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Abstract

Image and video compression is of utmost importance in multimedia sys-
tems and applications because it drastically reduces bandwidth requirements
for transmission and memory requirements for storage. Great efforts have
been made to improve coding efficiency of wavelet-based image encoders,
achieving in this way a reduction in the bandwidth or amount of memory
needed to transmit or store a compressed image. Unfortunately, many of
these coding optimizations involve higher complexity, requiring faster and
more expensive processors. For example, the JPEG 2000 standard uses a
large number of contexts and an iterative time-consuming optimization algo-
rithm called Post-Compression Rate Distortion (PCRD) to improve coding
efficiency. Other encoders like Embedded Conditional Entropy Coding of
Wavelet Coefficients (ECECOW) achieve very good coding efficiency with
the introduction of high-order context modeling, being the model formation
a really slow process. Even bit-plane coding employed in many encoders like
Set Partitioning In Hierarchical Trees (SPIHT) or Subband-Block Hierarchi-
cal Partitioning (SBHP) results in a slow coding process since an image is
scanned several times, focusing on a different bit-plane in each pass, which
in addition causes a high cache miss rate. The aforementioned encoders are
designed to obtain the maximum performance in rate-distortion terms, but
unfortunately other design parameters like complexity or memory resources
are not considered as critical as the former ones.

Recently, there has been increasing interest in the design of very fast
wavelet image encoders focused on applications (interactive real-time image
& video applications, Geographic Information System (GIS), etc.) and de-
vices (digital cameras, mobile phones, Personal Digital Assistant (PDA), etc)
where coding delay and/or available computing resources (working memory
and power processing) are critical for proper operation. In that scenario,
the data must be encoded as soon as possible to fit the application time
restrictions using the scarce available resources in the system (memory and
processing power). Basically, these encoders do not present any type of it-
erative method and each coefficient is encoded as soon as it is visited. This



VI

process results in the loss of Signal to Noise Ratio (SNR) scalability and
precise rate control capabilities. They simply apply a constant quantization
to all the wavelet coefficients, encoding the image at a constant and uniform
quality, as it happened in the former JPEG standard, where only a quality
parameter was available (and no rate control was performed).

In this thesis, we propose several rate control algorithms for non-embed-
ded encoders. These algorithms will predict the proper quantization values
that lead to a final bit rate close to the target one. In particular, we propose
several bit rate prediction methods with increasing complexity and accuracy.
The proposed algorithms do not introduce great overhead in the coding pro-
cess. Also, in this thesis, a sign coding stage is proposed in order to improve
the coding efficiency of the non-embedded encoders.

Regarding video coding, a wide variety of video compression schemes
have been reported in the literature. Most of them are based on the Discrete
Cosine Transform (DCT) and motion estimation/compensation techniques.
However, a lot of research interest was focused on developing video wavelet
coders due to the great properties of wavelet transform. Most wavelet-based
video encoding proposals are strongly based on inter-coding approaches,
which require high-complexity encoder designs as counterpart to the excel-
lent R/D performance benefits. Even so, some applications like professional
video editing, digital cinema, video surveillance applications, multispectral
satellite imaging, High Quality (HQ) video delivery, etc. would rather use
an intra-coding system that is able to reconstruct a specific frame of a video
sequence as soon as possible and with high visual quality. So, the strength
of an intra video coding system relies on the ability to efficiently exploit the
spatial redundancy of each video sequence frame avoiding complexity in the
design of the encoding/decoding engines.

In this thesis, we propose a new lightweight and efficient intra video
coder, called Motion Lower Tree Wavelet (M-LTW), based on the Lower
Tree Wavelet (LTW) algorithm with accurate rate control capability and
scene changes detection. This intra video encoder is able to encode an Inter-
national Telecommunication Union (ITU) D1 size sequence in real time with
good quality.

Finally, in this thesis, we will introduce a 3D-Wavelet based video encoder
in order to improve the coding efficiency (more compression rate at the same
quality than the INTRA video encoder), by exploiting the intrinsic video
temporal redundancy.



Resumen

La compresion de imagen y video es de suma importancia en los sistemas y
aplicaciones multimedia porque reducen las necesidades de ancho de banda
para su transmision y las necesidades de memoria para su almacenamiento.
Se han realizado grandes esfuerzos para mejorar la eficiencia en la codifi-
cacion de los codificadores de imagen basados en la transformada wavelet,
consiguiendo de esta forma una reduccién tanto en el ancho de banda como
en la memoria requerida para transmitir o almacenar una imagen comprim-
ida. Desafortunadamente, muchas de estas optimizaciones implican un au-
mento en la complejidad de la codificacién, siendo necesarios procesadores
mas rapidos y por consiguiente més caros. Por ejemplo, el actual estandar de
codificacién de imagen, JPEG2000, usa un gran numero de contextos y un
algoritmo iterativo de optimizacion con un gran coste computacional llamado
Post-Compression Rate Distortion (PCRD) con el fin de mejorar la eficiencia
en la codificacion. Otros codificadores como Embedded Conditional Entropy
Coding of Wavelet Coefficients (ECECOW), consiguen una gran eficiencia
en la codificacién mediante la inclusion de un modelado basado en contex-
tos de alto orden, siendo la formacién del modelo un proceso muy lento.
Otros codificadores, como Set Partitioning In Hierarchical Trees (SPIHT) o
Subband-Block Hierarchical Partitioning (SBHP), realizan un procesamiento
por planos de bits, lo que implica un proceso de codificacién lento pues la
imagen se procesa varias veces, centrandose cada vez en un plano de bit, lo
que ademé&s produce muchos fallos de memoria caché. Estos codificadores
estan disenados para obtener el maximo rendimiento en terminos de calidad.
Los codificadores mencionados anteriormente son escalables en calidad y son
empotrados por naturaleza, es decir, son capaces de ajustarse a la tasa de
bits deseada, dando la mejor calidad posible para dicha tasa de bits. Sin
embargo, en estos codificadores no se han tenido en cuenta otros paramet-
ros de diseno como puedan ser los requisitos de memoria o la complejidad
computacional.

En los ultimos anos ha aumentado el interés por disenar codificadores de
imagen rapidos basados en la transformada wavelet para aplicaciones (ima-
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gen y video en tiempo real, sistemas de informacién geografica (GIS), etc) y
dispositivos (cdmaras digitales, telefonos moviles, Personal Digital Assistant
(PDA), etc) donde los tiempos de codificacion o los recursos disponibles son
criticos. En un escenario como este, los datos deben codificarse tan pronto
como sea posible para ajustarse a las restricciones de tiempo de la aplicacién
en cuestion y a los escasos recursos disponibles en el sistema. Basicamente,
estos codificadores no presentan ningun tipo de proceso iterativo y cada co-
eficiente se codifica tan pronto como es visitado. Como contrapartida, esto
implica la pérdida de escalabilidad en calidad Signal to Noise Ratio (SNR) y
la posibilidad de ajustarse a una tasa de compresion en concreto. En estos
codificadores tinicamente se aplica una cuantizacion constante a todos los
coeficientes wavelet, codificando de esta manera la imagen con una calidad
uniforme, tal y como ocurria en el anterior estandar de compresion de imagen
JPEG, donde sélo habia un tnico parametro de cuantizaciéon y no existia la
posibilidad de ajustarse a una determinada tasa de compresién.

En esta tesis, se proponen varios algoritmos de control de tasa de bits
especialmente disenados para codificadores de imagen no empotrados basa-
dos en la transformada wavelet. Estos algoritmos determinaran los valores
de los parametros de cuantizacién para obtener la tasa de bits deseada. En
concreto, se proponen varios metodos de ajuste de tasa de compresién con
una complejidad y precisién incremental. Los algoritmos propuestos no in-
troducen una gran complejidad al proceso de codificacion. Ademads, en esta
tesis se propone una nueva aproximacion a la compactacion del signo de los
coeficientes con el fin de mejorar la eficiencia de los compresores no empo-
trados.

En cuanto a codificacién de video se refiere, se han propuesto numerosos
esquemas de compresion de video, muchos de ellos basados en la transformada
discreta del coseno (DCT) y en técnicas de estimacion y compensacién de
movimiento. Si embargo, en los ultimos anos, se ha puesto especial énfasis
en desarrollar codificadores de video basados en la transformada wavelet.
Muchos de estos codificadores estan basados en una codificacion de tipo "in-
ter”, lo que requiere unos disenos de codificacién mas complejos, aunque por
contrapartida obtienen muy buenos resultados en cuanto a R/D se refiere.
Sin embargo, algunas aplicaciones tales como la edicién de video profesional,
el cine digital, las aplicaciones de video vigilancia, las imagenes de satélite
multiespectrales, etc, usan una codificacién de tipo ”intra”, de manera que
un frame es reconstruido tan pronto como es posible y con una buena calidad
visual. De esta forma, la parte fundamental de los sistemas de codificacion
de video de tipo ”intra” radica en la capacidad de explotar de forma eficiente
la redundancia espacial de cada frame de una secuencia de video, evitando
disenos complejos de codificadores.
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En esta tesis, se propone un nuevo codificador de video intra muy rapido,
llamado M-LTW (Motion Lower Tree wavelet), que estd basado en el codifi-
cador de imagen no empotrado LTW (Lower Tree Wavelet), al cual se le ha
incluido un algoritmo de control de tasa de bits, también propuesto en esta
tesis, que ademas es capaz de detectar cambios bruscos de escena.

Finalmente, en esta tesis, introduciremos un codificador basado en la
transformada wavelet 3D con el fin de mejorar la compresién con respecto al
codificador de tipo INTRA, explotando la redundancia temporal inherente a
las secuencias de video.






Preface

Motivation

During the last decade, several image compression schemes have emerged in
order to overcome the known limitations of block-based algorithms that use
the Discrete Cosine Transform (DCT). These limitations include blocking ar-
tifacts and poor coding efficiency, mainly at moderate to low bit rates. Some
of these alternative proposals were based on more complex techniques, like
vector quantization and fractal image coding, whereas others successfully pro-
posed the use of a different and more suitable mathematical transform, the
Discrete Wavelet Transform (DWT). Thus, while the popular JPEG stan-
dard for image compression uses the DCT, the new JPEG 2000 standard
proposes the use of the wavelet transform, with better rate/distortion (R/D)
performance, and avoiding blocking artifacts because an image is not sepa-
rately transformed and quantized block-by-block, but the wavelet transform
is applied to the entire image.

Unfortunately, despite the benefits that wavelet-based image coding in-
volves, other problems are introduced in these encoders; basically they are
typically implemented with memory intensive and time-consuming algorithms
and thereby system requirements are significantly higher than in other earlier
image encoders like JPEG. These higher requirements represent a serious lim-
itation when implementing multimedia applications like image compression in
memory-constrained devices with relatively little computational power, such
as digital cameras, mobile phones, PDAs and embedded devices. Presently,
in many applications like videoconferencing (implemented with image coding
if only intraframe redundancy is removed) features like low complexity and
high symmetry are more important than R/D performance.

All the wavelet image coders, and in general all the transform-based en-
coders, consist of two main stages. During the first one, an image is trans-
formed from a spatial domain to another domain, and in the case of wavelet
transform a combined spatial-frequency domain called wavelet domain. In
the second pass, the wavelet coefficients resulting from the transform domain

XI
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are quantized and encoded in an efficient way to achieve high compression
efficiency and other features.

Great efforts have been made in the coding stage to improve compression
efficiency, achieving in this way a reduction in the bandwidth or amount
of memory needed to transmit or store a compressed image. Unhappily,
many of these coding optimizations involve high complexity, requiring faster
and more expensive processors. For example, the JPEG 2000 standard uses
a large number of contexts and an iterative time-consuming optimization
algorithm to improve coding efficiency. Furthermore, many times, wavelet
image coders have features that are not always needed, but which make
them CPU and memory intensive. For example, bit-plane coding employed
in many encoders (like EZW and SPIHT) allows SNR scalability with an
embedded bitstream, but it results in slow coding since an image is scanned
several times, focusing on a different bit-plane in each pass, which in addition
causes a high cache miss rate.

Recently, there has been increasing interest in the design of very fast
wavelet image encoders focused on applications and devices where coding
delay and/or available computing resources are critical. Essentially, these
encoders do not present any type of iterative method and each coefficient
is encoded as soon as it is visited. This process results in the loss of SNR
scalability and precise rate control capabilities. They simply apply a constant
quantization to all the wavelet coefficients, encoding the image at a constant
and uniform quality, as it happened in the former JPEG standard.

