some commercial
content-aware solutions such as the Cisco CSS 11500 Series Content Services Switch
[23, 24], F5’s BIG-IP [31], Foundry’s ServerIron layer 4–7 switches [57], Radware
OnDemand switches [63] and Nortel Layer 2/7 Gigabit Ethernet Switch Module
(GbESM) for IBM BladeCenter [40, 58]. A Linux framework has also been devel-
oped to support TCP Splicing named Linux Layer-7 switching (L7SW) [76].

5.1.3 Redirect f lows

The third and last two-way mechanism, Redirect Flows developed by Colby et al.
[27], is very similar to the TCP Splicing approach but based on the NAT architecture
[19, 51]. It was a proprietary mechanism of Arrowpoint Communications Inc., a
company that was acquired by Cisco Systems Inc. [24] in the year 2000.

5.2 One-way architectures

The main disadvantage of the two-way architecture proposals is that response data
must be forwarded by the load balancer that may become the bottleneck of the
system when a high volume of traffic needs to be processed.

This subsection describes the approaches that permit the Web servers to return
responses directly to clients. We have divided the content-aware architecture solu-
tions in seven main groups based on the original mechanisms proposed to route the
requests from a target Web server to clients in one-way architecture.: TCP Hand-off
[38], One-packet TCP State Migration to Packet Filter [49], TCP Connection Hop [65],
Socket Cloning [73], One-way TCP Splicing [55], One-way Connection Binding [53]
and TCP Rebuilding [51]. Variations of these original proposals are also considered
in each classification group.

With the aim of reducing the overhead produced by the load balancer, some au-
thors propose content-aware load balancing architectures that are based on content-
blind platform. This basically means the use of a layer-4 front-end in the Web system
that receives the Web client request and assigns it to a Web server. As the content of
the request is known once the packet is de-encapsulated in the end-node, the task of
distributing or redirecting the request to another node is left to another process of the
Web system (normally named distributor or dispatcher). Examples of this approach
are detailed below (e.g. [5, 18, 43, 49, 61, 73, 78, 86]).

It is also important to mention that some of the papers referenced in this subsec-
tion propose both a content-aware architecture and a distribution policy. Hence, they
might also be cited in the next section, that deals with request distribution proposals.

5.2.1 TCP hand-off

The most popular solution for a layer-7 one-way Web cluster architecture is TCP
Hand-off, that was proposed by Hunt et al. in [38]. It requires some modifications in
the OS of the load balancer and the Web servers because once the TCP connection
between the client and the load balancer is established, the load balancer’s end point
of the connection is transferred to the selected server, as illustrated in Figure 5a. The
IRS number of the first connection and the client’s IP address are sent to the Web
server because the handed-off connection between the load balancer and the Web
server has to be a “copy” of the client’s connection in order to permit the Web server

116 World Wide Web (2011) 14:105–131

b) One-packet TCP State Migration to packet filter

Client L4 LB Filter process Web Server

a) TCP Hand-off

Client L7 LB Web Server

GET seq=ISS+1,
ack=IRS+1

hand-off

SYN seq=ISS

SYN seq=IRS,
ack=ISS+1

ACK seq=ISS+1,
ack=IRS+1

GET SYN seq=ISS,
(+client IP, IRS)

SYN seq=IRS,
ack=ISS+1

seq=ISS+1+len(GET)
ack=IRS+1

data, seq=IRS+1,
ack=ISS+1+len(GET)

GET2
seq=ISS+1+len(GET)
ack=IRS+1+len(data) GET2

seq=ISS+1+len(GET)
ack=IRS+1+len(data)

data,2
seq=IRS+1+len{data},
ack=ISS+1+len(GET)

 +len(GET2)

SYN, seq=ISS

SYN seq=IRS,
ack=ISS+1

ACK seq=ISS+1,
ack=IRS+1

GET seq=ISS+1,
ack=IRS+1

data, seq=IRS+1,
ack=ISS+len(GET)+1

SYN, seq=ISS
SYN, seq=ISS

SYN seq=IRS,
ack=ISS+1SYN seq=IRS,

ack=ISS+1

ACK seq=ISS+1,
ack=IRS+1

RST

ACK seq=ISS+1,
ack=IRS+1

GET seq=ISS+1,
ack=IRS+1

wrong server

RST

correct server

SYN, seq=ISS

SYN seq=IRS2,
ack=ISS+1

ACK seq=ISS+1,
ack=IRS2+1

GET seq=ISS+1,
ack=IRS2+1

data, seq=IRS2+1,
ack=ISS+len(GET)+1

change IRS2 to
 IRS

ACK
seq=ISS+1+len(GET)
ack=IRS+1+len(data) ACK

seq=ISS+1+len(GET)
ack=IRS+1+len(data)

ACK
seq=ISS+1+len(GET)
ack=IRS2+1+len(data)

change IRS to
 IRS2

ACK
seq=ISS+1+len(GET)

 +len(GET2)
ack=IRS+1+len(data)

 +len(data2)

ACK
seq=ISS+1+len(GET)

 +len(GET2)
ack=IRS+1+len(data)

 +len(data2)

S
E

R
V

E
R

 X
S

E
R

V
E

R
 Y

Figure 5 Content-aware load balancing techniques in one-way architecture: a TCP hand-off and
b one-packet TCP state migration to packet filter.

to send the responses directly to the client. Hence, the same ISS and IRS numbers
have to be used in both connections. Pai et al. in [60] introduce some modifications to
Hunt’s Hand-off and apply it to their request distribution algorithm (Locality-Aware
Request Distribution (LARD)) that is covered in Section 6.1.

Aron et al. include some modifications to the TCP Hand-off mechanism to permit
a granularity of individual requests when using HTTP/1.1 persistent connections in
[3]. In this work, they propose the Multiple Connection TCP Hand-off and Back-
end Request Forwarding mechanisms. Multiple Connection TCP Hand-off basically
permits pipelined incoming requests to be attended by different Web servers by
migrating the connection between the servers. Back-end Request Forwarding avoids
the overhead introduced by Multiple TCP Hand-off by permitting the redirection
of requests from one server to another after a decision of the load balancer. Simple
Hand-off is used by both techniques when a new TCP connection request arrives to
the load balancer. In [3], the authors study the performance of both methods and
conclude that the Back-end Forwarding has better performance for small response
sizes while Multiple TCP Hand-off is better for large responses.

In a later work [5], Aron et al. compare the performance of TCP Splicing and
TCP Hand-off and show how TCP Hand-off is more scalable with the number of
Web servers in the cluster. They also affirm in this work that the TCP Hand-off
mechanism has a limited scalability of cluster sizes up to four Web servers, despite
implementing one-way architecture. They propose in [5] an alternative distributed
load balancing solution with a layer-4 front-end, where a centralised node called the

World Wide Web (2011) 14:105–131 117

“dispatcher” takes the load balancing decisions and the overhead is carried out by
the several distributor nodes that are connected in the network as they distribute the
client requests to the selected Web servers by handing off the connections.

