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Abstract. A wide variety of wavelet-based image compression schemes
have been reported in the literature. Every new encoder introduces dif-
ferent techniques that can be taken into account for designing a new
image encoder.

In this paper, we present several design options and optimizations that
will be used along with the LTW algorithm. However, these optimizations
can be applied to other image compression algorithms or implementa-
tions. They improve the LTW rate/distortion performance in about 0.4
dB without increasing its computational cost, showing the importance
of selecting good design options during the development of a new image
encoder. !

1 Introduction

Wavelet image encoders have been proved to be the best compression schemes in
terms of rate/distortion (R/D) optimization. Many wavelet image encoders have
been reported in the literature, and each of them proposes different strategies
to achieve the best R/D performance, along with other desirable capabilities
(embedded bit stream, fast processing, symmetric encoder/decoder, robust bit
stream, etc.) Therefore, every new encoder introduces different techniques that
can be taken into account when designing a new image encoder.

Hence, Shapiro’s EZW [1] introduces the concept of zerotrees as a way to
explode similarities between subbands in a wavelet decomposition. Another im-
portant strategy used by Shapiro is performing successive-approximation in order
to achieve a specific bit rate, and thus an embedded bit stream. Said and Pearl-
man [2] take these ideas and propose a new technique: clustering of zerotrees.
They propose grouping zerotree symbols at the significance map by means of a
sorting algorithm, getting better R/D performance.

Recently, the JPEG 2000 standard was released [3]. The proposed algorithm
does not use zerotrees, but it performs bit-plane processing with three passes per
bit-plane achieving finer rate control. A new R/D optimization algorithm and
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a large number of contexts are also used. In general, some ideas introduced by
previous authors can be complemented with new ones in order to overcome prob-
lems or deficiencies presented in previous proposals. In this way, in [4] we propose
a different wavelet image encoder, called Lower-Tree Wavelet (LTW) coder, as
a new alternative to improve the computational cost and R/D performance of
previous wavelet-based image coders.

In section 2 a description of the LTW algorithm is shown in order to allow
the reader to be able to understand the proposed optimizations. In section 3 new
design options for the LTW are analyzed. Finally, in section 4 some conclusions
are drawn.

2 The Lower Tree Wavelet (LTW) Encoder

Tree oriented wavelet image encoders are proved to efficiently transmit or store
the wavelet coefficient set, achieving great performance results. In these algo-
rithms, two stages can be established. The first one consists on encoding the
significance map, i.e., the location and amount of bits required to represent the
coefficients that will be encoded (significant coefficients). In the second stage,
significant transform coefficients are encoded.

One of the main drawbacks in previous tree oriented wavelet image encoders
is their high computational cost. That is mainly due to the bit plane processing
at the construction of the significance map, performed along different iterations,
using a threshold that focuses on a different bit plane in each iteration. Moreover,
the bits of the significant coefficients are also bit plane processed.

The LTW algorithm is able to encode the significance map without perform-
ing one loop scan per bit plane. Instead of it, only one scan of transform coeffi-
cients is needed. The LTW can also encode the bits of the significant transform
coefficients in only one scan.

The quantization process for LTW is performed by two strategies: one coarser
and another finer. The finer one consists on applying a scalar uniform quanti-
zation to the coefficients, and it is performed before the LTW algorithm. On
the other hand, the coarser one is based on removing bit planes from the least
significant part of the coefficients. It belongs to the LTW encoder. We define
rplanes as the number of less significant bits that are going to be removed from
every transform coefficient in the LTW.

At the encoder initialization, the maximum number of bits needed to repre-
sent the higher coefficient (maxplane) is calculated and output to the decoder.
The rplanes parameter is also output. With this information, we initialize an
adaptive arithmetic encoder that will be used to transmit the number of bits
required to encode each coefficient.

In the next stage, the significance map is encoded as follows. All the subbands
are scanned in zig-zag order and for each subband all the coefficients are scanned
in small blocks. Then, for each coefficient, if it is significant (i.e., it is different
from zero if we discard the first rplanes bits) the number of bits required to



represent that coeflicient is encoded with an adaptive arithmetic encoder. As co-
efficients in the same subband have similar magnitude, the adaptive arithmetic
encoder is able to encode very efficiently the number of bits of significant coeffi-
cients. On the other hand, if a coefficient is not significant and all its descendents
are not significant, they form a lower-tree, and the symbol LOW ER is encoded.
This coefficient and all its descendents are fully represented by this symbol and
are not processed any more. Finally, if the coefficient is insignificant but it has at
least one significant descendent, the symbol ISOLATED_LOW ER is encoded.

The last stage consists on encoding the significant coefficients discarding the
first rplanes bits. In order to speed up the execution time of the algorithm, we
do not use an arithmetic encoder in this part, what results in a very small lost
in performance.

Notice that in this section the algorithm has only been outlined, and a com-
plete and formal description of LTW and all of its parameters can be found in
[4].