In this thesis, we tackle the problem of rate control capability loss in these
fast wavelet image encoders, designing fast rate control tools that compensate
the embedded bitstream loss, but preserving the coding efficiency and the
speed of the coding process. Also, in this thesis we add a sign coding stage
to these fast non-embedded encoders in order to improve the coding efficiency.

Objectives
The specific objectives of this thesis can be detailed as follows:

e Develop fast and accurate rate control algorithms for non-embedded
image encoders.

e Study the state-of-the-art sign coding techniques in order to design a
new sign coding stage suitable for non-embedded image encoders.

e Develop a new fast and low-memory demanding non-embedded intra
video encoder, based on wavelet transform.
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— Design an accurate rate control algorithm for intra video coding
which includes scene change detection.

— Develop a fast, low memory demanding intra video encoder with
fixed point arithmetic.

e Develop a fast coding stage for a low memory demanding video encoder
based on 3D wavelet transform.

Thesis overview

This thesis is organized in six chapters, which are introduced here:

Chapter 1 presents the fundamentals of image and video compression.
In Section 1.1.2, we present several state-of-the-art wavelet image encoders,
emphasizing non-embedded encoders. The present image coding standard
JPEG 2000 is also presented in Section 1.1.3. On the other hand, in Sec-
tion 1.2.2 and 1.2.3, both the video coding standard H.264 (also referred to
as MPEG-4, part-10) and other wavelet video encoders are presented.

In Chapter 2 we present several rate control algorithms specially suited
for non-embedded image encoders with increasing complexity and accuracy.
These algorithms will predict the proper quantization values that lead to a
final bit rate close to the target one. In order to evaluate the proposed rate
control methods, we have selected the LTW encoder, which will briefly be
described in Section 1.1.2.

In Chapter 3 an in-depth sign coding study is presented. Also, a practical
solution for sign coding in the non-embedded LTW encoder is presented.

Chapter 4 introduces a new enhanced non-embedded codec called E-LTW,
which includes a sign coding stage and an accurate rate control algorithm.

In Chapter 5 an intra video encoder (M-LTW) is presented. This new
intra video codec introduces a modified version of the Model-based image
rate control algorithm presented in Section 2.2, taking into account possible
scene changes, camera panning or camera zooming.

An overview of 3D wavelet video coding is presented in Chapter 6. In
Section 6.3 a recursive implementation of the frame-by-frame 3D wavelet
transform is presented. Also, in Section 6.4 a fast coding stage for this
frame-by-frame 3D-DW'T scheme is presented.

Finally, Chapter 7 concludes the thesis and discusses future research.
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2 Chapter 1. Introduction

1.1 Image Coding

Compression of digital images plays a key role in image storage and trans-
mission. In this chapter a brief introduction to general image compression
will be given.

1.1.1 Fundamentals

The usefulness of digital images in information transmission is not question-
able, but the cost of storing and transmitting images is much larger compared
to storage and transmission of text, so that for example image databases re-
quire more storage than document archives.

The amount of data transmitted via the Internet doubles every year, and
a large portion of that data are images and video sequences. Reducing the
bandwidth needs of any given device will result in significant cost reductions
and will make the device more affordable. Magnetic hard discs (HD)s, CDs,
DVDs, and Solid State Drives (SSD)s of larger capacity are released every
year, in response to greater demand for storage of digital data. Image com-
pression offers ways to represent an image in a more compact way, so that one
can store more images and transmit images faster. The advantages of image
compression come at the expense of a computational cost. Before storing or
transmitting an image it is processed in such a way that will require fewer
bits to represent it.

A compression algorithm tries to offer the best trade-off between the
bandwidth, memory, computation factors and quality for a given applica-
tion. For example, if we are limited in terms of memory we can spend more
computational time to compress the image and make sure it fits into the given
memory size. If we are computation limited we can store the image as it is
with no compression or with limited compression with a simple compression
algorithm.

Image compression algorithms have been the subject of research both in
academia and industry for many years, but there is still room for new tech-
nologies. The first widely adopted international image compression stan-
dard was JPEG [37, 76] which was introduced in the late eighties. JPEG is
based on DCT followed by entropy coding based on either Huffman coding
[36, 87, 21] or binary arithmetic coding [53, 83, 21, 111]. It has been widely
used from the printing industry to Internet applications. For example, all
high-end printers compress the image to be printed before they actually send
it to the print engine, and most images transmitted via the internet are
JPEG compressed. JPEG is intended for continuous tone images of more
than one bit depth. Algorithms for binary images work in a different way,
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and JBIG-1 and JBIG-2 are the standards covering this area. There are
other standards, such as facsimile transmission standards [43], the FlashPix
file format [32], the TIFF file format [5], and page description languages like
Portable Document Format (PDF).

There are two major classes of image compression algorithms, namely
lossy and lossless algorithms. Lossless algorithms preserve the image data,
i.e. original and reconstructed images are exactly the same. In lossy image
compression, original and reconstructed images may or may not be identical
in a strict mathematical sense, but to a human observer they may look the
same, so the goal is to achieve compression that is visually lossless. Both
lossy and lossless compression algorithms are used today in a broad range of
applications, from transmitting satellite images, to web browsing to image
printing and scanning. With lossy compression algorithms we can achieve
significantly larger compression ratios compared to lossless algorithms.

Generic compression system

Most image coders consist of transform, quantization and entropy coding, as
seen in Figure 1.1. The transform block is in general a reversible operation,
i.e. a cascade of forward and inverse transform block is the identity oper-
ation. T.T (arg) = T~'.T(arg) = arg. Quantization, on the other hand,
introduces some loss. The quantizer usually maps an interval of real num-
bers to a single index, constituting the only lossy part of the coding system
ie., Q1.Q(arg) # arg. It is lossy because the knowledge of an index is only
enough to give us the corresponding interval in the real line but not the exact
number in the real line. The entropy coder is the building block responsible
for compression, it maps more frequent indexes to small codewords and less
frequent indexes to larger codewords. It is also a reversible operation. A large
portion of the computational complexity of a compression system is due to
the entropy coding part of the system. More compression usually translates
to higher computational complexity. In general, arithmetic [53] and Huffman
coding [36] are the most common choices. Arithmetic coding is intended for
high-end applications where complexity is not a concern, but compression
performance is, while Huffman coding is intended for low-end applications
where simplicity is more important. Typically the most memory intensive
element is the transform. Quantization, on the other hand, is a much simpler
process than the transform or the entropy coder.
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Figure 1.1: Overview of an image coder and decoder based on transform coding. 7" and
T—! are the forward and inverse transform functions, respectively. @ and Q! are the
quantizer and dequantizer functions, respectively. The original set of pixels is represented
by P

1.1.2 Wavelet based encoders

The wavelet transform is able to spatially decorrelate the image pixels in a
linear way. However, more complex dependencies exist in natural images.
Therefore, we still need good processing techniques, beyond simple entropy
coding, in order to reduce these high-order statistical dependencies and so
improve compression efficiency. The way in which wavelet coefficients are
encoded establishes the coding model and it is the main difference among
different encoders. In this section, we survey some of the most important
wavelet-based image encoders that have been reported in the literature. In
the performance analysis of each proposal, we not only focus on their coding
efficiency but also on their complexity, since reduced complexity is one of the
objectives of this thesis.

Overview

The wavelet transform computation represents only the first step in trans-
form coding, and it is employed to decorrelate the input samples (pixels in
the case of image coding), achieving a less redundant smaller area of coef-
ficients, which concentrates most energy, whereas the remaining coefficients
are reduced and, in many cases, become zero or very close to zero. Therefore,
the Discrete Wavelet Transform (DWT) is a common point in wavelet coding,
and there is almost no difference in this part from one wavelet-based encoder
to another one. In this step, almost the only degree of freedom for an encoder
is the wavelet family and the type of wavelet decomposition. Although most
schemes are based on the B9/7 transform [7] with a dyadic decomposition,
other wavelet families and wavelet decompositions (such as wavelet packets
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[20, 81]) have been employed [116, 63, 100, 80].

Following the scheme depicted in Figure 1.1, after the DW'T computation
an encoder must define the way in which rate/distortion is modified through
quantization, and how to encode the quantized coefficients. The way quanti-
zation and coding is applied defines a specific model for each wavelet encoder,
and it is probably the main difference among different encoders.

Some wavelet encoders apply in combination the quantization and entropy
coding steps, so as to improve coding performance by means of optimization
algorithms (such as the Lagrange multiplier method [96, 81]), or to allow
other features, like SNR scalability (e.g., by applying quantization through
successive approximation [93, 84]). Actually, the model employed not only
establishes the compression performance but also other additional features
of the output bit-stream. E.g., generally speaking, depending on the order
in which coefficients are encoded, an image can be decoded with resolution
or quality scalability.

A wide variety of wavelet-based image compression schemes have been re-
ported in the literature, ranging from simple entropy coding to more complex
techniques such as vector quantization [98, 66], tree-based coding [93, 84],
block-based coding [104, 75], edge-based coding [56], joint space-frequency
quantization schemes [115, 116], trellis coding [44], etc.

The early wavelet-based image coders [113, 7] were designed in order
to exploit the ability of the wavelet transform to compact the energy of
an image in a simple way. They employed scalar or vector quantizers and
variable-length entropy coding, showing little improvement with respect to
popular DCT-based algorithms like JPEG. In fact, in [34], some early wavelet
encoders were compared with JPEG, concluding that these encoders obtained
better results than JPEG only when very low bit rates were used (below 0.25
bits per pixel (bpp) for an original grey-scale 8 bpp image). However, despite
a not very brilliant beginning, DW'T has been successfully employed later in
the field of image coding.

In this chapter, some of the most relevant and efficient wavelet tree-based
coding techniques that have been proposed recently are surveyed. Among
the wide variety of efficient encoders available in the literature, we highlight
the non-embedded proposals and the fastest coding/decoding schemes. The
reason why we focus on this type of encoder is that we are interested in
models with low computational requirements.

Embedded zero-tree wavelet (EZW) coding

In the early 90s, there was the general idea that more efficient image cod-
ing would only be achieved by means of sophisticated techniques with high
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complexity. The embedded zero-tree wavelet encoder (Embedded Zero-tree
Wavelet (EZW)) [93] can be considered the first wavelet image coder that
broke that trend. This encoder exploits the properties of the wavelet co-
efficients more efficiently than the rest of early techniques and thereby, it
considerably outperforms their coding performance.

The EZW algorithm is mainly based on two basic ideas: (a) the simi-
larity between the same type of wavelet subband, with higher energy as the
subband level increases, and (b) a type of quantization based on a successive-
approximation scheme that can be adjusted in order to get a specific bit rate
in an embedded way. The former idea is exploited by means of coefficient
trees, whereas the latter is usually implemented with bit-plane coding. In
addition, the encoder includes an adaptive arithmetic encoder to encode the
generated symbols. Although the EZW technique never became a standard,
it is of great historical importance in the field of wavelet-based image coding
because the aforementioned two principles were later used and refined by
many other coding methods.

Let us define the coefficient trees employed in EZW. In a dyadic wavelet
decomposition there are coefficients from different subbands representing the
same spatial location in the sense that one coefficient in a scale corresponds
spatially with four coefficients in the correspondent previous subband. This
connection can be extended recursively with these four coefficients and the
corresponding direct descendants (sometimes called offspring) at the previous
levels, so that coefficient trees can be defined as shown in Figure 1.2. Since
each node in a tree has four direct descendants (except the coefficients at the
first level, corresponding with the leaf nodes), this type of tree is sometimes
called quadtree. Note that a quadtree (or subquadtree) can be built from
each coefficient by considering it as the root node of a tree.

The key idea employed by EZW to perform tree-based coding is that,
in natural images, most energy tends to concentrate at coarser scales (i.e.,
higher decomposition levels). Then, it can be expected that the closer to the
root node a coefficient is, the larger magnitude it has. Therefore, if a node
of a coefficient tree is lower than a threshold, its descendant coefficients are
likely to be lower as well. In other words, the probability for all four children
to be lower than a threshold is much higher if the parent is also lower than
that threshold. We can take advantage of this fact by coding the subband
coefficients by means of trees and successive approximation, so that when
a node and all its descendant coefficients are lower than a threshold, just a
symbol is used to encode that entire branch.

