
Fast low memory demanding 3D video encoder

O.López, M.Martínez-Rach, P.Piñol M.P. Malumbres, J.Oliver
Dept. Física y Arquitectura de Computadores Dept. DISCA

Universidad Miguel Hernández Universidad Politécnica de Valencia

03202 Elche 46222 Valencia

(otoniel,mmrach,pablop,mels)@umh.es joliver@disca.upv.es

Abstract

In recent years, several authors have begun to
develop 3D-DWT based video encoders in or-
der to exploit the benefits of the wavelet trans-
form. However, the regular 3D-DWT imple-
mentation requires a huge amount of mem-
ory, and this is one of the main drawbacks
in real applications. In this paper, we intro-
duce a fast run-length based encoding stage
over a low memory demanding frame-based
3D-DWT scheme. Our proposal shows good
trade off between R/D, coding delay (up to 10
times faster than 3D-SPIHT) and memory re-
quirements (up to 5 times less memory than
3D-SPIHT).

1 Introduction

In recent years, three-dimensional wavelet
transform (3D-DWT) has focused the at-
tention of the research community, most of
all in areas such as video watermarking [2]
and 3D coding (e.g., compression of volu-
metric data [11] or multispectral images [5],
3D model coding [1], and specially, video
coding). These encoders are good candi-
dates for some applications like professional
video editing, IPTV video surveillance appli-
cations (Traffic cameras, child/day care, mall
cctv surveillance), live event IPTV broadcast,
multi-spectral satellite imaging, HQ video de-
livery, etc., where a specific frame of a video
sequence must be reconstructed as fast as pos-
sible and with high visual quality.

In video compression, some early propos-

als were based on merely applying the wavelet
transform on the time axis after computing the
2D-DWT for each frame [7]. Then, an adapted
version of an image encoder can be used, tak-
ing into account the new dimension. For in-
stance, instead of the typical quad-trees of im-
age coding, a tree with eight descendants per
coefficient is used in [7] to extend the SPIHT
image encoder to 3D video coding. A more ef-
ficient strategy for video coding with time fil-
tering is Motion Compensated Temporal Fil-
tering (MCTF) [12, 3]. In these techniques,
in order to compensate object (or pixel) mis-
alignment between frames, and hence avoid
the significant amount of energy that appears
in high-frequency subbands, a motion compen-
sation algorithm is introduced to align all the
objects (or pixels) in the frames before being
temporally filtered.

In all these applications, the first problem
that arises is the extremely high memory con-
sumption of the 3D wavelet transform if the
regular algorithm is used, since a group of
frames must be kept in memory before ap-
plying temporal filtering, and in the case of
video coding, we know that the greater tempo-
ral decorrelation, the greater number of frames
are needed in memory. Another drawback
is the necessity of grouping images in small
Group Of Pictures (GOP) to prevent very high
memory usage, because the 3D-DWT must be
computed along a set of images which are held
in memory. This video sequence division into
GOPs containing only a few images hinders
the decorrelation of the temporal dimension
and causes boundary effects between GOPs.



LLL1

LLH1, LHL1, LHH1, HLL1,
HLH1, HHL1, HHH1,

LLL2

LLH2, LHL2,
LHH2, HLL2,
HLH2, HHL2,
HHH2

(a) (b) 

Figure 1: Overview of the 3D-DWT computation
in a two-level decomposition, (a) following a frame-
by-frame scheme; or, (b) the regular 3D-DWT al-
gorithm

Even though several proposals have been
made to avoid the aforementioned problems,
most of them are not general (for any wavelet
transform) and/or complete (the wavelet co-
efficients are not the same as those from the
usual dyadic wavelet transform). In addition,
software implementation is not always easy.

In this paper, we introduce a fast run-length
based encoding stage over a low memory
demanding frame-by-frame 3D-DWT scheme
which does not require a GOP division. Also,
we evaluate the behaviour of different wavelet
filters in both spatial and temporal domain.

2 3D-DWT with low memory usage

In [9], the authors propose an extension to
a three-dimensional wavelet transform of the
classical line-based approach [4]. In this
approach, using a recursive implementation,
frames are continuously input without the di-
vision of the video sequence into GOPs.

In this algorithm, there is a buffer associ-
ated to each decomposition level (see Figure 1.
Each buffer must keep 2N+1 frames, where
2N+1 refers to the number of taps for the
largest analysis filter bank in the temporal di-
rection. Remark that at a level i, the buffer
memory requirements are a quarter compared
to the level i-1.