Similar content-aware mechanisms based on a content-blind Web switch as [5] are
proposed in [18, 43, 61, 86]. Knowledgeable Node Initiated TCP Splicing (KNITS)
[61] is a proposal of Papathanasiou and Hensbergen that uses NAT to forward
the client’s requests from the front-end to the Web servers, and multiple hand-
off mechanisms are used when a session has to be migrated to another server,
splicing the connection between the client and the front-end. The authors implement
a prototype within Linux Netfilter infrastructure. The Kerdlapanan and Khunkitti
proposal [43] distributes the incoming requests to the servers by multicast through
a layer-2 or -3 front-end (when the first SYN datagram is received). One of the
servers of the cluster establishes the TCP connection with the client based on a
hash function. The distribution decision is done by the servers, after becoming aware
of the content requested. If the most appropriate server for the request is not the
“connected server”, then the connection needs to be transferred by using the Hand-
off mechanism. Cherkasova and Karlsson describe a solution in [18] that reduces the
forwarding overhead of the Multiple Hand-off in their strategy named Workload-
Aware Request Distribution (WARD) (described in Section 6). Zeng-Kai et al. also
propose in [86] a fault-tolerant layer-7 load balancing mechanism based on a layer-4
front-end. The content-aware distribution is done by the distributors that are located
in the Web servers.

We can observe that most of these authors agree in the need of a layer-4 front-end
in the Web system in order to obtain an scalable approach of the content-aware TCP
Hand-off mechanism.

Considering request granularity on HTTP/1.1, Kokku et al. suggest another mech-
anism based on Hand-off, named Half-pipe Anchoring, that permits the distribution
between different servers of individual requests that come through the same TCP
connection [45]. Their proposal is based on the consideration of a TCP connection
as two unidirectional half-pipes, one from the Web cluster to the client (data pipe)
and one from the client to the Web cluster (control pipe). The selection of a different
server to attend a pipelined request is possible by changing the origin of the data
pipe of a connection. The authors extend the TCP header by including more TCP
options in the message structure and implement a prototype in the Linux kernel.
Comparison results between this proposal and KNITS [61] show that Half-pipe
Anchoring has a maximum of 25% of the overhead produced by KNITS. However,
the main drawback of Kokku’s et al. proposal is the modification of the TCP protocol.
Another implementation of TCP Hand-off that considers STREAMS-based TCP/IP
is presented in [79]. This solution does not require any modification on the TCP/IP
code.

TCP Hand-off has been implemented in Linux in the TCPHA project [81]. In
this subproject of LVS, a layer-7 kernel level is implemented for Linux. Persistent
HTTP connections are also supported in this one-way content-aware load balancing
solution.

5.2.2 One-packet TCP state migration to packet f ilter

The second mechanism, One-packet TCP State Migration to Packet Filter, was
proposed by Lin et al. in [49]. They include a Packet Filter process in each Web server

118 World Wide Web (2011) 14:105–131

to intercept the connection from the load balancer without modifying the OS kernel
and implement their proposal in LVS [70]. In order to provide more scalability, a pre-
allocation scheme is also proposed in this work. It establishes a TCP connection with
a Web server when receiving the first SYN (acting as a content-blind load balancer).
Once the HTTP request is received, the load balancer determines if the selected
server is correct or not. If the server is the right one, then the request is attended.
If it is wrong (possibly because the content the client is asking for is not stored in
the selected server) then the load balancer redirects the request to a more appropri-
ate server after a three-way handshake connection establishment as illustrated in
Figure 5b. A RST packet is sent to the previous server in order to keep this
connection silent. Request granularity through TCP persistent connections is also
supported. In this proposal, a reduction of overhead is achieved when a connection
that was previously used is needed again, as the three-way handshake can be avoided
because the connection was previously established and it is in a waiting status after
the RST.

5.2.3 TCP connection hop

TCP Connection Hop is a proprietary solution of Resonate [65] and the core of
their Resonate Central Dispatch. A software component called Resonate Exchange
Protocol (RXP) has been developed to provide several useful functions [64]. It is
installed in all the components of the cluster. RXP establishes the TCP connection
with the client and performs the load balancing by transferring the connection to the
selected Web server. The mechanism used to transfer the connection to the server is
based on the TCP connection migration protocol proposed in [9] and is proprietary
of Resonate [65]. It is a similar mechanism to TCP Hand-off and is also referred to
as TCP State Migration in [53].

5.2.4 Socket cloning

Sit et al. propose a mechanism to redirect the processing of a client request from
one server to another by migrating to an open socket. This mechanism is named
Socket Cloning and is proposed in [73]. The load balancer the authors consider in this
work is a layer-4 switching with layer-2 packet forwarding that makes the distribution
decision when the client SYN packet is received (see Figure 6a). If the decision was
not correct and the request has to be attended by another server, then the socket
is cloned to it. Hence, Socket Cloning supports HTTP/1.1 persistent connections by
cloning multiple times the connection (Multiple-Cloning). A synchronisation process
between the original and the cloned socket needs to be performed in order to update
the sequence and ACK numbers after a response packet is sent. This synchronisation
process is done by the packet router (that is an additional layer in all the nodes’
architecture proposed by the authors), therefore it does not involve additional
inter-node communication. The implementation of Socket Cloning requires some
modifications to the OS kernel.

Takahashi et al. in [78] propose a similar solution. They use a layer-3 NAT
forwarding mechanism to perform a layer-7 load balancing that provides TCP session
redirection between the Web servers that compose the Web cluster, named TCP-
migration by the authors. They physically separate the packet forwarding and request

World Wide Web (2011) 14:105–131 119

S
E

R
V

E
R

 Y

Client L4 LB Web Server

Set SEQ = ISS+
 +len(GET)
Set ACK = IRS+
 +len(data)
Set MSS = 1460

S
E

R
V

E
R

 Y

a) Socket Cloning

Client L7 LB Web Server

GET seq=ISS+1,
ack=IRS+1

SYN seq=ISS

SYN seq=IRS,
ack=ISS+1

ACK seq=ISS+1,
ack=IRS+1

seq=ISS+1+len(GET)
ack=IRS+1

data, seq=IRS+1,
ack=ISS+1+len(GET)

GET2
seq=ISS+1+len(GET)
ack=IRS+1+len(data)

GET2
seq=ISS+1+len(GET)
ack=IRS+1+len(data)

data2
seq=IRS+1+len{data},
ack=ISS+1+len(GET)

 +len(GET2)

TCP rebuilding

Set SEQ = ISS
Set ACK = IRS
Set MSS = 1460

S
E

R
V

E
R

 X

to SERVER X

to SERVER Y RST
seq=ISS+1+len(GET)
ack=IRS+1+len(data)

...
Multiple TCP
Rebuilding

b) TCP Rebuilding

SYN seq=ISS

data, seq=IRS+1,
ack=ISS+1+len(GET)

to SERVER X

SYN seq=IRS,
ack=ISS+1

SYN, seq=ISS

SYN seq=IRS,
ack=ISS+1

GET seq=ISS+1,
ack=IRS+1

ACK seq=ISS+1,
ack=IRS+1

ACK seq=ISS+1,
ack=IRS+1

GET seq=ISS+1,
ack=IRS+1

wrong server:
clone socket

ACK
seq=ISS+1+len(GET)
ack=IRS+1+len(data)

S
E

R
V

E
R

 X

ACK
seq=ISS+1+len(GET)
ack=IRS+1+len(data)

forward to the
cloned socket

S
E

R
V

E
R

 Y

GET2
seq=ISS+1+len(GET)
ack=IRS+1+len(data) GET2

seq=ISS+1+len(GET)
ack=IRS+1+len(data)

S
E

R
V

E
R

 X

server OK:
attend request

S
E

R
V

E
R

 X

data2
seq=IRS+1+len{data},
ack=ISS+1+len(GET)

 +len(GET2)

TCP rebuilding

Figure 6 Content-aware load balancing techniques in one-way architecture: socket cloning and TCP
rebuilding.

dispatching mechanisms. An implementation in the Linux kernel is also described
and its results are reported in this paper.