3 Design Options in LTW

During the development of a wavelet image encoder, many design options ap-
pear. In this section, we are going to analyze some of them. For the dyadic
wavelet decomposition, Daubechies biorthogonal B9/7 filter will be applied. The
standard Lena image from the RPI site (8 bpp, 512x512) will be used for all the
tests.

3.1 Quantization Process

Let us focus on the quantization process. In section 2 it has been explained how
the bit rate and its corresponding distortion factor can be modified by means
of two quantization parameters, one finer ()) and another coarser (rplanes).
LTW is not naturally embedded, it is the price that we have to pay for the
lower complexity. Instead of it, the bit rate is adjusted using two quantization
parameters in a similar way as in the widely used JPEG standard. However,
loss of SNR scalability is compensated with a different feature not present in
EZW and SPIHT, spatial scalability, which is desirable in many multimedia
applications. On the other hand, notice that SNR, scalability can be achieved
from spatial scalability through interpolation techniques.

Despite of the use of two quantization methods within the LTW, the final
quantization of a wavelet coefficient can be expressed mathematically by the
following equations (let us call ¢ the initial coefficient and the quantized coef-
ficient):

if (c>0)co= {([é +0.5] + K)/Q”’l“”“J . (1)

if (c<0)co= R[é - 0.5] - K)/Q”’l‘m”-‘ . 2)



if (c=0)cg=0. (3)

Notice that these expressions include a uniform scalar quantization (with a
constant factor K and rounding) and the quantization arising from the removal
of rplanes bits in the LTW algorithm. The constant factor K can be used to
take some border values out of the quantization dead-zone and should be a low
value (0 or 1). On the other hand, the coefficients which are recovered on the
decoder side will be (let us call cg a coefficient recovered from cg):

if (cg > 0) cr = (2((2cq + 1)27Plames=! _K) —1)Q . (4)
if (cg <0)cr=(2((2cq — 1)27Plames=1 LK) +1)Q . (5)
if(CQZO) cr =0. (6)

In both dequantization processes, i.e. in the standard scalar dequantization
and in the dequantization from the bit-plane removing, the cg value is adjusted
to the midpoint within the recovering interval, reducing the quantization error.

Observe that this quantization process is very similar to the strategy em-
ployed in JPEG 2000; a uniform quantizer with deadzone. However, some differ-
ences can be drawn. For example, we use two quantization parameters (rplanes
and @), applying the uniform quantization twice, and we always perform a mid-
point reconstruction, while JPEG 2000 decoders use to apply a reconstruction
bias towards zero.

3.2 Analyzing the Adaptive Arithmetic Encoder

As coefficients in the same subband have similar magnitude, and due to the order
we have established to scan the coefficients, an adaptive arithmetic encoder [5] is
able to encode very efficiently the number of bits of the transform coefficients (i.e.
the significance map used by the LTW algorithm). That is why this mechanism
is essential in the R/D performance of the encoder.

A regular adaptive arithmetic encoder uses one dynamic histogram to esti-
mate the current probability of a symbol. In order to improve this estimation
we can use a different histogram depending on the decomposition level of the
wavelet subband. It makes sense because coefficients in different subbands tend
to have different magnitude, whereas those in the same decomposition level have
similar magnitude.

Table 1, column a) shows the performance of the original LTW published
in [4], in terms of image quality (PSNR in dB) for different bit rates (in bpp).
In column b) we can see the results of using a different histogram on every
decomposition level. It results beneficial with no penalty in computational cost.

If we review the LTW algorithm in section 2, mazplane is the maximum
number of bits needed to represent the higher coefficient in the wavelet decom-
position, being this value the one used in the initialization of the arithmetic
encoder. At this point, we can define maxplane;, as the maximum number of
bits needed to represent the higher coefficient in the descomposition level L. So



these values can be used to adjust the initialization of every arithmetic encoder,
provided all mazplaner, symbols are output to the decoder. The drawback intro-
duced here is manifestly compensated by the improvements achieved, as shown
in Table 1 column c).

As we mentioned previously, coefficients in the same subband have similar
magnitude. In order to take better profit from this fact, different histograms
may be handled according to the magnitude of previously coded coefficients,
i.e., according to the coefficient context. Last column in Table 1 shows the result
of establishing two different contexts: the first one is used when the left and
upper coefficients are insignificant or they are close to insignificant, and the
other context is applied otherwise.

Several other actions can be tackled directly on the adaptive arithmetic en-
coder. On the one hand, the maximum frequency count (see more details in [5])
proposed by the authors is 16384 (when using 16 bits for coding). Practical ex-
periences led Shapiro to reduce this value to 1024. On the other hand, another
parameter that can be adjusted is how many the histogram is increased with
every symbol. If this value is greater than one, the adaptive arithmetic encoder
may converge faster to local image features, but increasing it too much may turn
the model (pdf estimation) inappropriate, resulting in poorer performance.