The EZW algorithm is performed in several steps, with two stages per
step: the dominant pass and the subordinate pass. Successive-approximation
can be implemented as a bit-plane encoder so that the method can be outlined
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HL,

Figure 1.2: Definition of wavelet coefficient trees. In (a), it is shown that coefficients of the
same type of subband (HL, LH or HH) representing the same image area through different
levels can be logically arranged as a quadtree, in which each node is a wavelet coefficient.
The parent/child relation between each pair of nodes in the quadtree is presented in (b)

as follows: Consider that we need n bits to represent the highest coefficient of
the image (in absolute value). Then, the first step will be focused on all those
coefficients that need exactly n bits to be coded (ranging from 2"~! to 2" —1),
which are considered to be significant with respect to n. In the dominant
pass, each coefficient falling in this range (in absolute value) is labeled and
encoded as significant positive/negative (sp/sn), depending on its sign. These
coefficients will no longer be processed in further dominant passes, but in
subordinate passes. On the other hand, the remaining coefficients (those in
the range [0, 2"1[) are encoded as zero-tree root (zr) if all its descendants also
belong to this range, or as isolated zero (iz) if any descendant is significant.
Note that no descendant of a zero-tree root needs to be encoded in this step,
because they are already represented by the zero-tree root symbol. In the
subordinate pass, the bit n of coefficients labeled as sp/sn in any prior step
is coded. In the next step, the n value is decreased by one, so that we
focus now on the following bit (from Most Significant Bit (MSB) to Least
Significant Bit (LSB)). This compression process finishes when the desired
bit rate is reached, and the decoder can partially use the incoming bit-stream
to reconstruct a progressively improved version of the original image. That
is why this coder is called embedded.

In the dominant pass, four types of symbols need to be coded: sp, sn, zr,
and iz, whereas in the subordinate pass only two are needed (bit zero and
bit one). In order to get higher compression, an adaptive arithmetic encoder
is used to encode the symbols computed during the dominant pass.
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Due to its successive-approximation nature, EZW is SNR scalable, al-
though at the expense of sacrificing spatial scalability. In addition, line-
based wavelet transforms [18] are not suitable for this encoder, because the
whole image is needed in memory to perform several image scans focusing
on different bit planes and searching for zero-trees. Moreover, EZW needs to
compute coefficient trees and performs multiple scans on the transform coef-
ficients, which involves high computational time, most of all in cache-based
architectures due to the higher cache miss rate.

Set partitioning in hierarchical trees (SPIHT)

Said and Pearlman [84] proposed a variation of EZW, called SPIHT, which
is able to achieve better results than EZW even without arithmetic coding.
SPIHT is based on the same principles as EZW. However, improvements are
mainly due to the way it searches for significant coefficients in the quadtrees,
by splitting them with a novel partitioning algorithm.

Like in EZW, SPIHT encodes the wavelet subbands in successive steps,
focusing on a different bit plane in each step. For a certain bit plane (n),
the set partitioning sorting algorithm included in SPIHT identifies the in-
significant coefficients in the transformed image. This algorithm encodes the
coefficient significance by means of significance tests, which query each set
to know if it has at least one significant coefficient. If so, it divides that set
into more subsets and it then repeats the same question, otherwise we have
identified a group of insignificant coefficients with respect to the current bit
plane. The result of each query is encoded with a simple binary symbol, so
that the decoder can reconstruct the same groups of insignificant sets. The
subsets with significant coefficients are successively divided until each single
significant coefficient is identified. When all the subsets are found to be in-
significant with respect to the current bit plane, all the significant coefficients
have been located, and the sorting pass is over for this step. The algorithm
then encodes the corresponding bit (n) of those coefficients found significant
in previous steps, which is called the refinement pass. Afterward, it focuses
on the following bit plane (n — 1) and repeats the same process until the
desired bit rate is reached. Note that the sorting and refinement passes of
SPIHT are equivalent in concept to the dominant and subordinate passes of
EZW, respectively.

SPIHT uses spatial orientation trees (which are basically the quadtrees
of Figure 1.2) to construct the initial set of coefficients and to establish the
rules to divide them in the sorting algorithm. The notation employed in the
algorithm is shown in Figure 1.3(b). For a given coefficient ¢; ;, D(c; ;) is the
set of all the descendant coefficients of ¢; ;. This set can be split into direct
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Figure 1.3: Example of division of coefficient sets arranged in spatial orientation trees.
This division is carried out by the set partitioning sorting algorithm executed in the
sorting pass of SPIHT. The descendants of ¢; ; presented in (a) are partitioned as shown
in (b); if needed, the subset of (b) is divided as shown in (c¢), and so on

descendants (or offspring) O(c; ;) and non-direct descendants L(c; ;).

In the SPIHT algorithm, the initial sets of coefficients are defined as
D(c; ;) Ve ; € LLy. The way a set D(c; ;) is partitioned in a sorting pass is
shown in Figure 1.3. Each set D(c; ;), such as the one shown in Figure 1.3(a),
is partitioned into its four direct descendants di, ds, ds,ds € O(c; ;) as four
single coefficients, and its non-direct descendants L(c; ;) as a new subset
(see Figure 1.3(b)). Later, if the L(c;;) subset has to be partitioned, it
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is divided into four subsets formed by D(d;), D(ds), D(d3) and D(d,), as
shown in Figure 1.3(c). Each of these subsets can be further partitioned as
we have just described. The detailed coding and decoding algorithms are
described in [84]. In these algorithms, the sorting pass includes two lists to
identify single coefficients: a list for the significant coefficients (called List
of Significant Pixels (LSP)) and another for the insignificant ones (List of
Insignificant Pixels (LIP)). On the other hand, the insignificant subsets are
identified with another list (called List of Insignificant Sets (LIS)), in which
each subset can be of type D(c; ;) or L(c; ;) (an extra tag is needed to specify
it). Note that there is no list of significant subsets because when a subset is
found to have a significant coefficient, it is successively partitioned until the
significant coefficient or coefficients are refined to the granularity of a single
coefficient.

The coding efficiency of SPIHT can be improved by using adaptive arith-
metic coding to encode as a single symbol the significance values resulting
from the significance tests (queries). The SPIHT algorithm has been con-
sidered a reference benchmark for wavelet image coding in a large number
of papers. In addition, many papers have been published based on the tree-
based SPTHT algorithm, including video coding [59, 51], hyperspectral image
coding [103] and a generalization of the set partitioning algorithm [35]. Due
to its similarities to EZW, the features of SPIHT are the same as those
mentioned for EZW, except for the improvements in coding performance.

Lower tree wavelet (LTW) encoder

Not all the tree-based algorithms in the literature are based on successive
quantization implemented with bit-plane coding, leading to an embedded
bit-stream. LTW is a tree-based wavelet image encoder, with state-of-the-
art coding efficiency, but less resource demanding than other encoders in the
literature. The basic idea of this encoder is very simple: after computing
a dyadic wavelet transform of an image, the wavelet coefficients are first
quantized (using uniform scalar quantization by a factor ¢)) and then encoded
with arithmetic coding.

In LTW [71], the quantization process is performed by two strategies:
one coarser and another finer. The finer one consists in applying a scalar
uniform quantization, (), to wavelet coefficients. The coarser one is based on
removing the least significant bit planes, rplanes, from wavelet coefficients.
A tree structure (similar to that of [84]) is used not only to reduce data
redundancy among subbands, but also as a simple and fast way of grouping
coefficients. As a consequence, the total number of symbols needed to encode
the image is reduced, decreasing the overall execution time. This structure
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is called lower tree, and it is a coefficient tree in which all its coefficients are
lower than 2rrlanes,

The LTW algorithm consists of two stages. In the first one, the signif-
icance map is built after quantizing the wavelet coefficients (by means of
both @ and rplanes parameters). In Figure 1.6 (right) we can see the sig-
nificance map built from wavelet decomposition shown in Figure 1.6 (left).
The symbol set employed in this proposal is the following one: a LOWER
symbol represents an insignificant coefficient that is the root of a lower-tree,
the rest of coefficients in a lower-tree are labeled as LOWER_COMPONENT,
but they are never encoded because they are already represented by the root
coefficient. If a coefficient is insignificant but it does not belong to a lower-
tree because it has at least one significant descendant, it is labeled as an
ISOLATED_LOWER symbol. For a significant coefficient, two types of nu-
meric symbols’ are used according to the coefficient offspring. (a) A ‘regular
numeric symbol’ (nbits; ;) shows the number of bits needed to encode a co-
efficient, (b) and a special 'LOWER numeric symbol” (nbitst$"#H) not only
indicates the number of bits of the coefficient, but also the fact that all its
descendants are labeled as LOWER_COMPONENT, and thus they belong
to a lower-tree (i.e, 4 in Figure 1.6 (right)).

Let us describe the coding algorithm. In the first stage (symbol compu-
tation), all wavelet subbands are scanned in 2x2 blocks of coefficients, from
the first decomposition level to the N (to be able to build the lower-trees
from leaves to root). In the first level subband, if the four coefficients in each
2x2 block are insignificant (i.e., lower than 27P"¢s) they are considered to
be part of the same lower-tree, labeled as LOWER_COMPONENT. Then,
when scanning upper level subbands, if a 2x2 block has four insignificant
coefficients, and all their direct descendants are LOWER_COMPONENT,
the coefficients in that block are labeled as LOWFER_COMPONENT, in-
creasing the lower-tree size. However, when at least one coefficient in the
block is significant, the lower-tree cannot continue growing. In that case, a
symbol for each coefficient is computed one by one. Each insignificant coef-
ficient in the block is assigned a LOWER symbol if all its descendants are
LOWER_COMPONENT, otherwise it is assigned an ISOLATED_LOWER
symbol. On the other hand, for each significant coefficient, a symbol indicat-
ing the number of bits needed to represent that coefficient is employed (see
algorithm in Figure 1.4).

In order to reduce memory overhead, labels are applied by overwriting the
coefficient value by an integer value associated to the corresponding label,
which must be outside the possible range of significant coefficients (typically,
by reusing the values in the quantized range |0.. .277’1“”@5} ).
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Function: LTWCalculateSymbols( )
Scan the first level subbands (H Hy, LH; and HL;) in 222 blocks.
For each block B,
if ‘Ci,j‘ < 2rplanes VCZ‘,]‘ c Bn
Set ¢; ; = LOWER_COMPONENT
else
For each ¢;; € B,,)
if |Ci,j| < 2rplanes
Set Cij = LOWER
Scan the remaining subbands (from level 2 to N) in 222 blocks.
For each block B,
if (|c; ;| < 271ames A descendant(c; ;) = LOWER.COMPONENT)
VCZ‘J' c Bn
Set ¢;; = LOWER_COMPONENT V¢, ; € B,
else
For each ¢;; € B,,)
if |c; ;| < 2"Plenes A descendant(c; j)=LOWER_COMPONENT
Set C;; = LOWER
if |c; ;| < 2rPlenes A descendant(c; j)ALOWER_-COMPONENT
Set ¢;; = ISOLATED_LOWER
End

Figure 1.4: Lower tree coding. Symbol computation

Finally, in the second stage (see algorithm in Figure 1.5), subbands are
encoded from the LLy subband to the first-level wavelet subbands, as shown
in Figure 1.7. Observe that this is the order in which the decoder needs to
know the symbols, so that lower-tree roots are decoded before its leaves. In
addition, this order provides resolution scalability, because LLy is a low-
resolution scaled version of the original image, and as more subbands are
being received, the low-resolution image can be doubled in size. In each
subband, for each 2x2 block, the symbols computed in the first stage are
entropy coded by means of an arithmetic encoder. Recall that no LOWER-
COMPONENT is encoded. In addition, significant bits and its sign are
needed for each significant coefficient and therefore binary encoded.
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Function: LTWOutputCoefficients( )
Scan subbands (from N to 1, in 222 blocks)
For each ¢; ; in a subband
if ¢;; #LOWER_.COMPONENT
if ¢;; =LOWER
arithmetic_output LOWER
else if ¢;; =ISOLATED_LOWER
arithmetic_output ISOLATED_LOWER
else
nbits; ; = [logs (|ci;l)]
if descendant(c; ;) #LOWER_COMPONENT
arithmetic_output nbits; ;

else
arithmetic_output nbits 9"

output bitnbitsi,]-—l (‘Cz‘,j|)‘ .. bitrplane-i—l (‘Ci,j‘)
output sign(c; ;)

End

Note: bit,(c) is a function that returns the n'* bit of c.