Very similar mechanisms have been designed to avoid a failover [75, 89]. Snoeren
et al. in [75] implement an architecture in Linux that provides a connection failover
mechanism. The dispatching decision is taken in the Web servers, which can migrate
the connection with the client to another, more appropriate server. Zang et al. design
a transparent TCP connection failover mechanism to recover connections that were
lost due to a failure in the server that is attending Web requests [89]. They propose
that each connection in the Web cluster system has to be visible by at least two
servers: the primary server and one or more backup servers that will act in case of
a failure of the primary. In both cases [75, 89], the backup servers need constant
synchronisation with the primary server.

5.2.5 One-way TCP splicing

Marwah et al. [55] propose some enhancements to the two-way TCP Splicing
mechanism that include the possibility of splitting the splice in the Web server and
then send the responses directly to the clients. This permits the implementation of
one-way architecture when using TCP Splicing. The authors also propose in [55]
to re-splice an already established TCP connection with one server to attend an
incoming request in another (possibly more appropriate) target server, which permits
request granularity in the load balancing instead of TCP connection granularity when

120 World Wide Web (2011) 14:105–131

using HTTP/1.1. The authors also provide a prototype implementation in Linux that
includes some of the enhancements to the TCP Splicing mechanism they propose.

5.2.6 One-way connection binding

The One-way Connection Binding mechanism has some similarities with TCP Con-
nection Binding described in the previous section (see Figure 4a). It is introduced
by Luo et al. in [53] and solves the problem of persistent connections in content-
aware routing mechanisms by establishing long-lived connections on the server side.
When a request arrives to the front-end of the system, the client-side connection
is bound to an appropriate server connection, and the request is sent to the server
to be attended. The server-side connection is reused by other requests avoiding the
connection migration and termination that would require the execution of the slow-
start mechanism and, consequently, the loss of performance that would involve. The
authors compare the performance of their mechanism to the original TCP Hand-off
and show how their solution reduces the overhead in the Web servers.

5.2.7 TCP rebuilding

The seventh and last mechanism is TCP Rebuilding which was proposed by Liu et al.
in [50, 51] to be implemented in a LVS with Content-Aware Dispatching (LVS-
CAD) platform (that is described in Section 6). Figure 6b details its procedure: when
the connection between the client and the load balancer is established and the HTTP
request has arrived to the load balancer, it is sent to the selected Web server which
starts rebuilding the TCP connection without the need of interchanging any more
packets. Thus, the Web server has to guess the sequence and ACK number used in
the client connection. The Maximum Segment Size (MSS) is set to the standard value
of 1460. In order to handle HTTP/1.1 persistent connections, the authors propose the
multiple TCP Rebuilding mechanism in [51]. As LVS cannot perform content-aware
distribution, they have introduced a fast TCP module handshaking in the IP-layer of
the front-end so that it can establish the connection with the client in order to learn
the request type.

6 Content-aware request distribution policies

After studying the content-aware load balancing architectures, let us analyse in more
detail the content-aware request distribution policies that have been proposed in the
recent literature. We have considered a distinction between the policies that try to
exploit the cache of the system, named locality-aware solutions, and the ones that
do not include the cache performance in the evaluation, named non locality-aware
solutions. We have also distinguished the policies that consider Quality of Service
(QoS) in the last subsection.

Table 3 sums up, in chronological order, the policies that are described in this
section including some of their most important characteristics. As most of the
distribution policies proposed in the literature are related to a particular Web cluster
architecture, we have also detailed in this table the main characteristics of the
architecture proposed by the authors.

World Wide Web (2011) 14:105–131 121

Table 3 Content-aware request distribution policy characteristics: (1) Year; (2) Locality-aware;
(3) QoS-aware; (4) Admission Control; (5) Dynamic content considered in the distribution policy;
Proposed architecture characteristics: (6) Request granularity with HTTP/1.1; (7) One-way architec-
ture; (8) Web Switch layer; (9) Load balancing architecture.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

LARD [60] 98 Y N N N N Y 7 TCP Hand-off
extLARD [3] 99 Y N N N Y Y 7 TCP Hand-off
HACC [91] 99 Y N N Y N N 7 TCP Splicing
FLEX [17] 01 Y N N N N Y 3 DNS load balancing
WARD [18] 01 Y N N N Y Y 4 RR-DNS, multiple

TCP hand-off
TAP2 [62] 01 Y N N N N N 7 TCP connection binding
PRESS [13] 01 Y N N N Y Y 4 TCP hand-off
CAP [14] 01 N N N Y N Y 7 TCP hand-off
EQUILOAD [22] 01 Y N N N N N ? Not specified
ADAPTLOAD [66] 01 Y N N N N N ? Not specified
E-FSPF [71] 02 N Y N N N N 7 TCP splicing
FARD [8] 03 N N N Y N N 7 TCP connection binding
Gage [48] 03 N Y N N N Y 7 TCP splicing
BCB and SAA [80] 03 Y N N N Y Y 7 TCP hand-off
Cyclone [74] 04 Y N N N Y Y 4 Socket cloning and

multiple-cloning
ALBM [21] 04 N N N Y N N 4 DR and NAT
ADAPTLOAD v2 [88] 05 Y N N Y N Y 7 Not specified
D_EQAL [87] 06 N N N N N ? ? Not specified
Weblins [32] 06 Y N N N N Y 4 TCP hand-off
Around k-bounded [59] 06 N Y N Y Y Y 4 TCP hand-off
NPSSM [68] 06 N N N N N Y 7 Not specified
CAWLL [51] 07 N N N Y Y Y 7 Multiple TCP rebuilding
xLARD/R [51] 07 Y N N N Y Y 7 Multiple TCP rebuilding
CAHRD [51] 07 Y N N Y Y Y 7 Multiple TCP rebuilding
CWARD/CR [19] 08 Y N N N Y Y 7 Multiple TCP rebuilding
CWARD/FR [19] 08 Y N N N Y Y 7 Multiple TCP rebuilding
MAA [85] 08 N N N Y N Y 7 Not specified
IQRD [72] 08 N Y Y Y N N 7 Not specified
LARD/RC [20] 09 Y N N Y Y Y 7 Multiple TCP rebuilding
GCAP [20] 09 N N N Y Y Y 7 Multiple TCP rebuilding
APRA [36] 09 N Y Y Y Y Y 7 Not specified

Hence, we have included in Table 3, as the first column, the year of the publication
of the paper that describes the distribution policy. The second, third and fourth
columns of this table indicate whether the policy has the locality-awareness feature,
is QoS-aware and/or includes an admission control mechanism, respectively. The
fifth column details if dynamically generated Web content is especially treated by
the distribution policy. These four characteristics are completely related to the
distribution policy. From the sixth column till the ninth, we include details of the
Web architecture proposed for each distribution policy. Therefore, the sixth column
deals with HTTP/1.1 persistent connections and request granularity. The seventh
and eighth indicate one- or two-way architecture, and whether the Web switch is
content- or blind-aware, respectively. And finally the ninth column indicates the load
balancing architecture proposed for the dispatching policy.