For the first decomposition level the algo-
rithm directly receives frames one by one and
on every input frame, a one-level 2D-DWT is
applied and finally, the transformed frames are

stored in the associated buffer. Once we have
enough frames in the buffer to perform one
step of a wavelet transform in the temporal di-
rection (z-axis), the convolution process is ap-
plied twice, first using the low-pass filter and
then the high-pass filter. In this manner the
first frame of each high-frequency subbands
(the HHL1, HLH1, HHH1, HLL1, LHL1,
LLH1 and LHH1 wavelet subbands), and the
first frame of the LLL1 subband are obtained.
At this moment, we can process the first frame
of each wavelet subbands except for the LLL1

subband, which does not belong to the final
result, and it will be the incoming data for the
following decomposition level. Finally, once
the frames at the first level buffer have been
used, this buffer is shifted twice, discarding
two frames and two new frames are inputted.
Once the buffer is updated, the process can
be repeated and more subband frames are ob-
tained.

At the second decomposition level, its asso-
ciated buffer is filled up with the LLL1 frames
computed in the first decomposition level. Af-
ter that, it is processed in the same way as for
the first decomposition level. This process is
repeated until the desired decomposition level
(nlevel) is reached.

The main drawback in this algorithm is
the synchronization among buffers. Before
a buffer can produce frames, it must be
completely filled with frames from previous
buffers, therefore they start working at differ-
ent moments, i.e., they have different delays.
Moreover, all the buffers exchange their result
at different intervals, according to their level.

So as to solve the synchronization problem,
the authors propose a recursive function that
obtains the next low-frequency subband frame
(LLL) from a contiguous level in a similar way
as authors in [10] proposed for the 2D-DWT.

3 RUN-LENGTH ENCODER

In order to have low memory consumption,
once a wavelet subband is calculated, it has
to be encoded as soon as possible to release
memory. The encoder cannot use global video
information since it does not know the whole



video. Moreover, we aim at fast execution, and
hence no R/D optimization or bitplane pro-
cessing can be made, because it would turn
it even slower. In the next subsection, a
Run-Length Wavelet (RLW) encoder with the
aforementioned features is proposed.

3.1 Fast Run-Length Coding

In the proposed algorithm, the quantization
process is performed by two strategies: one
coarser and another finer. The finer one con-
sists on applying a scalar uniform quantiza-
tion to the coefficients using the Q parame-
ter. The coarser one is based on removing bit
planes from the least significant part of the
coefficients. We define rplanes as the num-
ber of less significant bits to be removed, and
we call significant coefficient to those coeffi-
cients ci,j that are different to zero after dis-
carding the least significant rplanes bits, in
other words, if ci,j ≥ 2rplanes. The wavelet
coefficients are encoded as follows. The coef-
ficients in the subband buffer are scanned row
by row to exploit their locality. For each co-
efficient in that buffer, if it is not significant,
a run-length count of insignificant symbols at
this level is increased (run_lengthL). How-
ever, if it is significant, we encode both the
count of insignificant symbols and the signifi-
cant coefficient, and run_lengthL is reset.

The significant coefficient is encoded by
means of a symbol indicating the number of
bits required to represent that coefficient. An
arithmetic encoder with two contexts is used
to efficiently store that symbol. As coefficients
in the same subband have similar magnitude,
an adaptive arithmetic encoder is able to rep-
resent this information in a very efficient way.
However, we still need to encode its significant
bits and sign. They are raw encoded to speed
up the execution time.

In order to encode the count of insignificant
symbols, we encode a RUN symbol. After en-
coding this symbol, the run-length count is
stored in a similar way as in the significant co-
efficients. First, the number of bits needed to
encode the run value is arithmetically encoded
(with a different context), afterwards the bits
are raw encoded.

Instead of using run-length symbols, we
could have used a single symbol to encode
every insignificant coefficient. However, we
would need to encode a larger amount of sym-
bols, and therefore the complexity of the algo-
rithm would increase most of all in the case of
large number of insignificant contiguous sym-
bols, which usually occurs in moderate to high
compression ratios.

Despite of use of run-length coding, the
compression performance is increased if a spe-
cific symbol is used for every insignificant coef-
ficient, since an arithmetic encoder stores more
efficiently many likely symbols than a lower
amount of less likely symbols. So, for short
run-lengths, we encode a LOWER symbol for
each insignificant coefficient instead of coding
a run-length symbol for all the sequence. The
threshold to enter the run-length mode and
start using run-length symbols is defined by
the enter_run_mode parameter. The formal
description of the depicted algorithm can be
found in Figure 2.