Figure 1.5: Lower tree coding. Output the wavelet coefficients

Space-frequency quantization (SFQ)

Space-Frequency Quantization (SFQ) encoder presented in [115] is a non-
embedded tree-based image encoder. In order to minimize distortion for
a target bit rate, this algorithm relies on: (1) the construction of trees of
zero-coefficients (which is considered a space quantization) and, (2) a single
common uniform scalar quantization applied to the wavelet subbands (this
is the frequency quantization). The joint application of (1) and (2) is per-
formed in an optimal manner, with the Lagrange multiplier method [26]. To
this end, the algorithm tries to identify the optimal subset of coefficients to
be discarded by encoding them as a quadtree, and the optimal step-size to
quantize the remaining coefficients by applying a uniform scalar quantizer. In
order to determine the best option for the space quantization, the algorithm
considers not only entire quad-trees, like the one shown in Figure 1.2, but
also different shapes of trees, by pruning tree branches. Information about
tree pruning and the rest of quantized coefficients, along with the employed
step-size, are encoded with entropy coding and sent to the decoder as part
of the compressed bit-stream.
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Figure 1.6: left: 2-level wavelet transform of an 8x8 example image, right: Symbol Map
using rplanes=2
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Figure 1.7: Example image encoded using LTW

Despite not being embedded, SF(Q achieves precise rate control due to
the use of an iterative rate/distortion optimization algorithm for a given bit
rate. As a result of this algorithm, the coding performance of SFQ is slightly
better than SPIHT. However, this iterative optimization algorithm is time-

consuming and causes the SFQ encoder to be about five times slower than
SPIHT.

Non-embedded SPIHT

In [74], Pearlman introduces the discussion about the general necessity of em-
bedding in image coding. As we have mentioned in subsection 1.1.2, bit plane
coding slows the execution of both the encoder and decoder, and sometimes
it provides no benefit to the application, or even worse, it is not feasible.
In particular, a line-based wavelet transform cannot be employed along with
bit plane coding unless further rearrangement of the bit-stream is performed,
needing at least the entire bit-stream in memory. On the other hand, we may
just want to encode an image at a constant quality. In this case, successive
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approximation is not strictly required, except eventually to improve coding
efficiency.

The variation of SPTHT introduced in [74] is to send all the bits down to
a given bit plane (r) once a single coefficient has been found significant, so
as to avoid the refinement passes. In this version, the coding process finishes
when that bit plane (7) is reached in a sorting pass. Another option is to pre-
quantize all the coefficients with a uniform scalar quantizer, and then encode
all the bit planes (again without refinement passes). The desired distortion
level (or compression level) is controlled by modifying the r parameter in the
first variation, or the quantization step in the second one. Note that in both
approaches, the LSP list of SPTHT is no longer needed.

Although this version is faster than the original one, neither multiple
image scans nor bit plane processing of the sorting passes is avoided. Hence,
the problems addressed in subsection 1.1.2 still remain.

Progressive resolution decomposition (PROGRESS)

The modification of SPTHT described in the previous subsection is neither
SNR nor resolution scalable. Recently, the authors of SPIHT have proposed
a new version of SPTHT [16] for very fast resolution scalable encoding, based
on the principles of decreasing energy of the wavelet coefficients along the
subband levels, and the fact that the energy is quite similar for coefficients
at the same level. Since it supports resolution scalability with great speed,
the authors consider that it is an excellent choice for remote sensing and
GIS applications, where rapid browsing of various scales of large images is
necessary.

PROGRESS uses a pre-defined constant quality factor, just like the non-
embedded SPIHT algorithm. In order to reduce complexity, bit plane coding
is avoided and each coefficient is visited only once. Entropy coding is also
avoided.

For each coefficient, the goal is to encode the sign and the bits below the
most significant non-zero bit. To this end, the number of bits required for
each coefficient must be known in advance. Basically, at a subband level, for
each coefficient ¢; ; in that subband, the PROGRESS algorithm identifies the
number of bits needed to encode the highest coefficient in a SPTHT-like subset
D(c; ;) (let us call this value r), and then it encodes each coefficient contained
in O(c¢;;) with that number of bits. In order that the decoder can recon-
struct the original coefficients, r is also encoded. In the next subband level,
PROGRESS repeats the same operation for each D(d,,,,)Vdm, € O(ciy).
This algorithm is repeated through the successive subband levels, from the
LLy subband down to the first subband level. However, when the number
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of bits needed to encode a subset is found to be zero, a group of insignificant
coefficients has been identified, and then this subset is no longer partitioned
and encoded.

In order to improve coding efficiency, each r for a given subset is not
encoded as a single value, but rather as the difference between that value in
this subset and in its parent subset (i.e., the direct subset from which a subset
stems). Since this difference is always positive (or zero), and its probability
distribution is higher as it approaches zero, unary coding! is employed. Some
other implementation details and the complete encoding algorithm are given
in [16].

Experimental results show that PROGRESS is up to two times faster in
coding and four times faster in decoding than the binary version of SPTHT
(i.e., SPIHT without entropy coding). However, its coding efficiency is rel-
atively poor, being slightly worse than binary SPIHT. The low coding per-
formance is not only due to its lack of entropy coding, but also because it
always employs the number of bits required by the highest coefficient in a
subset. This problem especially affects highly detailed images. These images
are more likely to have high descendant coefficients, which could cause their
parents to use more bits than actually needed.

1.1.3 Image coding standard: JPEG 2000
Embedded Block Coding with Optimized Truncation (EBCOT)

The EBCOT [104] encoder is certainly the most important block-based wa-
velet encoder reported in the literature. This encoder is a refined version of
the Layered Zero Coding (LZC) technique proposed by Taubman and Za-
khor in [105]. The importance of EBCOT lies in the fact that it was selected
to be included as the coding subsystem of the JPEG 2000 standard [38].
EBCOT achieves most requirements of JPEG 2000, such as a rich embed-
ded bit-stream with advanced scalability, random access, robustness, etc., by
means of block-based coding for the reasons given above. Furthermore, the
decrease in coding efficiency caused by the lack of inter-band redundancy
removal is compensated by the use of more contexts in the arithmetic en-
coder, a finer-granularity coding algorithm (with three passes per bit plane
instead of two), and a PCRD optimization algorithm based on the Lagrange
multiplier method.

Due to the importance of EBCOT in the JPEG 2000 standard, we will
describe it in some detail. For a more complete and general description, there
are many other references such as [106, 3, 79] or even the standard document

In unary coding, a number n is represented with n ones followed by a zero.
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[38]. Note that the EBCOT algorithm originally published by Taubman in
[104] was slightly changed for the JPEG 2000 standard in order to reduce
complexity and other issues. We will focus on this adapted version.

After applying the DWT to the image, the EBCOT algorithm encodes
the wavelet coefficients in fixed-size code blocks. In this first step, called tier
1 coding, each code block is completely and independently encoded, getting
in this manner an independent bit-stream for each code block. Then, in
the second step, tier 2 coding, fragments of bit-stream of each codeblock are
selected to achieve the desired target bit rate (rate control) in an optimal
way (i.e., minimizing distortion), and it is arranged in such a way so that the
selected scalability is accomplished.

Prior to EBCOT, a uniform scalar quantization with deadzone is applied
to the wavelet coefficients. All the code blocks in the same subband are quan-
tized with the same step-size so that blocking artifacts are avoided. There-
fore, in general, this quantization has little rate control meaning, which is
performed later in tier 2 coding. Rather, it is used to balance the importance
of the coefficient values (recall that the DWT employed in JPEG 2000 avoids
dynamic range expansion but is not energy preserving), and in a practical
way, to convert the floating point coefficients resulting from most wavelet
transforms into integer data. Another way to select the quantizer step size is
depending on the perceptual importance of each subband to improve visual
quality based on the human visual system [6, 117, 57].

Regarding the code block size, the total number of coefficients in a block
should not exceed 4096, and both width and height must be an integer power
of two. Thereby, the typical code block size is 64x64, although other smaller
sizes can be used (e.g., for memory saving or complexity issues). Of course,
once a block size is determined, smaller code blocks can appear on the sub-
band boundary or in subbands smaller than a regular block.

Block coding: tier 1 coding. Once the wavelet subbands are divided
into blocks, an independent bit-stream is generated from each code block in
the tier 1 coding stage. Each bit-stream is created with a special adaptive
binary arithmetic encoder with several contexts called MQ-coder [99]. The
MQ-coder is a reduced-complexity version of the usual arithmetic encoder
[111], limited to coding binary symbols. The JPEG 2000 standard document
[38] gives a detailed flowchart description of this encoder.

In this stage, each code block is encoded bit plane by bit plane, start-
ing from the most significant non-zero bit plane. For each bit plane, several
passes are given in order to identify the coefficients which become signifi-
cant in this bit plane, and to encode the significant bits of those coefficients
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found significant in previous bit planes. This working philosophy is shared
by many other well known encoders like EZW and SPIHT. However, unlike
these encoders, three passes (instead of two) are given for each bit plane?.
In the first pass, called significance propagation pass, the significance of the
coefficients that were insignificant in previous bit planes but are likely to
become significant in this bit plane are encoded. Then, in the second pass,
called magnitude refinement pass, a refinement bit is encoded for each coeffi-
cient found significant in a previous bit plane. Finally, the significance of the
rest of coefficients (i.e., those that were insignificant and are likely to remain
insignificant in this bit plane) are encoded in the third pass, called clean-up
pass.

bit-plane 5
bit-plane 4 part of the encoded
bit-stream for a

bit-plane 3 desired target bit rate
bit-plane 2

significance propagation pass
bit-plane 1 magnitude refinement pass

(LSB)
clean up pass

block 1 block 2 block 3 block 4 block 5

Figure 1.8: Example of block coding in JPEG 2000. In tier 1 coding, each code block
is completely encoded bit plane by bit plane, with three passes per bit plane (namely
signification propagation, magnitude refinement and clean-up passes). Only part of each
code block is included in the final bit-stream. In this figure, the truncation point for each
code block is pointed out with a dotted line. These truncation points are computed with
an optimization algorithm in tier 2 coding, in order to match the desired bit rate with the
lowest distortion

In tier 2 coding, the bit-stream resulting from several contiguous full
passes are selected from each code block to build the final bit-stream. There-
fore, the bit-stream generated from each pass is the lowest granularity for
the final bit-stream formation. In each code block, the point in which its bit-
stream is truncated to contribute to the final bit-stream for a given bit rate

2The original EBCOT algorithm [104] had four passes instead of three.



1.1. Image Coding 19

is called the optimal truncation point. Figure 1.8 illustrates the encoding
process and gives an example of truncation points.

jeee
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(a)

Figure 1.9: (a) Scan order within an 8x8 code block in JPEG 2000, and (b) context
employed for a coefficient, formed by its eight neighbor coefficients (two horizontal, two
vertical, and four diagonal)

The order of the passes has been decided according to their contribution to
rate/distortion improvements, so that a pass that is more likely to introduce
more reduction of distortion with a lower rate increase is encoded in first
place. Of course, after encoding the three passes, the same reduction of
distortion and the same bit rate is reached independently of the order of the
passes. However, the proposed order yields more benefits if the truncation
point is not at the end of a bit-plane coding (i.e., it is not between a clean-up
pass and a significance propagation pass), but in the middle of it.

If we compare this algorithm with EZW or SPIHT in broad terms, we
see that the main difference (apart from the lack of trees) is that the pass
employed to identify new significant coefficients (called dominant pass in
EZW and sorting pass in SPIHT) has been split into two passes in order to
have more passes from which to choose a truncation point.

For implementation convenience, the order in which coefficients are scan-
ned in a codeblock is in stripes formed by columns of four coefficients, as
shown in Figure 1.9(a).

Let us see more details of each coding pass. In the significance propa-
gation pass, a coefficient is said to be likely to become significant if, at the
beginning of that pass, it has at least one significant neighbor. Certainly,
this condition does not guarantee that it will become significant in this bit
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plane, and therefore its significance still has to be encoded. In order to im-
prove coding efficiency, nine contexts are used according to the significance
of its eight immediate neighbors (see Figure 1.9(b)). The exact context as-
signment, mapping from the 2% — 1 possible contexts to nine contexts, can be
found in [104]. In addition, when a coefficient eventually becomes significant,
its sign is also arithmetically encoded with five different contexts.

In the case of the magnitude refinement pass, a refinement bit is arith-
metically encoded with two contexts if it has just become significant in the
previous bit plane (i.e., it is the first bit encoded for this coefficient). For
the rest of bits, they are considered to have even distribution and thereby
another single context is used without dependence of the neighboring values.