122 World Wide Web (2011) 14:105–131

6.1 Locality-aware solutions

Several locality-aware solutions have been proposed as distribution policies in a
content-aware load balancing design. The aim of these policies is to exploit the cache
locality of the Web servers by sending the requests that ask for a determined Web
page to a server that is likely to have it in its cache module. As can be observed in
Table 3, most of the solutions that are in the literature between the years 1998–2001
improve the performance of the Web cluster by increasing the number of cache hits
in the Web server nodes.

Locality-aware policies deal with a working set that normally consists of static
Web pages. Thus, in order to obtain an increase in the performance by improving
cache hit rates and if the working set is too large to fit in one server’s cache, it is
divided among the cluster nodes. This is the idea that Pai et al. introduced in their
distribution strategy named LARD [60]. They define a set of nodes to serve a target
file, and modify the set dynamically depending on the number of active connections
of the nodes. The content-aware load balancer sends the request to the least loaded
node of the set. They implement TCP Hand-off to send the connections from the
front-end to the selected back-end node. An extension of LARD (extLARD) is intro-
duced in [3] which permits LARD to deal with persistent connections. LARD is also
used to evaluate a prototype implementation that includes a resource management
facility for cluster based Web servers named cluster reserves [4]. This facility permits
the performance isolation of the different server resources in order to effectively
reserve them for different classes of service.

As an alternative to using the TCP Hand-off, which introduces an important
overhead in the Web Switch [5], DNS infrastructure is used by Cherkasova et al.
in [17, 18]. FLEX is defined in [17] as a two-way locality-aware solution that does
not require any modification in the protocol nor special hardware support. It is
mainly based on DNS infrastructure that allocates different sites to the nodes of
the cluster. Based on the access rates and the size of the files, the working set is
dynamically partitioned among the servers equally. Periodical monitoring permits
detecting changes in the access pattern and repartition of the working set. In a later
work [18], the authors propose WARD, a locality-aware distribution that defines a
core of files that contains the most frequently accessed files. These files can be served
by any node in the cluster while the rest of the working set is divided among all the
nodes. In this case, Multiple TCP Hand-off is used when a request has to be sent from
one server to another. The optimal size of the core is determined by an algorithm that
considers the workload, the Random Access Memory (RAM) of the cluster and the
overhead of the Hand-off operation and disk access.

There are other proposals that also include a set of the most accessed files to be
cached in all the servers [19, 20, 32, 51, 62, 74]. A prefetching policy named Time
and Access Probability-based Prefetch (TAP2) is proposed by Park et al. in [62]. It
predicts the next Web requests the clients are going to ask for by considering the costs
of prefetching and the probability of the Web object to be requested, and if worth it,
it prefetches the requested objects from local disks. A client session is assigned to a
back-end server by a RR policy, and a TCP connection between them remains during
the entire session. Sit et al. in [74] describe a distribution policy based on Socket
Cloning and Multiple-Cloning that uses a L4/2 front-end, named Cyclone. They also
select a set of most frequently requested files to be served, in this case, by a set of

World Wide Web (2011) 14:105–131 123

servers, stored in a hash table in each of the servers. The replication of the files is
done progressively as the reference count increases. Hence, if a file reference count
reaches a certain level, the file ends up replicated in all the node’s caches. Faour
and Mansour propose a content-aware distribution policy named Weblins in [32] and
implement their proposal in Gobelins OS. A cooperative caching mechanism is used
to replicate the most requested files in all the nodes of the cluster. They distribute the
requests from a layer-4 switch to the servers by the RR algorithm. When a request
needs to be transferred to another Web server, it is done by using the TCP Hand-off
protocol.

In a recent work [51], Multiple TCP Rebuilding is implemented in LVS platform
and named LVS-CAD. As LVS cannot perform content-aware distribution, a fast
TCP module handshaking has been introduced in the IP-layer of the front-end in
order to establish the connection with the client. Liu et al., in this work, describe three
different distribution policies: Content-Aware Weighted Least Load (CAWLL), Ex-
tended Locality-Aware Request Distribution with Replication Policy (xLARD/R) and
Content-Aware Hybrid Request Distribution (CAHRD). CAWLL is not a locality-
aware policy, it selects the least loaded back-end server. xLARD/R is an extension
of LARD that considers some additional costs in order to estimate the load of the
back-end nodes when taking load balancing decisions. Finally, CAHRD mixes both
CAWLL and xLARD/R. It switches to CAWLL when a dynamic request arrives,
and to xLARD/R when the request is static. Results show that the locality-awareness
is more suitable for static than dynamic requests as CAWLL, and hence, CAHRD,
performs better than xLARD/R when more than 30% of the workload corresponds
to dynamic Web content.

Based on WARD policy, Chiang et al. implement two distribution poli-
cies (Content-based Workload-Aware Request Distribution with Core Replication
(CWARD/CR) and Content-based Workload-Aware Request Distribution with
Frequency-based Replication (CWARD/FR)) [19] in a cluster platform named LVS
with Content-Aware Dispatching and File Caching (LVS-CAD/FC). All the nodes
prefetch the set of the most frequently accessed files and the less frequently accessed
files are partitioned among the nodes in the CWARD/CR policy. While in the
CWARD/FR policy, the replication of the files in the nodes is proportional to their
access frequencies. In both cases, the requests are assigned to servers based on the
RR policy among the servers that have the requested file replicated. Results show
that CWARD/FR outperforms CWARD/CR. Chiang et al., in a later paper [20], pro-
pose two other content-aware policies based on CAP (described in the next subsec-
tion) and LARD, named Grouped Client-Aware Policy (GCAP) and Locality-Aware
Request Distribution with Replication and Classif ication (LARD/RC), respectively.
In these new policies, the authors improve the treatment of dynamic Web pages,
database processing and multimedia stream data, that might easily overload the back-
end servers, especially in heterogeneous environments. The results show that GCAP
and LARD/RC improve the performance of their predecessors, particularly under
these circumstances.

Persistent connections are not considered in some of the previous proposals
[17, 60, 62] because they mean an increase in cost when distributing the load
based on locality, as the connection has to be migrated from server to server.
The overhead effort of the TCP connections portability between Web servers is
studied by Carrera and Bianchini in [13]. They propose a solution named PRESS

124 World Wide Web (2011) 14:105–131

that has two modes of operation. It starts serving requests with a content-blind
distribution policy until the cache miss rate reaches a certain threshold, then the
policy switches to a locality-aware mechanism as the TCP Hand-off cost is now
justified. TCP Hand-off is used when a request has to be served by another server
in the cluster. The authors conclude that portability should be promoted in fast-
communication clusters as it has a low cost in terms of performance, but efficiency
should be promoted in slow-communication cluster as in this case portability is very
expensive. Tang and Chanson investigate how request- and session-grained alloca-
tions affect caching performance under persistent connections in [80]. They compare
two algorithms: Balanced Content-Based (BCB) and Session Af f inity-Aware (SAA).
The authors conclude that the locality-aware performance benefits of request-
grained content-aware distribution policies are not easily extended to session-grained
allocations.