function RLW_Code_Subband(Buffer, L)
Scan Buffer in horizontal raster order
for each Ci,j in Buffer

nbitsi,j =
⌈

log2

(∣∣Ci,j

∣∣)⌉
if nbitsi,j ≤ rplanes

increase run_lengthL
else

if run_lengthL ≤ enter_run_mode
repeat run_lengthL times

arithmetic_output LOWER
else

arithmetic_output RUN

rbits =
⌈

log2

(
run_lengthL

)⌉
arithmetic_output rbits

output bitnbits(i,j)−1(∣∣Ci,j

∣∣). . . bitrplane+1

(∣∣Ci,j

∣∣)
output sign(ci,j)

end of fuction
Note: bitn (C) is a function
that returns the nth bit of C

Figure 2: Run-length coding of the wavelet coeffi-
cients

4 Results

In this section we analyze the behavior of the
proposed encoder (3D-RLW) and we evaluate



10152

34504

118460

645720

35824

86272

227620

489960

23800

10476
16076

89292

12548

22508

129750

10000

100000

1000000

m
or
y 
Re

qu
ire

m
en

ts
 (K

B)

1104
1540

4900
3412

3908

1000

QCIF CIF ITU‐D1 Full‐HD

M
em

3D‐SPIHT 3D‐RLW D97‐D97 3D‐RLW D97‐B53
3D‐RLW B53‐B53 M‐LTW (Intra) H264

Figure 3: Memory requirements for evaluated en-
coders (KB) (results obtained with Windows XP
task manager, peak memory usage index)

the performance when we use different sepa-
rable 1D filters in both spatial and temporal
domain. For our simulation we have three dif-
ferent options for the 3D decomposition, as
shown in Table 1. We will compare the three
3D-RLW encoder versions versus the fast M-
LTW Intra video encoder [8], 3D-SPIHT [6]
and H.264 (JM16.1 version), in terms of R/D
performance, coding delay and memory re-
quirements. All the evaluated encoders have
been tested on an Intel PentiumM Dual Core
3.0 GHz with 2 Gbyte RAM memory.

Option Spatial Temporal
D97-D97 Daubechies 9/7 Daubechies 9/7
D97-B53 Daubechies 9/7 LeGall B5/3
B53-B53 LeGall B5/3 LeGall B5/3

Table 1: Filter choices for 3D decomposition
of video

In Figure 3, the memory requirements of
different encoders under test are shown. Ob-
viously, the M-LTW encoder only uses the
memory needed to store one frame. The 3D-
RLW encoder (using Daubechies 9/7F time fil-
ter) uses up to 5 times less memory than 3D-
SPIHT for Full-HD sequences and up to 10
times less memory than H.264 for QCIF and
ITU-D1 sequence sizes. The 3D-RLW version
using LeGall 5/3 temporal filter requires up
to 1.5 times less memory than the one using
Daubechies 9/7F time filter.

34

39

44

49

PS
N
R 
(d
B)

3D‐SPIHT

3D RLW D97 D97

24

29

34

0 500 1000 1500 2000 2500 3000 3500

P

Target Bit‐rate (Kbps)

3D‐RLW D97‐D97

3D‐RLW D97‐B53

3D‐RLW B53‐B53

M‐LTW (Intra)

H264

Figure 4: PSNR (dB) for all evaluated encoders
for Container sequence in CIF format

34

39

44

49

PS
N
R 
(d
B)

3D‐SPIHT

3D RLW D97 D97

24

29

34

0 500 1000 1500 2000 2500 3000 3500

P

Target Bit‐rate (Kbps)

3D‐RLW D97‐D97

3D‐RLW D97‐B53

3D‐RLW B53‐B53

M‐LTW (Intra)

H264

Figure 5: PSNR (dB) for all evaluated encoders
for Foreman sequence in CIF format

Regarding R/D, in Figures 4 and 5 we
can see the R/D behavior of all evaluated
encoders. As shown, H.264 is the one
that obtains the best results, mainly due to
the motion estimation/motion compensation
(ME/MC) stage included in this encoder, con-
trary to 3D-SPIHT and 3D-RLW versions that
do not include any ME/MC stage. It is inter-
esting to see the improvement of 3D-SPIHT
and 3D-RLW versions when compared to an
INTRA video encoder. As mentioned, no ME
stage is included in 3D-SPIHT and 3D-RLW
versions, so this improvement is accomplished
by exploiting only the temporal redundancy
among video frames. The R/D behavior of
3D-SPIHT and 3D-RLW is similar for images
with moderate-high motion activity, but for
sequences with low movement, 3D-SPIHT out-
performs 3D-RLW, showing the power of tree
encoding system. The 3D-RLW version using



23.19

62.61

148.94

567.65

170.70

638.23

170.54

683.67

47.06

190.27

0.27

1.00

10.00

100.00

1,000.00

m
es
 p
er
 s
ec
on

d

0.07

0.01

0.10

CIF QCIF

Fr
am

3D‐SPIHT 3D‐RLW D97‐D97 3D‐RLW D97‐B53

3D‐RLW B53‐B53 M‐LTW (Intra) H264

Figure 6: Execution time comparison of the en-
coding process

LeGall B5/3 filter in both spatial and tempo-
ral domain obtains slightly lower R/D perfor-
mance compared to the other 3D-RLW ver-
sions using Daubechies 9/7F filter in the spa-
tial domain.