Rate-distortion
. pairs not on the

convex hull (@) significance propagation pass
jm
g O magnitude refinement pass
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o O clean up pass
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Figure 1.10: Example of convex hull formed by distortion-rate pairs from block 1 of
Figure 1.8. In a convex hull, the slopes must be strictly decreasing. Four rate-distortion
pairs are not on the convex hull, and therefore they are not eligible for the set of possible
truncation points. A line with a slope of 1 + A determines the optimal truncation point
for a given value of A

The clean-up pass is implemented in a similar manner to the signification
propagation pass, with the same nine contexts employed to encode the sig-
nificance of a single coefficient. However, the clean-up pass includes a novel
run mode, which serves to reduce complexity, rather than improve coding
efficiency. Observe that most coefficients are insignificant in this pass, and
therefore the same binary symbol is encoded many times. We can reduce
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complexity if we take advantage of this fact and reduce the number of en-
coded symbols. To this end, when four coefficients forming a column have
insignificant neighbors, a run mode is entered. In this mode, we do not en-
code single coefficients but a binary symbol that specifies if any of the four
coefficients in a column is significant. This binary symbol is encoded with a
single context.

Note that, for the most significant non-zero bit plane (i.e., the first bit
plane that is encoded), neither a significance propagation pass nor a magni-
tude refinement pass is performed, because there is no previous significant
coefficient (see example in Figure 1.8). Finally, it is also worth mentioning
that, from the above description, we can deduce that the MQ-coder must be
able to support (at least) eighteen contexts.

Bit-stream organization: tier 2 coding. In tier 2 coding, the bit-
streams generated from each code block are multiplexed using a specific file
format to accomplish the desired scalability. Rate control tasks are also
performed in this second stage.

In order to determine the optimal truncation point in each code block
for a desired bit rate, EBCOT proposes a post-compression rate distortion
(PCRD) optimization algorithm, which is basically a variation of the La-
grange multiplier method [26]. This algorithm computes a convex hull (where
slopes must be strictly decreasing) for each code block from a set of distortion-
rate pairs (see Figure 1.10 for an example of a convex hull). Each pair defines
the contribution of a coding pass to reduce image distortion (e.g., measured
as Mean Squared Error (MSE) reduction) and the cost of that pass (e.g., the
number of bytes required to encode that pass). For an optimal bit-stream
formation, the rate-distortion pairs in the interior of the convex hull cannot
be selected as truncation points.

Given the set of convex hulls for each code block, an optimal bit-stream
can be achieved as follows. Consider a factor A\ that defines a straight line
with 1+ X slope. The optimal truncation point for each convex hull is given
by the point to which that line is "tangent-like”3. In other words, it is the
point at which the rate/distortion slope changes from being greater than 1+
to less than it (see example in Figure 1.10). In this way, we can compute
an optimal bit-stream by calculating a truncation point for each code block
with a given A. However, no rate control is performed. In order to achieve
a target bit rate, the value of A is iteratively changed and the optimal set
of truncation points are recomputed with each value of A. From all the sets
of truncation points iteratively computed that do not exceed the desired bit
rate, the one that yields the highest distortion reduction is selected. In other
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words, we select the largest bit-stream that does not exceed the target bit
rate.

Quality (SNR) scalability can be achieved if this rate control algorithm
is executed several times, once for each partial target bit rate (R, Ra,...,
R,,). Therefore, the selected coding passes that optimally lead to a bit rate
Ry are said to form the quality layer 1; then, the added coding passes that
lead to a bit rate Ry form the quality layer 2, and so on. In this way, EBCOT
produces an embedded bit-stream, but with a coarser granularity than the
one of EZW and SPIHT. On the other hand, for resolution scalability, we
just have to arrange the selected code blocks depending on the subband level,
from the LLy to the first-level wavelet subbands. A wide variety of types
of scalability is accomplished by combining various quality layers and the
suitable code block arrangement in the final bit-stream.

Performance and complexity analysis. Although EBCOT only ex-
ploits intra-block redundancy, it generally performs as well as SPIHT, or
even better than it, in terms of coding efficiency, mainly due to (1) the use
of more contexts, (2) the introduction of a third pass to encode the most
important information in first place, and (3) the PCRD optimization algo-
rithm. In addition, if we consider artificial images or highly detailed natural
images, EBCOT clearly outperforms SPIHT, because in this type of image,
SPIHT can establish fewer coefficient trees, and also due to the use of more
contexts in EBCOT, enabling a better and more precise adaptation of its
probability model.

Let us perform a complexity analysis of EBCOT. Recall that the main
complexity problem in SPTHT is introduced by bit-plane coding. Nonethe-
less, although both EBCOT and SPIHT use bit-plane coding, EBCOT avoids
the locality problems that increase the cache miss rate by encoding an image
block-by-block. Moreover, the set of code block bit-streams is more likely
to fit into the cache, and therefore further post-processing does not cause so
many cache misses. In spite of this, the EBCOT algorithm can be consid-
ered more complex than SPTHT (except for very large images in cache-based
systems). There are several reasons for this. First, bit plane coding is still
present, and for each bit plane, it must be performed for all the coefficients
in a block. Compare it with EZW and SPIHT, where the coefficients in a
tree are neither encoded nor scanned. Second, the significance analysis is

3Formally speaking, the given convex hulls are not curves and then we cannot consider
a line tangent to it. Here, we actually mean a line that touches a convex hull and does
not intersect it. Note that in the case of a curve, there is only a line tangent to each
point, whereas in our convex hulls, there are many ”tangent-like” lines for each possible
truncation point.
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more complex in EBCOT, since more contexts are used. Third, in a regular
implementation of EBCOT, each coefficient is fully encoded, bit plane by bit
plane, despite the fact that some bit planes will not be included in the final
bit-stream due to rate control restrictions although some advanced imple-
mentations of JPEG 2000 perform a conservative heuristic for incrementally
estimating the number of coding passes that will be included in the final
bit-stream, and determine those bit planes that do not need to be computed.
Finally, the PCRD optimization algorithm is performed and it is an iterative
process.
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1.2 Video Coding

Television won’t last. It’s a flash in the pan.
(Mary Somerville, radio presenter, in 1948)

1.2.1 Fundamentals

Compression is an almost mandatory step in storage and transmission of
video, since, as simple computation can show, one hour of color video at
CCIR 601 resolution (576x704 pixels per frame) requires about 110 GB for
storing or 240 Mbps for real time transmission.

Input
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Figure 1.11: General Scheme of a Hybrid Video Encoder

On the other hand, video is a highly redundant signal, as it is made up
of still images (called frames) which are usually very similar to one another,
and moreover are composed by homogeneous regions. The similarity among
different frames is also known as temporal redundancy, while the homogeneity
of single frames is called spatial redundancy. Most video encoders perform
their job by exploiting both kinds of redundancy and thus using a spatial
analysis (or spatial compression) stage and a temporal analysis (or temporal
compression) stage.

Hybrid video coding

The most successful video compression schemes to date are those based on
Hybrid video coding. This definition refers to two different techniques used
in order to exploit spatial redundancy and temporal redundancy. Spatial
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compression is indeed obtained by means of a transform based approach,
which makes use of the DCT, or its variations. Temporal compression is
achieved by computing a Motion-Compensated (MC-ed) prediction of the
current frame and then encoding the corresponding prediction error. Of
course, such an encoding scheme needs a Motion Estimation (ME) stage in
order to find Motion information necessary for prediction.

A general scheme of a hybrid encoder is given in Figure 1.11. Its main
characteristics are briefly recalled here.

The hybrid encoder works in two possible modes: Intraframe and Inter-
frame. In the intraframe mode, the current frame is encoded without any
reference to other frames, so it can be decoded independently from the oth-
ers. Intra-coded frames (also called anchor frames) have worse compression
performances than inter-coded frames, as the latter benefits from Motion-
compensated prediction. Nevertheless they are very important as they assure
random access, error propagation control and fast-forward decoding capabil-
ities. The intra frames are usually encoded with a JPEG-like algorithm,
as they undergo DCT, Quantization and Variable Length Coding (VLC).
The spatial transform stage concentrates signal energy in a few significative
coefficients, which can be quantized differently according to their visual im-
portance. The quantization step here is usually tuned in order to match the
output bit rate to the channel characteristics.

In the interframe mode, the current frame is predicted by Motion com-
pensation from previously encoded frames. Usually, Motion-Compensated
prediction of the current frame is generated by composing blocks taken at
displaced positions in the reference frame(s). The position at which blocks
should be considered is obtained by adding to the current position a dis-
placement vector, also known as Motion Vector (MV). Once current frame
prediction is obtained, the prediction error is computed, and it is encoded
with the same scheme as intra frames, that is, it undergoes a spatial trans-
form, quantization and entropy coding.

In order to obtain Motion vectors, a ME stage is needed. This stage has
to find which vector better describe current block motion with respect to
one (or several) reference frame. Motion Vectors have to be encoded and
transmitted as well. A VLC stage is used at this end.

All existing video coding standards share this basic structure, except for
some MPEG-4 features. The simple scheme described so far does not in-
tegrate any scalability support. A scalable compressed bit-stream can be
defined as one made up of multiple embedded subsets, each of them rep-
resenting the original video sequence at a particular resolution, frame rate
or quality. Moreover, each subset should be an efficient compression of the
data it represents. Scalability is a very important feature in network delivery
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of multimedia (and of video in particular), as it allows encoding the video
just once, while it can be decoded at different rates and quality parameters,
according to the requirements of different users.

The importance of scalability was gradually recognized in video coding
standards. The earliest algorithms (as ITU H.261 norm [42, 54]) did not
provide scalability features, but as soon as MPEG-1 was released [39], the
standardization boards had already begun to address this issue. In fact,
MPEG-1 scalability is very limited (it allows a sort of temporal scalabil-
ity thanks to the subdivision in Group of Pictures (GOP). The following
ISO standards, MPEG-2 and MPEG-4 [40, 41, 97] increasingly recognized
scalability importance, allowing more sophisticated features. MPEG-2 com-
pressed bit-stream can be separated in subsets corresponding to multiple
spatial resolutions and quantization precisions. This is achieved by introduc-
ing multiple motion compensation loops, which, on the other hand, involves
a remarkable reduction in compression efficiency. For this reason, it is not
convenient to use more than two or three scales.

Scalability issues were even more deeply addressed in MPEG-4, whose
Fine Grain Scalability (FGS) allows a large number of scales. It is possible
to avoid further Motion Compensation (MC) loops, but this comes at the
cost of a drift phenomenon in motion compensation at different scales. In
any case, introducing scalability affects significantly performances. The fun-
damental reason is the predictive MC loop, which is based on the assumption
that at any moment the decoder is completely aware of all information al-
ready encoded. This means that for each embedded subset to be consistently
decodable, multiple motion compensation loops must be employed, and they
inherently degrade performances. An alternative approach (always within a
hybrid scheme) could provide the possibility, for the local decoding loop at
the encoder side, to lose synchronization with the decoder at certain scales;
otherwise, the enhancement information at certain scales should ignore mo-
tion redundancy. However, both solutions degrade performances at those
scales.

The conclusion is that hybrid schemes, characterized with a feedback loop
at the encoder, are inherently limited in scalability.

1.2.2 Video coding standard: H.264

The encoder (shown in Figure 1.12) has two paths known as the forward path
(left to right) and the reconstruction path (right to left). In the forward path
an input frame or field F,, is processed in MBs (16x16 pixels), and can be
coded in Intra or in Inter mode. The encoder creates a reconstructed frame
(P), based on reconstructed pictures samples. In Intra mode, P is formed
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from samples in the current slice that have been previously encoded, decoded
and reconstructed (uF), in the Figure 1.12). In the Inter mode, P is created
by Motion Compensation (MC) prediction from the reference pictures. These
reference pictures may be chosen from a selection of past or future pictures
that have already been encoded, reconstructed and filtered. This prediction
image (P) is subtracted from the current image to produce a residual image,
which will be transformed and quantized to obtain X, a set of quantized
transform coefficients which are reordered and entropy encoded. The encoder
also decodes the frame to provide a reference for future predictions. The X
image is scaled (Q~!) and inverse transformed (7') to produce Dn. The P
image is added to D,, to create the reconstructed image uwF,,. However, this
image is unfiltered. In the last step, a filter is used to reduce the effects of
blocking distortion.