Ciardo et al. in [22] develop a distribution policy named EQUILOAD based on
the sizes of the requested documents. They partition the sizes of the working set
into some subsets (the same as number of servers in the cluster). EQUILOAD is
modified in [66] in order to avoid the need of a priori knowledge of the working set
size distribution. The modified solution, named ADAPTLOAD, dynamically sets
empirically-based fuzzy boundaries to the intervals of the response sizes. Despite
EQUILOAD and ADAPTLOAD not being designed as locality-aware mechanisms,
they also obtain the benefits of caching as they always direct requests for the same
document to the same server. EQUILOAD and ADAPTLOAD only consider static
Web traffic. In a later work [88], ADAPTLOAD is tested with a workload that also
includes dynamically generated Web content. As it is not possible to know the size of
the dynamic content requested, the authors distribute dynamic requests based on the
Join Shortest Queue (JSQ) policy. We have included this version as ADAPTLOAD
v2 in Table 3.

Also considering dynamic traffic, Harvard Array of Clustered Computers (HACC)
is a request distribution developed by Zhang et al. in [91] that dynamically divides
the entire working set among the number of nodes in the cluster. The load balancing
scheme of this proposal is based on two-way architecture that does not take into
account persistent connections.

Most of the distribution policies referenced in this subsection do not especially
treat dynamic Web content [3, 13, 17–19, 22, 32, 60, 62, 66, 74, 80], as shown in
Table 3. This is due to the unpredictability of service times of generating dynamic
Web pages. In the next subsection, dynamic Web traffic is considered in the design
of most of the proposals.

6.2 Non locality-aware solutions

Since 2001, more non locality-aware solutions appear in the literature. They do not
consider cache hits in the performance evaluation of the Web system. Therefore,
other factors are included in these policies like, for instance, the evaluation of the
resource utilisation by the different types of requests [14, 36, 72, 85], the introduction
of QoS in the service provided [36, 48, 59, 71, 72], or the inclusion of an admission
control in the load balancing solution [36, 72].

Considering only the content of the incoming request, Casalicchio and Colajanni
propose a policy named CAP in [14] that obtains good performance results when

World Wide Web (2011) 14:105–131 125

serving dynamic and secure Web content. As the requests are classified depending
on the expected impact they will have on the server resources, CAP takes distributing
decisions depending on the service type required by them. The state of the servers is
not considered in this solution. All the servers of the cluster provide all the service
types considered.

Considering the content of incoming requests and obtaining some metrics from
the Web switch that permit estimating the load of the Web servers, Yao et al. in [85]
propose Message-Aware Adaptive (MAA). It is a scheduling policy that is developed
to be executed in the Application Oriented Networking (AON) product of Cisco
Systems [24]. This policy distinguishes among types of messages and balances the
load based on their resource consumption. Hence, when a request arrives to the
system, an estimation of the completion time is calculated and the server that obtains
the earliest is chosen to serve the request.

There are other proposals that do include monitored information obtained from
the Web servers of the cluster to take distribution decisions. This is the case of
Fuzzy Adaptive Request Distribution (FARD) [8]. This work of Borzemski and
Zatwarnicki describes a content-aware load balancing mechanism that estimates the
response time of each request in every server of the cluster using a fuzzy estimation
mechanism. This estimation is based on some metrics obtained from the server,
such as the Central Processing Unit (CPU), the disk and the communication link
load. FARD selects the server with the lowest estimated response time in order
to attend the request. The authors compare their proposal to LARD and WRR in
a prototype, concluding that FARD improves their performance, especially in het-
erogeneous environments. Another work that also obtains performance information
by monitoring the applications running on the nodes is Adaptive Load Balancing
Mechanism (ALBM) [21]. Choi describes in this paper a load balancing mechanism
that provides scalable services in a multi-cluster system. The front-end of the system
is a layer-4 Web switch that balances the load by using DR and NAT, and then the
content-aware distribution is done from the nodes of the cluster. ALBM is compared
to LVS using RR, LC and WLC scheduling algorithms.

Monitored information as service times or throughput values in Web and back-
end servers, or the arrival rate to the Web system is considered in another content-
aware proposal [36]. In this case, the algorithm can enable or disable servers
from the cluster depending on these monitored parameters. Instead of monitoring
periodically, this algorithm follows an adaptive time slot scheduling that depends
on the arrival rate to set the monitoring intervals [35]. Hence, when the system is
receiving a high demand of Web requests, the intervals between monitoring times
are reduced and viceversa when the system is idle. This method permits reducing the
overhead of the algorithm when the system is not stressed.

When making decisions based on information obtained from the servers, it is
very important that the information is updated. Some authors [28, 68, 72] express
their concern about the accuracy of the information obtained as it might not be
very current in the moment the decision is made. Worried about the problem
of load balancing with stale information, Satake and Inai propose a scheduling
method named Non Probabilistic Server Selection Method (NPSSM) that obtains
the information periodically from the Web servers of the cluster in [68]. Based
on this information, the authors try to compensate the differences in load among
the nodes and once the load is balanced, they apply the RR policy for the next

126 World Wide Web (2011) 14:105–131

requests. By simulation, the authors conclude that their method is scalable with the
number of servers and that it is immune to the impact of load information acquisition
intervals.

Dynamic traffic is especially considered in [59, 87]. Zhang et al. in [87] propose an
enhancement to the ADAPTLOAD policy. As the ADAPTLOAD policy described
in [88] did not include an original treatment for dynamic requests, the authors
study now how the autocorrelation in the arrival process affects the performance
of the load balancing policies and propose a load unbalancing mechanism that
tries to reduce the autocorrelation of the requested file sizes. They named their
policy D_EQAL. In this case, the aim for being locality aware is less clear than
in ADAPTLOAD, this is the reason to include D_EQAL as a non locality-aware
solution. Ok and Park in [59] describe an algorithm that focuses on dynamically
generated Web content (Around k-Bounded). As it is not possible to know the
load that the execution of the scripts involves in the Web server in advance, they
propose an algorithm running in a layer-4 Web switch that monitors the load of the
servers. If the servers are attending the same number of requests then the Web switch
balances the requests following a RR fashion. The switch sends the next request to
the least loaded server in the cluster when the load values of the servers are not
equal. Persistent connections when using HTTP/1.1 are considered, hence in case
the target server for a request is other than the one that is connected to the client,
the TCP Hand-off protocol is used to migrate the connection to the appropriate
server. The authors show the benefits of their proposal in terms of scalability and
QoS guarantees.

6.3 QoS-aware solutions

QoS requirements are included in some other proposals that also obtain monitored
information from the Web server [36, 48, 59, 71, 72]. Considering Stochastic High-
Level Petri Net (SHLPN) modelling, Shan et al. develop a QoS-aware load balancing
strategy named Extended Fewest Server Processes First (E-FSPF) in [71]. They
combine a process scheduling policy in the Web servers that considers the priority
of the requests, with a load balancing mechanism in the front-end of the system
that sends the request to the Web server with the fewest number of processes with
higher or equal priorities. Li et al. describe in [48] a Web distribution system named
Gage that balances the load among a set of Web servers and supports QoS. They
use a front-end that splices the TCP connection with the chosen server in one-way
architecture. The resource consumption is considered as the QoS metric and the
Service Level Agreement (SLA) is guaranteed by the allocation of multiple system
resources. The requests are scheduled following a WRR algorithm.