Regarding coding delay, in Figure 6 we can
see that all 3D-RLW encoder versions are
faster than the other evaluated encoders, be-
ing up to 10 times faster than 3D-SPIHT for
QCIF size sequences and 3 times faster than
the M-LTW INTRA video encoder. The de-
coding process is also faster in 3D-RLW than
in the other encoders.

5 Conclusions

In this paper a fast and low memory demand-
ing 3D-DWT video encoder has been pre-
sented. We have implemented three encoder
versions using different wavelet filters for both
spatial and temporal domain. All three ver-
sions reduce the memory requirements com-
pared with 3D-SPIHT (up to 5 times less
memory) and H.264 (up to 10 times less mem-
ory). The new 3D-DWT encoder is very fast
(up to 10 times faster than 3D-SPIHT) and
it has better R/D behavior than the INTRA
video coder M-LTW (up to 5 dB). Among
the three 3D-RLW versions, the one using
Daubechies 9/7F filter for the spatial domain
and LeGall 5/3 filter for the temporal domain
shows the best trade off between R/D, coding
delay (the fastest one) and memory require-

ments (up to 1.5 less memory than the one
using Daubechies 9/7F filter in the temporal
domain). In order to improve the coding effi-
ciency, an ME/MC stage could be added. In
this manner, the objects/pixels of the input
video sequence will be aligned, and so, fewer
frequencies would appear at the higher fre-
quency subbands, improving the compression
performance.

Acknowledgements

Thanks to Spanish Ministry of education and
Science under grants DPI2007-66796-C03-03
and TIN2009-05737-E for funding.

References

[1] M. Aviles, F. Moran, and N. Garcia. Pro-
gressive lower trees of wavelet coefficients:
Efficient spatial and SNR scalable coding
of 3D models. Lecture Notes in Computer
Science, 3767:61–72, 2005.

[2] P. Campisi and A. Neri. Video water-
marking in the 3D-DWT domain using
perceptual masking. In IEEE Interna-
tional Conference on Image Processing,
pages 997–1000, September 2005.

[3] P. Cheng and J.W.Woods. Bidirectional
MC-EZBC with lifting implementation.
IEEE Transactions on Circuits and Sys-
tems for Video Technology, pages 1183–
1194, October 2004.

[4] C. Chrysafis and A. Ortega. Line-based,
reduced memory, wavelet image compres-
sion. IEEE Transactions on Image Pro-
cessing, 9(3):378–389, March 2000.

[5] P. Dragotti and G. Poggi. Compres-
sion of multispectral images by three-
dimensional SPITH algorithm. IEEE
Transactions on Geoscience and Remote
Sensing, 38(1):416–428, January 2000.

[6] B. Kim, Z. Xiong, and W. Pearlman. Very
low bit-rate embedded video coding with
3D set partitioning in hierarchical trees
(3D SPIHT), 1997.



[7] B. Kim, Z. Xiong, and W. Pearlman.
Low bit-rate scalable video coding with
3D set partitioning in hierarchical trees
(3D SPIHT). IEEE Transactions on Cir-
cuits and Systems for Video Technology,
10:1374–1387, December 2000.

[8] O. Lopez, M. Martinez-Rach, P. Piñol,
M. Malumbres, and J.Oliver. M-LTW: A
fast and efficient intra video codec. Sig-
nal Processing: Image Communication,
(23):637–648, July 2008.

[9] J. Oliver, O. Lopez, M. Martinez-Rach,
and M. Malumbres. A general frame-by-
frame wavelet transform algorithm for a
three-dimensional analysis with reduced
memory usage. In IEEE International
Conference on Image Processing, pages
469–472, October 2007.

[10] J. Oliver, E. Oliver, and M.P.Malumbres.
On the efficient memory usage in the
lifting scheme for the two-dimensional
wavelet transform computation. In IEEE
International Conference on Image Pro-
cessing, pages 485–488, September 2005.

[11] P. Schelkens, A. Munteanu, J. Bar-
bariend, M. Galca, X. Giro-Nieto, and
J. Cornelis. Wavelet coding of volumetric
medical datasets. IEEE Transactions on
Medical Imaging, 22(3):441–458, March
2003.

[12] A. Secker and D. Taubman. Motion-
compensated highly scalable video com-
pression using an adaptive 3D wavelet
transform based on lifting. IEEE Inter-
nantional Conference on Image Process-
ing, pages 1029–1032, October 2001.