Fn N - - Entropy
(current) > @Dn n -X: Reorder encode NAL

Inter

Fn
(reference )
.| Intra
Prediction

'y Intra

+

Fn Deblocking
(reconstructed ) Filter F WN*@"Dn Q

+

Figure 1.12: Block Diagram for an H.264 encoder

A Deblocking Filter is used to reduce blocking distortion and is applied
to each decoded macroblock. This module may improve the compression
performance, because the filtered image is often a more reliable reproduction
of the original frame than a block and unfiltered image. In the encoder (see
Figure 1.12) this filter processes the macroblock after the inverse transform
T~ prior to the stage of reconstruction and storing for future predictions.
In the decoder (Figure 1.13), it is the last operation of the process. The
function of this module is to smooth block edges, improving the appearance
of the decoded frames. The filtered image is used for motion compensation
in future frames. The filter is applied to vertical and horizontal edges of 4x4
blocks in a macroblock but the edges on slices boundaries.

The Transform, used in the H.264 standard, 7" and 7!, depends on the
type of residual data to be coded. There are three kinds of transforms avail-
able: a Hadamard Transform (HT) for the 4x4 array of luminance Dominant
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Figure 1.13: Block Diagram for an H.264 decoder

Component (DC) coefficients in Intra MBs predicted in 16x16 mode, a HT
for the 2x2 array of chrominance DC coefficients in any macroblock and a
DCT-based transform for all other 4x4 blocks in the residual data. The H.264
transform [31] is based on the DCT but with some fundamental differences:

e It is an integer transform, which implies no floating point operations
are needed. The mismatch between the encoder and the decoder is zero
without loss of accuracy.

e [t can be implemented using only additions and shifts.

e The number of operations can be reduced by integrating part of the
operations involved in the transform into the quantizer.

As depicted in the H.264 reference standard [1] the two dimensional DCT
transform is implemented applying a one-dimensional DCT transform twice,
one to the horizontal dimension and another to the vertical one [82]. In the
first step, the horizontal correlation within the nxn samples block is exploited
and in the second step the one-dimensional DCT transform is applied to
exploit the vertical correlation.

The transformation matrix H is a 4x4 matrix defined as [1] in 1.1:

1 1 1

1 —1 =2
-1 -1 1 (1.1)

-2 2 -1

— = N

The inverse transformation matrix Hy,, is a 4x4 matrix defined as [1] in
1.2:
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The relationship between the matrices H;,, and H is given by equation
1.3), where [ is the Identity matrix:
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The Quantizer, @ and Q! (Figure 1.12 and Figure 1.13), adopted by the
H.264 standard, is a scalar quantizer. A total of 52 values for the Quantifi-
cation Parameter (QP) are supported by the standard. The quantification
step is doubled in size for every increment of 6 in QP. The wide range of
quantizer step sizes makes it possible for an encoder to control the trade-off
accurately and flexibly between bit rate and quality. Besides, the H.264 stan-
dard allows different values for the QP for luminance and chrominance. The
quantization step-sizes are not linearly related to the quantization parameter
(as in all prior standards). A default relationship is specified between the
quantization step sizes used for luminance and chrominance, and the encoder
can adjust this relationship at the slice level to balance the desired fidelity
of the color components.

The Entropy encoding (Figure 1.12) or the Entropy decoding (Figure
1.13) are the modules where the elements of the sequence are encoded/-
decoded, using fixed or variable length binary codes. As shown later, this
operation depends of the profile being used to encode/decode the video se-
quence.

The entropy-encoded coefficients, together with side information required
to decode each macroblock from the compressed bit-stream pass to the Net-
work Abstraction Layer (NAL) where the picture will be prepared for trans-
mission or storage. The H.264 standard does not specify the mechanism of
transmitting NAL units, but a distinction is made between transmission over
packet-based transport mechanisms (packet networks) and transmission in a
continuous data stream (circuit-switched channels). Each NAL unit contains
a Raw Byte Sequence Payload (RBSP), a set of data corresponding to coded
video data or header information. The reason to use variable code lengths
and NAL is to discriminate between coding and transport features.

On the other hand, the decoder (Figure 1.13) only has the forward path
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(left to right). The data flow path in the decoder shows the similarities
between encoder and decoder.

The input for the decoder is a compressed bit-stream from the NAL, and
the entropy module decodes the data to generate a set of quantized coeffi-
cients, denoted by X in Figure 1.13. These are scaled and inverse transformed
to give D'n, exactly the same D'n created in the encoder (Figure 1.12), in
case that there were no errors during the process. Using the information
stored in the video sequence, the decoder generates the P image. The de-
coder adds these two images to produce uf"n, which will be filtered to obtain
F'n.

In the decoder (Figure 1.13), each block coming from the quantizer is
mapped into a sixteen element array in a zig-zag order. This is the func-
tion made by the reorder. This module has the function to prepare the data
(reordering the coefficients for optimization) for the next module, where the
entropy coding is performed. The inverse process is made by the decoder
(Figure 1.13). The MB coefficients are reordered before the inverse quantifi-
cation.

H.264 Inter Prediction

There are some concepts redefined in the H.264 standard which will be used
in the next sections. They are summarized in the following paragraphs:

The fields and the frames are used in a different way. Both can be
encoded to produce a coded picture of interlaced video, however only a frame
can be coded using progressive video. The decoding order is not necessarily
related to the number of frames of each encoded frame. Each coded field
or frame has an associated picture order count, which defines the decoding
order. Previously coded pictures, reference pictures, may be used for Inter
prediction of further coded pictures.

A coded picture consists of a number of MBs, each containing 16x16
luminance samples and associated 8x8 chrominance samples (Cb and Cr in
the H.264 standard) if any, depending on the sampling format. Within each
picture, MBs are ordered in slices, where a slice is a set of MBs in raster scan
order, but not necessarily contiguous. An I slice may contain only I MBs
types, a P slice may contain P and I MB types and a B slice may contain B
and I MB types.

The MB prediction (Intra or Inter) is performed in the H.264 standard us-
ing previously encoded data. In the case of the Intra prediction, an Intra MB
is predicted from the current slice after having been encoded, decoded and
reconstructed. For the Inter prediction, the MB is predicted using samples
previously encoded. The MB prediction and the current MB are subtracted,
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and the result is compressed and transmitted to the decoder, together with
the information required for the decoder to repeat the prediction process
(motion vectors, prediction mode, etc.). The decoder needs this information
to create the prediction and adds the residual to it. The encoder must encode
and decode the sequence to make sure that the decoder will have the same
reconstructed information.

H.264 allows 4:2:0 progressive or interlaced video. In the default sampling
format (4:2:0), chrominance samples (Cb and Cr) are aligned horizontally
with every 2nd luminance sample and are located vertically between two
luminance samples. Chrominance components have half the horizontal and
vertical resolution of the luminance component.

The basic mechanism used to encode the residual is the Context Based
Adaptive Variable Length Coding (CAVLC) [10]. CAVLC uses run-level cod-
ing to represent strings of zeros compactly. The number of coefficients is
encoded using a look-up table, and the choice depends on the number of
nonzero coefficients in neighboring blocks. This mechanism can take advan-
tage, just in case the magnitude of nonzero coefficients tends to be larger at
the start of the reordered array, and smaller towards the higher frequencies.
CAVLC chooses the entry of Variable Length Code (VLC) look-up table for
the level parameter, depending on recently coded level magnitudes.

In the H.264 standard, the MB mode decision in Inter frames (those where
the motion estimation is carried out) is the most computationally expensive
process due to the use of the variable block-size, motion estimation, quarter-
pixel motion compensation, etc. Inter prediction creates a prediction model
from one or more previously encoded video frames or fields using block based
motion compensation as depicted in Figure 1.14.

16x16 16x8 8x16 8x8
0 0 1
0 01
1 213

Figure 1.14: MB partitions: 16x16, 16x8, 8x16 and 8x8

H.264 uses block-based motion compensation, the same principle adopted
by every major coding standard since H.261. Important differences from
earlier standards include the support for a range of block sizes (down to 4x4)
and fine sub-pixel motion vectors (1/4 pixel in the luminance component).
H.264 supports motion compensation block sizes ranging from 16x16 to 4x4
luminance samples with many options between the two.

The luminance component of each MB (16x16 samples) may be divided
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into four different ways (Figure 1.14): one 16x16 MB partition, two 16x8
partitions, two 8x16 partitions or four 8x8 partitions. Each of the sub-divided
regions is a MB partition. If the 8x8 mode is chosen, each of the four 8x8 MB
partitions within the MB may be further separated into four different ways
(Figure 1.15): one 8x8 partition, two 8x4 partitions, two 4x8 partitions or
four 4x4 partitions (known as sub-macroblock partitions). These partitions
and sub-partitions give rise to a large number of possible combinations within
each macroblock. This method of partitioning MBs into motion compensated
sub-blocks of varying size is known as tree structured motion compensation.

8x8 8x4 4x8 4x4
0 0 1
0 0 1
1 2 3

Figure 1.15: Sub-macroblock partitions: 8x8, 8x4, 4x8 and 4x4

The resolution of each chrominance component in a macroblock (Cr and
Cb) is half that of the luminance component. Each chrominance block is
partitioned in the same way as the luminance component, except that the
partition sizes have exactly half the horizontal and vertical resolution (an
8x16 partition in luminance corresponds to a 4x8 partition in chrominance;
an 8x4 partition in luminance corresponds to 4x2 in chrominance and so
on). The horizontal and vertical components of each motion vector (one per
partition) are halved when applied to the chrominance blocks.

Figure 1.16 shows the second frame of sequences Foreman, Flower and
Garden and Paris, and their mode decisions made by the Inter prediction,
in the Baseline Profile with all parameters as default. In the example, the
best match for the present current block is given for the mode that has the
smallest Sum Absolute Differences (SAE). See 1.17 for legend.

In order to evaluate the motion vectors, each partition in an inter-coded
MB is predicted from an area of the same size in a reference picture. The
offset between the two areas (the motion vector) has 1/4-pixel resolution
(for the luminance component). If the video source sampling is 4:2:0, 1/8
pixel samples are required in the chrominance components (corresponding
to 1/4-pixel samples in the luminance). The luminance and chrominance
samples at sub-pixel positions do not exist in the reference picture and so
it is necessary to create them using interpolation from nearby image sam-
ples. For example, in Figure 1.18, a 4x4 block in a frame is predicted from
a region of the reference picture in the neighborhood of the current posi-
tion. If the horizontal and vertical components of the motion vectors are
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(a) Foreman second frame (b) Foreman second frame mode
decision

(¢) Flower second frame (d) Flower second frame mode de-
cision

(e) Paris second frame (f) Paris second frame mode deci-
sion

Figure 1.16: Inter prediction in H.264

integers, the relevant samples in the reference block actually exist. If one
or both vectors components are fractional values, the prediction samples are
generated by interpolation between adjacent samples in the reference frame.
Sub-pixel motion compensation can provide significantly better compression
performance than integer-pixel compensation, at the expense of increased
complexity. Quarter-pixel accuracy outperforms half-pixel accuracy.
Encoding a motion vector for each partition can take a significant num-
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Figure 1.17: Different kinds of Inter MBs in Figure 1.16
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Figure 1.18: 4x4 example of integer and sub-sample prediction

ber of bits, especially if small partition sizes are chosen. Motion vectors
for neighboring partitions are often highly correlated and therefore each mo-
tion vector is predicted from vectors of nearby, previously coded partitions.
The method of forming a predicted motion vector depends on the motion
compensation partition size and on the availability of nearby vectors.

H.264 Intra Prediction

H.264 incorporates an Intra picture prediction into its coding process (defined
within the pixel domain) whose main aim is to improve the compression
efficiency of the Intra coded pictures and Intra MBs. Intra prediction can
result in significant savings when the motion present in the video sequence is
minimal and the spatial correlations are significant. Throughout this section,
the principle of operation of the Intra frame prediction modes as applied to
the luminance and chrominance blocks will be illustrated.
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While macro blocks of 16x16 pixels are still used, predicting an MB from
the previously encoded MBs in the same picture is new in H.264. For lumi-
nance component, an MB may make use of 4x4 and 16x16 block prediction
modes, referred to as Intra_4x4 and Intra_16x16, respectively. Recently, the
Intra_8x8 block prediction mode has been added as part of the Fidelity Range
Extension (FRExt) of the standard. There are nine 4x4 and 8x8 possible
block prediction directions and four 16x16 block prediction directions. For
the chrominance component, an MB makes use of 8x8 block prediction mode
only. There are four 8x8 possible block prediction directions. The prediction
directions for the 8x8 prediction mode are similar to the ones used for the
16x16 prediction mode in the luminance component.

These intra prediction modes include a directional prediction, thus greatly
improving the prediction in the presence of directional structures. With the
Intra frame prediction, the I pictures can be more efficiently encoded than
in other standards which do not use Intra frame prediction.