When including QoS requirements in a load balancing mechanism, often admis-
sion control policies are also introduced in order to avoid a sudden collapse of the
servers due to an increase in the demand [36, 72]. The content-aware load balancing
algorithm with QoS-aware admission control proposed by Shafirian et al. is named
Intelligent Queue-based Request Dispatcher (IQRD) [72]. The authors monitor the
Web servers in order to dynamically compute the remaining capacity of the Web
system. The requests are classified depending on the resources they consume in
the server nodes and are assigned to the nodes based on their load status. The
authors compare their strategy to CAP and WRR and conclude that, despite IQRD

World Wide Web (2011) 14:105–131 127

introducing more overhead, it improves the performance of the system in terms of
response time and throughput.

7 Conclusions and open problems

This article sums up the load balancing mechanisms that have been developed and
classifies them by differentiating the OSI protocol stack layer the load balancing is
based on. Content-blind load balancing mechanisms have been widely developed in
the literature and have also been considered to be included in commercial products
(some of which have already been withdrawn from the market). The most important
content-blind load balancing mechanisms are DR as a one-way layer-2 forwarding
solution and NAT as a two-way layer-3 forwarding solution.

As the content-aware load balancing solutions become more popular, mainly be-
cause they make differentiation in the workload possible and hence, a more accurate
distribution of the requests can be performed, more effort is dedicated to avoid their
drawbacks. The possibility that the layer-7 Web switch becomes the bottleneck of
the system, even in one-way architecture, is the main drawback of using a content-
aware front-end in the Web system. This problem can be solved by replacing it with
a content-blind front-end and transferring the distribution task to other nodes of the
system. One of the most popular proposals of one-way architecture is TCP Hand-
off. It has been recently included in several studies that try to reduce the overhead
produced by a layer-7 font-end. Therefore, a layer-4 Web switch is used instead and
in case the TCP connection needs to be transferred between two servers, the original
TCP Hand-off mechanism is used. Other one-way proposals, like Socket Cloning
and One-packet TCP State Migration to packet filter, already introduced a layer-4
front-end in their original design.

Another important problem related to content-aware load balancing architectures
is the difficulty to get request granularity when using HTTP1.1 protocol. This
particular problem is solved individually for each of the one-way and two-way
architecture proposals.

Considering content-aware distributing proposals, locality-aware policies were
extensively investigated during the beginning years of the first decade of 2000 with
the aim of exploiting the cache performance benefits in the Web servers. Most of
these algorithms normally consider static content in the Web pages, as the fact of
considering dynamic Web pages in the workload complicates the load balancing
because service times of the scripts that generate the dynamic content are not
easily predictable. However, Web workload has become more dynamic in the last
few years, hence, some interesting locality-aware distributing policies have been
proposed recently that also treat these kinds of traffic.

Focusing on non locality-aware solutions, we have discussed some proposals that
monitor some performance metrics in the server nodes of the system in order to com-
pute an estimation of future performance and distribute the requests accordingly.
However, the cost of generating some kinds of Web pages, as a dynamic Web page
that needs to access a database server, is more expensive in terms of performance
than the cost of serving static Web pages and, hence, it is difficult to measure or
predict. This type of predictions probably needs more research. The “freshness” of
the information obtained from the Web servers that the algorithm uses to take the

128 World Wide Web (2011) 14:105–131

load balancing decisions is also a problem that needs more research, as most of the
proposals described here do not consider the possibility that the load information is
stale.

Some content-aware distributing proposals include QoS in their requirements and
consequently, some admission control mechanisms are related to them. However,
only two proposals include admission control mechanisms in a content-aware plat-
form. Probably more research has to be done in this field too.

There are also some considerations about possible future research that involve
Virtual Servers, as they are may improve the performance of the load balancing
technique covered in this survey. Virtualisation permits to run specific servers in the
same physical node, and can be used to differentiate the services provided by the
Web system. We also consider an important issue for future study energy-efficiency
metrics in the development of Web load balancing in order to provide a “greener”
computing solution.

References

1. Andreolini, M., Colajanni, M., Nuccio, M.: Kernel-based web switches providing content-aware
routing. In: Proc. of the 2nd IEEE International Symposium on Network Computing and Appli-
cations (NCA’03) (2003)

2. Apostolopoulos, G., Aubespin, D., Peris, V.G.J., Pradhan, P., Saha, D.: Design, implementation
and performance of a content-based switch. In: Proc. of INFOCOM (2000)

3. Aron, M., Druschel, P., Zwaenepoel, W.: Efficient support for P-HTTP in cluster-based web
servers. In: Proc. of the Annual Conference on USENIX Annual Technical Conference (1999)

4. Aron, M., Druschel, P., Zwaenepoel, W.: Cluster reserves: a mechanism for resource manage-
ment in cluster-based network servers. In: Proc. of ACM SIGMETRICS (2000)

5. Aron, M., Sanders, D., Druschel, P., Zwaenepoel, W.: Scalable content-aware request dis-
tribution in cluster-based network servers. In: Proc. of the USENIX 2000 Annual Technical
Conference (2000)

6. Barroso, L., Dean, J., Hoelzle, U.: Web search for a planet: the google cluster architecture. IEEE
Micro 23, 22–28 (2003)

7. Bent, L., Rabinovich, M., Voelker, G.M., Xiao, Z.: Characterization of a large web site popu-
lation with implications for content delivery. In: Proc. of the 13th International Conference on
World Wide Web (2004)

8. Borzemski, L., Zatwarnicki, K.: A fuzzy adaptive request distribution algorithm for cluster-based
web systems. In: Proc. of the 11th Euromicro Conference on Parallel, Distributed and Network-
Based Processing (Euro PDP) (2003)

9. Brendel, J.: Client-side resource-based load-balancing with delayed-resource-binding using TCP
state migration to WWW server farm. United States Patent 6,182,139. Resonate Inc (2001)

10. Brisco, T.P.: DNS support for Load Balancing. RFC 1794 (1995)
11. Cardellini, V., Casalicchio, E., Colajanni, M., Yu, P.S.: The state of the art in locally dis-

tributed web-server systems. ACM Comput. Surv. 34, 263–311 (2002). doi:10.1145/508352.
508355

12. Cardellini, V., Colajanni, M., Yu, P.S.: Dynamic load balancing on web-server systems. IEEE
Int. Comp. 3(3), 28–39 (1999)

13. Carrera, E., Bianchini, R.: Efficiency vs. portability in cluster-based network servers (2001)
14. Casalicchio, E., Colajanni, M.: A client-aware dispatching algorithm for web clusters providing

multiple services. In: Proc. of the 10th International Conference on World Wide Web (2001)
15. Cavale, M.R.: Introducing Microsoft Cluster Service (MSCS) in the Windows Server 2003

Family. Microsoft Corporation (2002)
16. Chang, Y.K., Cheng, W.H., Young, C.P.: Fully pre-splicing TCP for web switches. In: Proc. of

the 1st International Conference on Innovative Computing, Information and Control (ICICIC)
(2006)

http://doi.acm.org/10.1145/508352.508355
http://doi.acm.org/10.1145/508352.508355

World Wide Web (2011) 14:105–131 129

17. Cherkasova, L., DeSouza, M., Ponnekanti, S.: Performance analysis of “content-aware” load
balancing strategy FLEX: two case studies. In: Proc. of the 34th Hawaii International Conference
on System Sciences (2001)