Table 1. PSNR (dB) with different options in the arithmetic encoder

opt/rate a) b) c) d)

1 40.12 40.19 40.26 40.38
0.5 37.01 37.06 37.12 37.21
0.25 33.93 34.00 34.07 34.16

0.125 31.02 31.07 31.13 31.18

3.3 Clustering Symbols

Transform coefficients may be grouped forming clusters. This is due to the na-
ture of the wavelet transform, where a coefficient in a subband represents the
same spatial location as a block of 2x2 coefficients in the following subband.
Fig. 1 represents a significance maps in LTW. On the left column, the symbol L
means LOW ER, the symbol * represents a coefficient previously coded by any
LOW ER symbols (and it does not need to be encoded), and any numeric value
is a symbol representing the number of bits needed to encode that coefficient.
Fig. 1a) lower map represents the last subband whereas upper map is just the
previous one. We can easily check that each L symbol in this subband leads to
a 2x2 * block in the last subband. Also, it can be observed that blocks of 2x2
LOW ER symbols tend to appear in the last subband. Thus, a new symbol that
groups these blocks of L symbols will reduce the total number of symbols to be



encoded. This way, we can define a new symbol called LOWER_ CLUSTER,
which aims at grouping clusters of L symbols. Fig. 1b) represents this significance
map introducing LOWER_CLUSTER (C) symbols.

LL 77 LL 77
77 76 77 176

LL LL LL LL LL
LL 6L LL LL S
a) b)

Fig. 1. Significance maps

Experimental tests using this strategy resulted in 1287 L symbols, 645 nu-
meric symbols and 3435 new C symbols in the last subband. With the intro-
duction of this new symbol, we passed from 15027 to 1287 L symbols, reducing
the total number of symbols in 10305. However, the final file size increased from
7900 to 8192 bytes. In Table 1 this option corresponds with column b). As shown,
introducing this symbol is not a good idea, if we compare it with column a), the
best option of previous arithmetic encoder analysis. The reason is that if we do
not use the new symbol, the L symbol is very likely (96%), whereas introducing
the C symbol softens this probability concentration, with 64% for the C symbol
and 24% for the L. As we know, an adaptive arithmetic encoder works better
with probability concentration.

Table 2. PSNR (dB) with different clustering options

opt/rate a) b) c) d)

1 40.38 40.06 40.42 40.50
0.5 37.21 36.98 37.28 37.35
0.25 34.16 34.00 34.23 34.31

0.125 31.18 31.13 31.26 31.27

In order to overcome this problem, instead of a C symbol, two kind of nu-
meric symbol can be used. A regular numeric symbol shows the number of bits
needed to encode a coefficient, but a clustering numeric symbol not only in-
dicates the number of bits but also the fact that the descendant cluster is a
LOWER_CLUSTER (group of 2x2 L symbols). In this manner, likely symbols
are not dispersed (because a particular numeric symbol do not use to be likely)



and clusters of L symbols are implicitly represented with no need to encode any
symbol (anyhow, the numeric symbol was previously represented). In Table 2,
column c) shows the advantage of using this method.

However, clustering may still be more favorable if it is used along with other
strategies. For example, when three symbols in a cluster are LOW ER, and
the remaining symbol is close to be insignificant, the whole cluster may also
be considered LOW ER_CLU ST ER, supporting the construction of new lower-
trees which will be encoded with just one symbol. Another similar nice strategy
is saturating some coefficient values, from a perfect power of two to the same
value decreased in one. In this manner, the introduced error for that coefficient
is in magnitude only one, while it needs one less bit to be stored, resulting in
higher final performance. These improvements are shown in the last column, in
Table 2.

4 Conclusions

In this paper, we have presented several optimizations to be used along with the
LTW algorithm. As shown in Table 3, they improve its R/D performance with
Lena in about 0.4 dB, showing the importance of selecting good design options
during the development of a new image encoder. R/D results for Goldhill are also
shown in this table. Moreover, its computational cost is not increased, resulting
from 2 to 3.5 times faster than JPEG 2000 and SPIHT, as it is shown in Fig 2
and 3. Larger images, like the Caf image included within the JPEG 2000 test
images, offer even greater improvement in execution time. Notice that all the
implementations are written under the same circumstances, using plain C++.
The reader can easily perform new tests using the implementation of the LTW
that can be downloaded from http://www.disca.upv.es/joliver/LTW/LTW zip.

Table 3. PSNR (dB) with different bit rates and codecs

| Lena | GoldHill
codec/ JPEG Prev. JPEG Prev.
rate SPIHT 2000 LTW LTW |SPIHT 2000 LTW LTW
1 40.41 40.31 40.12 40.50 | 36.55 36.53 36.40 36.74

0.5 37.21  37.22 37.01 37.35|33.13 33.19 32.98 33.32
0.25 3411 34.04 33.93 34.31|30.56 30.51 30.39 30.67
0.125 |31.10 30.84 31.02 31.27|28.48 2835 2841 28.60

In particular, LTW improves SPIHT in 0.15 dB (mean value), and Jasper
[6], an official implementation of JPEG 2000 included in the ISO/IEC 15444-5,
is also surpassed by LTW in 0.25 dB (mean value), whereas our algorithm is
naturally faster and symmetric.
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