For each MB, and for each color component (Y,U,V), one prediction mode
and one set of prediction directions is maintained. The H.264 encoder se-
lects the best combination mode/direction by using the Sum of Absolute
Errors (SAE). This implies that for each existing direction of each mode,
the predictor within the pixel domain is created from the boundary pixels
of the current partition and the SAE costs are evaluated. The best combi-
nation of mode/direction is determined corresponding to the one presenting
the minimum SAE cost. The residual is encoded using a 4x4 integer based
transform.

H.264 Profiles

H.264 defines a set of Profiles, each supporting a set of coding functions and
each specifying the requirements of a decoder that satisfies the Profile. Table
1.1 summarizes the different options available in the three profiles defined in
the H.264 standard.

In general, the Baseline Profile is designed for video telephony, video con-
ferencing and wireless communications. The Main Profile may be useful for
broadcasting media applications, such as digital television and video stor-
age, while one potential application for the Eztended Profile is multimedia
streaming.

A video picture can be coded as such, if it has all the macroblocks of the
video picture or more slices otherwise. The number of macroblocks per slice
does not need to be constant within a picture. There is a minimum inter
dependency between coded slices which can help to limit the propagation
of errors. There are five types of coded slices shown in Table 1.2. A coded
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‘ Coding functions |Baseline Proﬁle‘l\/[ain Proﬁle‘Extended Proﬁle‘

I slices X X X
P slices X X X
B slices X X
SP and SI slices X
CAVLC X X X
CABAC X
Slice Groups and ASO X X
Redundant Slices X X
Weighted Prediction X X
Data Partitioning X
Interface X
Table 1.1: H.264 Baseline, Main and Extended Profiles
‘ Slice Type ‘Description ‘ Profiles ‘
I(Intra) Contains only I MBs All
P (Predicted) |Contains P and/or I MBs All
B (Bi predictive) | Contains B and/or I MBs Extended and Main
SP (Switching P)|Facilitates switching between coded Extended
streams: contains P and/or I MBs
SI (Switching I) |Facilitates switching between coded Extended
streams: contains SI, a kind of I
MBs

Table 1.2: H.264 slice mode

picture may be formed by different types of slices. The types of slices available
depend on the profile selected.

In the following sub-sections the different profiles available in the H.264,
the coding functions and the slice types are briefly described. Nevertheless,
the interested reader can find more information related on this topic in [82].

The Baseline Profile

The Baseline Profile supports coded bit-streams containing I and P slices.
P slices can contain Intra, Inter or skipped macroblocks. If one macroblock
is encoded as skipped, no more data are sent to that macroblock. Inter MBs
are predicted using previously coded pictures, using motion compensation
with quarter sample motion vector accuracy (in the luminance component).
The use of an H.264 encoder capable of inserting a picture delimiter RBSP
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unit at the boundary between coded pictures is recommended. This shows
the start of a new coded picture indicating which slice types are allowed in
the following coded picture. If this mechanism is not used, the decoder will
expect to detect the occurrence of a new picture based on the header of the
first slice in the new picture.

Other options available in the Baseline Profile are resumed in the follow-
ing lines:

e Redundant slices. The encoder can encode redundant pictures, within
the full or with part of the coded picture. These pictures will be used
in case the primary coded picture is damaged during transmission or
storage.

o Arbitrary Slice Order (ASO). The slices in a coded frame may follow
any decoding order.

e Slice groups. A slice group is a subset of the macroblocks in a coded
picture and may contain one or more slices. Within each slice in a slice
group, MBs are coded in raster order. If only one slice group is used
per picture, then all the MBs in the picture are coded in raster order.
In this case, ASO can not be used.

The Main Profile

In general, the Main Profile is a superset of the Baseline Profile where B slices
(bi-predicted), weighted prediction for creating a motion-compensated pre-
diction block, interlaced video (frames or fields) and Context-base Adaptive
Binary Arithmetic Coding (CABAC) as entropy coding method, are mecha-
nisms enhancing the Baseline Profile. These mechanisms are optional; they
can be enabled or disabled in the H.264 standard. However, in this profile
the redundant slices, ASO and multiple slice groups are not supported.

A B slice may be predicted from one or two reference pictures, before
or after the current picture in temporal order. It depends on the reference
pictures available in the encoder and decoder. In this way, there are more
options to select the prediction reference for the macroblocks in a B slice.
Macroblock partitions in this kind of slice can be done in direct mode, motion-
compensated or motion-compensated bi-predictive. The different algorithms
proposed in this dissertation only run with I and P slices, reason for which
no more details will be provided on this kind of slices.

Weighted Prediction is a method of modifying the samples of motion-
compensated prediction data in a P or B slice macroblock. The prediction
samples may be scaled by a weighting factor, before obtaining the motion
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compensated prediction. A large weighting factor is applied if the reference
picture is temporally close to the current picture and a smaller factor is ap-
plied if the reference picture is temporally far away from the current picture.
This tool may be useful when the sequence has fade transitions, where one
scene fades into another.

Another functionality available in the Main Profile is the interlaced video.
The encoder can choose to encode each MB pair as two frame MBs or two field
MBs and may select the optimum coding mode for each region of the picture.
Coding a slice or macroblock pair in field mode requires modifications to a
number of encoding and decoding steps. All the coded fields are treated as
separate reference pictures for the P or B slice prediction. The prediction of
coding modes in Intra macroblocks and motion vectors in Inter macroblocks
require modification, depending on whether adjacent macroblocks are coded
in frame or field mode.

The CABAC [107, 58], achieves good compression performance by select-
ing probability models for each syntax element according to the element’s
context, adapting probability estimates based on local statistics and using
arithmetic coding rather than variable length coding. The definition of the
decoding process is designed to facilitate low complexity implementations
of arithmetic encoding and decoding. Besides, CABAC provides improved
coding efficiency compared with VLC. The arithmetic operations for imple-
menting the CABAC are described in the H.264 standard decoder [1].

The Extended Profile

The FEaxtended Profile focuses on video streaming applications. As shown in
Table 1.1, it includes all the Baseline Profile characteristics. The new fea-
tures focus on supporting efficient streaming over packet switched networks,
error resilience and noise environments.

SP and SI slices allow efficient switching between video streams and ran-
dom access for the video decoders [46]. Over the Internet, where the data
throughput may drop suddenly, the decoder can switch automatically be-
tween the same sequence encoded using different bit rates. This is the func-
tion of the SP slices. They are designed to support switching between similar
coded sequences. For example, the same sequence at different bit rates. In
this case, the motion compensated prediction may be very efficient. This
solution is better than inserting I frames at switching points, improving the
performance too. Besides, SP slices allow random access features. On the
other hand, SI slices are used to pass between one sequence to a completely
different sequence, in which case it will not be useful to use motion compen-
sated images, because there is no relationship between them. More detailed
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treatment of the process can be found in [47].

The Data Partitioned Slices is a feature designed to improve the robust-
ness of the transmission of an H.264 encoded sequence. The coded data of
a slice are distributed into three different partitions, each of them contain-
ing a subset of the data. The first one has the header of the slice and the
header of the data for each macroblock. This partition is highly sensitive to
transmission errors. The second partition contains the residual data for the
Intra and SI slice macroblocks and the last one contains the coded residual
data for Inter coded macroblocks, forward and bi-directional. The data of
each partition can be placed in a separate NAL unit, i.e. they can be stored
or transmitted separately. If some data from the two last partitions are lost,
the sequence may be decoded and part of the missed information can be
reconstructed.

1.2.3 Wavelet based video encoders

The first attempts to use Subband Coding, and in particular Wavelet Trans-
form (WT), in video coding date back to late 80s [48]. It is quite easy to
extend the WT to three-dimensional signals: it suffices to perform a further
wavelet filtering along the time dimension. However, in this direction, the
video signal is characterized by abrupt changes in luminance, often due to
objects and camera motion, which would prevent an efficient de-correlation,
reducing the effectiveness of subsequent encoding. In order to avoid this
problem, MC is needed. Anyway, it was soon recognized that one of the main
problems of WT video coding was how to perform MC in this framework,
without falling again into the problem of closed loop predictive schemes,
which would prevent exploiting the inherent scalability of WT.

Actually, in such schemes as [48, 50, 51] three-dimensional WT is applied
without MC: this results in unpleasant ghosting artifact when a sequence
with some motion is considered. The quality objective is just as well un-
satisfactory. The idea behind Motion Compensated WT is that the low
frequency subband should represent a coarse version of the original video
sequence; motion data should inform about object and global displacements;
and higher frequency subbands should give all the details not present in the
low frequency subband and not caught by the chosen motion model as, for
example, luminance changes in a (moving) object.

A first solution was due to Taubman and Zakhor [105], who proposed to
apply an invertible warping (or deformation) operator to each frame in order
to align objects. Then, they perform a three-dimensional W'T on the warped
frames, achieving temporal filtering which is able to operate along the motion
trajectory defined by the warping operator. Unluckily, this motion model is
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able to effectively catch only a very limited set of object and camera move-
ments. It has been also proposed to violate the invertibility in order to make
it possible to use a more complex motion model [108]. However, prevent-
ing invertibility makes high quality reconstruction of the original sequence
impossible.

A new approach was proposed by Ohm in [68, 69], and later improved by
Choi and Woods [17] and commonly used in the literature [112]. They adopt a
block-based method in order to perform temporal filtering. This method can
be considered as a generalization of the warping method, obtained by treating
each spatial block as an independent video sequence. In the regions where
motion is uniform, this approach gives the same results as the frame-warping
technique, as corresponding regions are aligned and then undergo temporal
filtering. On the contrary, if neighboring blocks have different motion vectors,
we are no longer able to correctly align pixels belonging to different frames,
since "unconnected” and "multiple connected” pixels will appear. These
pixels need special processing, which does not correspond anymore to the
subband temporal filtering along motion trajectories. Another limitation
of this method is that motion model is restricted to integer-valued vectors,
while it has long been recognized that sub-pixel motion vectors precision is
remarkably beneficial.

A different approach was proposed by Secker and Taubman [89, 90, 91, 92]
and, independently by Pesquet-Popescu and Bottreau [77]. This approach
is intended to resolve the problems mentioned above, by using Motion Com-
pensated Lifting Schemes (MC-ed LS). As a matter of fact, this approach
proved to be equivalent to applying the subband filters along motion trajec-
tories corresponding to the considered motion model, without the limiting
restrictions that characterize previous methods. The MC-ed LS approach
proved to have significatively better performances than previous WT-based
video compression methods, thus opening the doors to highly scalable and
performance-competitive WT video coding.
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The problem of rate control for wavelet-based image coding is to create a
compressed image of an exact size. Based on a performance metric or quanti-
zation strategy, this task requires the selection of subband quantization step
sizes, such that when an entropy coder is applied to the quantized subbands,
the compressed file size matches the desired size. For some applications, the
problem of rate control has been avoided with embedded coders, such as
SPIHT [84]. For low bit rate coding, however, a truncated embedded rep-
resentation might not be optimal, especially in a perceptual setting such as
in [14], where step-sizes cannot be described as a single function of bit rate.
Given an optimization criterion (such as mean squared-error or a perceptual
distortion measure) that dictates some relationship between subband step-
sizes, a bisection search can be used to implement accurate rate-control. A set
of step-sizes generates quantized subbands where the sum of the compressed
subband sizes equals the target file size. A method for mapping step-sizes to
bit rate, however, is needed to run any such rate control algorithm.

Traditional methods of mapping step-size to rate include compressing
the quantized data and subband modeling. Simply recompressing an image
until the rate constraint is met is neither elegant nor efficient. Gaussian
subband modeling can be used to map step-size to rate with much less com-
putation, but is not effective at low rates because heavily quantized subband
data does not fit well with Gaussian distributions. In addition, characteriz-
ing a subband with only a distribution function does not address coefficient
dependencies that are important when most coefficients in a quantized sub-
band are zero. More sophisticated methods have been proposed for modeling
subband rate-quantization step-size (R-Q) relationships. Gormish and Gill
presented in [28] a model whereby each subband is treated as a quantized
Laplacian process. This technique performs well but overestimates the en-
tropy of subbands at low bit rates. Generalized Gaussian modeling has also
been proposed as the basis for a stripe-based rate control procedure in wa-
velet coders [73], which is applied on-the-fly to successive rows in a given
image.

Mallat and Falzon in [55] introduced an analytical framework for coarsely
quantized subbands that models the entropy of the location and magnitude
of non-zero quantized wavelet coefficients separately. The model is based on
run-length encoding the locations of non-zero wavelet coefficients and entropy
coding the remaining quantized coefficients.