18. Cherkasova, L., Karlsson, M.: Scalable web server cluster design with workload-aware request
distribution strategy WARD. In: Proc. of the Third International Workshop on Advanced Issues
of E-Commerce and Web-Based Information Systems (WECWIS) (2001)

19. Chiang, M.L., Lin, Y.C., Guo, L.F.: Design and implementation of an efficient web cluster with
content-based request distribution and file caching. J. Syst. Softw. 81, 2044–2058 (2008)

20. Chiang, M.L., Wu, C.H., Liao, Y.J., Chen, Y.F.: New content-aware request distribution poli-
cies in web clusters providing multiple services. In: Proc. of the ACM Symposium on Applied
Computing (2009)

21. Choi, E.: Performance test and analysis for an adaptive load balancing mechanism on distributed
server cluster systems. Future Gener. Comput. Syst. 20, 237–247 (2004)

22. Ciardo, G., Riska, A., Smirni, E.: EQUILOAD: a load balancing policy for clustered web servers.
Perform. Eval. 46(2–3), 101–124 (2001)

23. Cisco Systems, I.: Scalable Content Switching. A discussion of the cisco css 11500 series content
services switch architecture. White Paper (2002)

24. Cisco systems, inc. http://www.cisco.com/ (2010). Accessed 26 Nov 2010
25. Cohen, A., Rangarajan, S., Slye, H.: On the performance of TCP splicing for URL-aware redi-

rection. In: Proc. of the 2nd Conference on USENIX Symposium on Internet Technologies and
Systems (1999)

26. Colajanni, M., Yu, P.S.: A performance study of robust load sharing strategies for distributed
heterogeneous web server systems. IEEE Trans. Knowl. Data Eng. 14(2), 398–414 (2002)

27. Colby, S., Krawezyk, J.J., Nair, R.K., Royee, K., Siegel, K.P., Stevens, R.C., Wasson, S.: Method
and System for Directing a Flow Between a Client and a Server. United States Patent 6,006,264
(2001). Arrowpoint Communications, Inc

28. Dahlin, M.: Interpreting stale load information. IEEE Trans. Parallel Distrib. Syst. 11(10), 1033–
1047 (2000)

29. Damani, O.P., Chung, E., Huang, Y., Kintala, C., Wang, Y.M.: ONE-IP: techniques for hosting a
service on a cluster of machines. Comput. Netw. ISDN Syst. 29, 1019–1027 (1997)

30. (DARPA), D.A.R.P.A.: Transmission Control Protocol. RFC 793 (1981)
31. F5 Networks, Inc.: http://www.f5.com/ (2010)
32. Faour, A., Mansour, N.: Weblins: A scalable www cluster-based server. Adv. Eng. Softw. 37,

11–19 (2006)
33. Fielding, R.T., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.J., Berners-Lee, T.:

Hypertext transfer protocol—HTTP/1.1. RFC 2616 (1999)
34. Gan, X., Schroeder, T., Goddard, S., Ramamurthy, B.: Highly available and scalable cluster-

based web servers. In: Proc. of the 8th IEEE International Conference on Computer Communi-
cations and Networks (1999)

35. Gilly, K., Alcaraz, S., Juiz, C., Puigjaner, R.: Analysis of burstiness monitoring and detection in
an adaptive web system. Comput. Networks 53, 668–679 (2009)

36. Gilly, K., Juiz, C., Alcaraz, S., Puigjaner, R.: Adaptive admission control algorithm in a QoS-
aware web system. In: Proc. of IEEE International Symposium on Modelling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS) (2009)

37. Goddard, S., Schroeder, T.: The SASHA architecture for network-clustered web servers. In:
Proc. of the 6th IEEE International Symposium on High Assurance Systems Engineering
(2001)

38. Hunt, G., Nahum, E., Tracey, J.: Enabling Content-based Load Distribution for Scalable Ser-
vices. Tech. rep., IBM T.J. Watson Research Center (1997)

39. IBM: http://www.ibm.com/ (2010)
40. IBM: Application Switching with Nortel Networks Layer 2–7 gigabit Ethernet Switch Module

for IBM Bladecenter. IBM Redbook (2006)
41. Iyengar, A., Challenger, J., Dias, D., Dantzig, P.: High-performance web site design techniques.

IEEE Int. Comp. 4, 17–26 (2000)
42. Kachris, C., Vassiliadis, S.: Design of a web switch in a reconfigurable platform. In: Proc. of the

2006 ACM/IEEE Symposium on Architectures for Networking and Communications Systems
(2006)

43. Kerdlapanan, D., Khunkitti, A.: Content-based load balancing with multicast and tcp-handoff.
In: Proc. of International Symposium on Circuits and Systems (2003)

http://www.cisco.com/
http://www.f5.com/
http://www.ibm.com/

130 World Wide Web (2011) 14:105–131

44. Kobayashi, M., Murase, T.: Asymmetric tcp splicing for content-based switches. In: Proc. of
IEEE International Conference on Communications (ICC) (2002)

45. Kokku, R., Rajamony, R., Harrick Vin, L.A.: Half-pipe anchoring: an efficient technique for
multiple connection handoff. In: Proc. of the 10th IEEE International Conference on Network
Protocols (2002)

46. Kopparapu, C.: Load Balancing Servers, Firewalls and Caches. Wiley (2001)
47. Krishnamurthy, B., Wills, C., Zhang, Y.: On the use and performance of content distribution

networks. In: Proc. of the 1st ACM SIGCOMM Workshop on Internet Measurement (2001)
48. Li, C., Peng, G., Gopalan, K., cker Chiueh, T.: Performance guarantee for cluster-based internet

services. In: Proc. of the 23rd International Conference on Distributed Computing Systems
(2003)

49. Lin, Y.D., Tsai, P.T., Lin, P.C., Tien, C.M.: Direct web switch routing with state migration, TCP
masquerade, and cookie name rewriting. In: Proc. of Global Telecommunications Conference
(2003)

50. Liu, H.H., Chiang, M.L.: Tcp rebuilding for content-aware request dispatching in web clusters.
Journal of Internet Technology 6, 231–240 (2005)

51. Liu, H.H., Chiang, M.L., Wu, M.C.: Efficient support for content-aware request distribution and
persistent connection in Web clusters. Softw. Pract. Exp. 37, 1215–1241 (2007)

52. Luo, M.Y., Yang, C.S.: System support for scalable, reliable and highly manageable web hosting
service. In: Proc. of the 3rd conference on USENIX Symposium on Internet Technologies and
Systems (2001)

53. Luo, M.Y., Yang, C.S., Tseng, C.W.: Analysis and improvement of content-aware routing mech-
anisms. IEICE Trans. Commun. E88, 227–238 (2005)

54. Maltz, D.A., Bhagwat, P.: TCP Splicing for Application Layer Proxy Performance. Tech. Rep.,
IBM (1998)

55. Marwah, M., Mishra, S., Fetzer, C.: Fault-tolerant and scalable TCP splice and web server
architecture. In: Proc. of the 25th IEEE Symposium on Reliable Distributed Systems (2006)

56. Mogul, J.C.: The case for persistent-connection HTTP. In: Proc. of SIGCOMM (1995)
57. Networks, F.: http://www.foundrynet.com (2010)
58. Networks, N.: http://www.nortel.com/ (2010)
59. Ok, M., Park, M.S.: Distributing requests by (around k)-bounded load-balancing in web server

cluster with high scalability. IEICE Trans. Inf. Sys. E89-D, 663–672 (2006)
60. Pai, V.S., Aron, M., Banga, G., Svendsen, M., Druschel, P., Zwaenepoel, W., Nahum, E.M.:

Locality-aware request distribution in cluster-based network servers. In: Proc. of Architectural
Support for Programming Languages and Operating Systems (ASPLOS) (1998)

61. Papathanasiou, A.E., Hensbergen, E.V.: KNITS: switch-based connection hand-off. In: Proc. of
IEEE INFOCOM (2002)

62. Park, S.Y., Park, D., Lee, J., Cho, J.W.: Efficient inter-backend prefetch algorithms in cluster-
based web servers. In: Proc. of International Conference/Exhibition on High Performance Com-
puting (2001)

63. Radware: http://www.radware.com (2010)
64. Resonate: Resonate central dispatch technology advantage: TCP connection HOP. White Paper

(2001)
65. Resonate, inc. http://www.resonate.com/ (2010)
66. Riska, A., Sun, W., Smirni, E., Ciardo, G.: ADAPTLOAD: effective balancing in clustered

web servers under transient load conditions. In: Proc. of the 22nd International Conference on
Distributed Computing Systems (2002)

67. Rosu, M.C., Rosu, D.: An evaluation of TCP splice benefits in web proxy servers. In: Proc. of
WWW (2002)

68. Satake, S., Inai, H.: Special issue on internet architecture technology papers: a nonprobabilistic
server selection method based on periodically obtained load information for web server clusters.
Electron. Commun. Jpn. 89, 1–12 (2006)

69. Schroeder, T., Goddard, S., Ramamurthy, B.: Scalable web server ciustering technologies. IEEE
Netw. May, 38–46 (2000)

70. Server, L.V.: http://www.linuxvirtualserver.org/ (2006). Accessed 26 Nov 2010
71. Shan, Z., Lin, C., Marinescu, D.C., Yang., Y.: Modeling and performance analysis of QoS-aware

load balancing of web-server clusters. Comput. Networks 40, 235–256 (2002)
72. Sharifian, S., Motamedi, S.A., Akbarib, M.K.: A content-based load balancing algorithm with

admission control for cluster web servers. Future Gener. Comput. Syst. 24, 775–787 (2008)

http://www.foundrynet.com
http://www.nortel.com/
http://www.radware.com
http://www.resonate.com/
http://www.linuxvirtualserver.org/

World Wide Web (2011) 14:105–131 131

73. Sit, Y.F., Wang, C.L., Lau, F.: Socket cloning for cluster-based web servers. In: Proc. of IEEE
International Conference on Cluster Computing (2002)

74. Sit, Y.F., Wang, C.L., Lau, F.: Cyclone: a high-performance cluster-based web server with socket
cloning. Cluster Comput. 7, 21–37 (2004)

75. Snoeren, A.C., Andersen, D.G., Balakrishnan, H.: Fine-grained failover using connection migra-
tion. In: Proc. of 3rd USENIX Symp. on Internet Technologies and Systems (2001)

76. Switching, L.L.: http://www.linuxvirtualserver.org/software/ktcpvs/ktcpvs.html (2010)
77. Syme, M., Goldie, P.: Optimizing Network Performance with Content Switching. Server, Firewall

and Cache Load Balancing. Prentice Hall (2004)
78. Takahashi, M., Kohiga, A., Sugawara, T., Tanaka, A.: Tcp-migration with application-layer

dispatching: a new http request distribution architecture in locally distributed web server sys-
tems. In: Proc. of the 1st International Conference on Communication System Software and
Middleware (2006)

79. Tang, W., Cherkasova, L., Russell, L., Mutka, M.W.: Modular tcp handoff design in streams-
based tcp/ip implementation. In: Proc. of the 1st International Conference on Networking-Part 2
(2001)

80. Tang, X., Chanson, S.T.: On caching effectiveness of web clusters under persistent connections.
J. Parallel Distrib. Comput. 63, 981–995 (2003)

81. TCPHA project. http://dragon.linux-vs.org/∼dragonfly/htm/tcpha.htm (2004). Accessed 26 Nov
2010

82. Teo, Y.M., Ayani, R.: Comparison of load balancing strategies on cluster-based web servers.
Trans. of the Soc. for Model. and Sim. 77, 185–195 (2001)

83. Yang, C.S., Luo, M.Y.: Efficient support for content-based routing in web server clusters. In:
Proc. of the 2nd Conference on USENIX Symposium on Internet Technologies and Systems,
vol. 2 (1999)

84. Yang, J., Jin, D., Li, Y., Hielscher, K.S., German, R.: Modeling and simulation of performance
analysis for a cluster-based web server. Simulation Modelling Practice and Theory 14, 188–200
(2006)

85. Yao, J., Ding, J.J., Bhuyan, L.N.: Intelligent message scheduling in application oriented network-
ing systems. In: Proc. of IEEE International Conference on Communications (ICC) (2008)

86. Zeng-Kai, D., Jiu-Bin, J.: A completely distributed architecture for cluster-based web servers. In:
Proc. of the 4th International Conference on Parallel and Distributed Computing, Applications
and Technologies (2003)

87. Zhang, Q., Mi, N., Riska, A., Smirni, E.: Load unbalancing to improve performance under auto-
correlated traffic. In: Proc. of the 26th IEEE International Conference on Distributed Computing
Systems (2006)

88. Zhang, Q., Riska, A., Sun, W., Smirni, E., Ciardo, G.: Workload-aware load balancing for
clustered web servers. IEEE Trans. Parallel Distrib. Syst. 3, 219–233 (2005)

89. Zhang, R., Abdelzaher, T.F., Stankovic, J.A.: Efficient TCP connection failover in web server
clusters. In: Proc. of IEEE INFOCOM (2004)

90. Zhang, W.: Linux virtual server for scalable network services. In: Proc. of OTTAWA Linux
Symposium (2000)

91. Zhang, X., Barrientos, M., Chen, J.B., Seltzer, M.: HACC: an architecture for cluster-based web
servers. In: Proc. of the 3rd USENIX Windows NT Symposium (1999)

92. Zhao, L., Luo, Y., Bhuyan, L., Iyer, R.: Design and implementation of a content-aware switch
using a network processor. In: Proc. of the 13th Symposium on High Performance Interconnects
(2005)

http://www.linuxvirtualserver.org/software/ktcpvs/ktcpvs.html
http://dragon.linux-vs.org/~dragonfly/htm/tcpha.htm

	An up-to-date survey in web load balancing
	Abstract
	Introduction
	Load balancing classifications
	Introducing scalability in load balancing
	Content-blind load balancing
	Layer-2 forwarding
	Layer-3 forwarding
	Content-blind request distribution policies

	Content-aware load balancing architectures
	Two-way architectures
	TCP connection binding
	TCP splicing
	Redirect flows

	One-way architectures
	TCP hand-of f
	One-packet TCP state migration to packet filter
	TCP connection hop
	Socket cloning
	One-way TCP splicing
	One-way connection binding
	TCP rebuilding

	Content-aware request distribution policies
	Locality-aware solutions
	Non locality-aware solutions
	QoS-aware solutions

	Conclusions and open problems
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