Percentage of significant coefficients has also been suggested as a param-
eter to describe subband R-Q behavior [11, 33]. As a method of handling
significant coefficient dependencies, the relationship between rate and per-
centage of significant coefficients is coupled with a method to map this per-
centage to step size. Nevertheless, this kind of model requires training data
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(such as the rates associated with several step sizes) to be fit correctly.

In [27] the bootstrap rate-control algorithm is presented. The algorithm
uses a probability model to obtain an accurate rate estimation scheme. The
algorithm iterates on the models using Newton’s method.

In this chapter, several lightweight rate-control algorithms for non-em-
bedded coding with increasing complexity and accuracy are proposed. These
algorithms will predict the proper quantization values that lead to a final bit
rate close to the target one. In order to evaluate the proposed rate control
methods, the LTW encoder, which was briefly described in Section 1.1.2, has
been selected.

2.1 Zero-order entropy based rate control

This method is based on the zero-order entropy (Eq. 2.1) of the wavelet co-
efficients. The estimation of the quantization parameters is based on the
correlation between DW'T coefficients entropy, target bit rate and quantiza-
tion parameters.

H(x) = =) p(x)logs (p(z)) (2.1)

We use the Kodak image set [19] as a representative set for our purposes
and the LTW encoder with both @) and rplanes quantization parameters. As
there is a correlation between the DW'T coefficients entropy and the quantiza-
tion parameters, we can establish a relationship between them for a given tar-
get bit rate by means of curve and surface fitting techniques [118][23][52][102].
In particular, a surface fitting process was driven by polynomial bivariate
(bit rate and entropy) equations due to its low computational complexity.
So, equations (2.2), (2.3) and (2.4) represent the surface fitting expressions
corresponding to the fine quantizer () estimation for rplanes values of 2,
3 and 4, respectively. The variables z” and 'y’ represent the coefficients
entropy and the target bit rate, respectively, and constant values a, b, ¢, d,
e, f, g, h, i and j are computed through the aforementioned surface fitting
methods using the Kodak image set. For each equation, we also show the
Coefficient of Determination (r?) that measures the goodness of fit (ideally
r? =1).
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Qrp2 = a +bx + c/y + da* + e/y* + fa )y + go° + h/y*+
+ix/y* + j2? Jy
a = 23997462 b = —23.685546 ¢ = —1.2740571 d = 7.366104
e = 0.067482965 f = 1.1057934 g = —0.72773395 h = 0.0033011333
1 = —0.062838865 7 = —0.0092142026

(r*) = 0.94993174 (2.2)

Qus = a+b/z + clny + d/2* + e (Iny)* + f (Iny) /z+
+g/2° + h(Iny)’ +i(ny)* [z + j(Iny) [
a = 13.044539 b = —69.088897 ¢ = —5.9821471 d = 129.6753
e = 0.58350021 f = 19.072322 g = —82.793779 h = —0.070997754
1 = —0.6638497 5 = —16.319499

(r*) = 0.95041672 (2.3)

Qrpa = a+b/x+clny+d/z* +e (lny)2 + f(Iny) /z+
+9/5+ h(ny) +i(ny)? fx +j (ny) /2
a=15.296599 b = —19.54813 ¢ = —2.2959214 d = 25.767952
e = 0.15159821 f = 4.7468293 g = —11.718514 h = —0.019589203
1 = —0.019548644 7 = —2.54051

(r*) = 0.968726 (2.4)

Although this estimation method suffers from severe errors when working
at low and high entropy values, its complexity is low. In Figure 2.1, the
Entropy-based algorithm is shown. First, the algorithm sets the rplanes
value depending on the target bit rate (73,,). This value has been calculated
empirically for this algorithm. Particularly, the best choice for a target bit
rate in the range 0.125 — 0.5 bpp is rplanes = 4, rplanes = 3 in the range
0.5 — 1.5 bpp and rplanes = 2 in the range 1.5 — 2 bpp. But later on,
we will define a more precise method to compute the rplanes parameter.
Secondly, we apply the coarser quantization by removing the selected rplanes
less significant bits from all wavelet coefficients. Then, the coarser quantized
wavelet coefficients entropy is calculated, and finally we use the corresponding
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rplanes value fitting equation to obtain the finer quantization (@Q) value.
Table 2.1 shows the minimum, maximum and average estimation error of

Input: Wavelet Coefficients (C; ;), Target bit rate (Tbpp),
Surface Fitting Equations for each rplanes value(Fq;)
Output: @, rplanes
(E1) Determine rplanes using Ty,
(E2) Remove the rplanes less significant bits to all
wavelet coefficients (C; ;)
(E3) Calculate Wavelet Coefficients Entropy, Se
(E4) Select surface equation Eg; using rplanes
(E5) Determine quantization parameter ()
Qrplanes = Solve equation Eg; where o = Se and y = Tj,

Figure 2.1: Entropy-based rate control algorithm

the Entropy-based algorithm at different target bit rates for all images in
the Kodak set. As can be seen, there are discontinuities among the relative
estimation errors with respect to the growing bit rate. This ocurs because
the surface fitting equation suffer from severe errors at the surface boundary
lines.

0.125 bpp 0.25 bpp 0.5 bpp 1 bpp 2 bpp

3.79 0.56 0.72 0.04 0.11
150.88 62.65 62.09 108.6  50.29
44.64 14.25 16.76 15.35 9.04

Table 2.1: (Entropy-based) - Relative Estimation Error

2.2 Rate control based on a trivial coding
model

It is very difficult to estimate the quantization parameters at a certain degree
of accuracy for a target bit rate using only the wavelet coefficients entropy.
So we decided to study how the encoder works in order to define a simplified
statistical model of the encoding engine in a similar way as in [30] and [49].
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In [30] the authors propose an expensive rate allocation scheme based on the
Lagrangian optimization method that offers a low accurate rate control ca-
pability. In [49] another statistical model based on the Generalized-Gaussian
Densities (GGD) approach is proposed, obtaining an expensive but highly
accurate rate control behavior.

We will use the LTW coding engine in order to define a simple statistical
model that will be able to supply a fast and accurate estimation of the
resulting bit rate. Under this model, given a DWT transformed image and
for each specific rplanes value (from 2 to 7), we calculate the probability
that a coefficient is lower than 2"7/4"¢s (in other words, insignificant) and also
the probability that a coefficient needs rplanes+1 bit, rplanes+2, and so on.
After that the probability distribution function (pdf) of the LTW symbol
map is available, and as consequence we can get a lower bound bit rate
estimation of the bit rate required by the symbol map encoding by means of
its zero-order entropy (Se).

Since we also know the number of significant wavelet coefficients and the
number of bits needed for coding their value and sign, we can calculate the
exact number of bits sent to the output bit-stream, as they are raw binary
encoded (Bitsiotar)-

So the final bit rate estimation for each rplane value (E,,(rplanes))
is obtained by adding the arithmetic encoder estimation (S.) to the raw
encoding bit count of significant coefficients (Eq. 2.5)

Eyp(rplanes) = Se(rplanes) + Bitsiotq (rplanes) (2.5)

The resulting estimation gives a biased measure of the real bit rate for all
the operative bit rate range (from 0.0625 to 1 bpp). The error between the
model bit rate estimation (Ejy,,) and target bit rate is mainly due to the
assumption of a zero-order entropy coder whereas the LTW encoding scheme
uses an adaptive arithmetic encoder with context modeling. We reduce this
error by means of an adjust function that is defined heuristically from the
entire Kodak image set. Figure 2.2 shows the bit rate estimation error for all
images in the Kodak set and the corresponding curve fitting for rplanes=4 (no
finer quantization is applied). This curve will determine the model estimation
error at rplanes = 4. The same process was done for every rplane value from
2 to 7. So we have obtained the adjust function that we will apply to reduce
the model estimation error for each rplane value. In Figure 2.3 we show the
estimated and target bit rates resulting from coding the whole Kodak image
set with an rplane value of 4. The estimation error is significantly reduced
after applying the corresponding adjust function.

After that, the target bit rate (7},,) will determine the proper value of
rplanes by choosing rplanes so that E,(rplanes) > Ty, > Ey,,(rplanes+1).
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Once the rplanes value is determined, we have to estimate the () value that
will produce a bit rate as close as possible to the target bit rate. Note
that Q = 0.5 indicates no scalar uniform quantization as could be extrap-
olated from equation 2.6. On the other hand, @) = 1.16 is the maximum
scalar uniform quantization at a given rplane value, because point (Q =
1.16, Ey,p,(rplanes)) is roughly the same point as (@) = 0.5, Ey,,(rplanes+1)).
For this purpose, we observed that the bit rate progression from rplane to
rplane + 1 follows a second order polynomial curve that shares nearly the
same x-value of the vertex (K,,;,)! for all images in the Kodak set (see Fig-
ure 2.4).

Since we know three points of that curve Ey,,(rplanes), Epyy(rplanes+1)
and the curve vertex (K,,;,), we can build the corresponding expression that
will supply the estimated value of ) for a given target bit rate.

Coef

50 (2.6)

Coef, =

Symbol Map Entropy (Se)

0.5 0.7 0.9 11 1.3 15 1.7
.0.35 . . . . . )
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0.75 (r9) = 0.928

Figure 2.2: (Model-based) - Estimation error reduction by defining an adjust function
from the entire Kodak image set (rplanes=4)

The whole algorithm, shown in Figure 2.5, works as follows:

e First (E1), we estimate the resulting bit rate (Ep,,(rplanes)) after ap-
plying only the coarser rplanes quantization to wavelet coefficients for

rplanes values from 2 to 7.

Note that there is a K, value for every rplane, and it has been calculated as the
average x-value of the vertex for all images in the Kodak set.
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Figure 2.3: (Model-based) - Estimated vs Real bit per pixel for the entire Kodak image
set (rplanes=4)
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Figure 2.4: (Model-based) - Bit rate progression of four images from the Kodak set from
rplanes 3 to rplanes 4

e Second (E2), we apply the corresponding adjust functions to these es-
timations.

e Third (E3), we set the appropriate rplanes value for the requested

target bit rate (Tp,p).
(Eypp(rplanes) > Ty, > Eypy(rplanes + 1)).

e Next (E4), we obtain the quadratic expression so as to determine the
value of () by using the Newton interpolation algorithm.

e Then, we solve the expression to obtain the estimated () value.
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Input: Wavelet Coefficients (C;;), Target bit rate (13,,),
Curve minimum (K,,;,,)
Output: @, rplanes
(E1) for each rplanes in [2..7]
for each C; ; coefficient
nbits; ; = [log (|Cy;])]
if nbits; ; > rplanes
SymbOl(nbitsi,]-—rplanes)+ =1
Bitsiorq+ = nbits; j — rplanes
else
SymbOZnonfsignificant_'_ =1
Calculate the Symbols Map Entropy, S,
Eypp = (Bitsiora/sizeof (image)) + Se
(E2) for each rplanes in [2..7]
Apply_Adjust_Function;
(E3) Determine rplanes
Eypp(rplanes) > Ty, > Eyyy(rplanes + 1)
(E4) Determine quantization parameter ()
Obtain A,B,C using Ey,,(rplanes), Ey,,(rplanes + 1)
and K, for Ty, = A.Q*+ B.Q+ C

Figure 2.5: Model-based rate control algorithm

The Model-based algorithm yields a lower error on the estimation process
over the Kodak image set than the Entropy-based algorithm. Furthermore,
the choice of the rplanes parameter has been included in the estimation
process. Table 2.2 shows the average estimation error of the Model-based
algorithm at different target bit rates. The relative error produced is around
5% on average at low compression ratios and it grows up to 9% at higher
compression ratios. This is due to the high slope of the quadratic expression
used to obtain () when the rplanes parameter grows, so a slight change over
the @) parameter implies a high variation on the bit rate and as a consequence,
a higher estimation error.

2.3 Lightweight iterative rate control

With the Model-based rate control algorithm described in the previous sub-
section, we can define an iterative version to reduce the estimation error
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Input: Wavelet Coefficients (C; ;), Target bit rate (73,),
Curve minimum (K,;,) and
Maximum Allowed Error (MAE)
Output: @, rplanes
(E1) Obtain rplanes and @ using algorithm from Figure 2.5
(E2) Error = Encode_And_Evaluate_Error
(E3) Iterative stage
if error > MAE
N €U)prp = prp
for i=1 to MAX_ITERATIONS
if i in [1..3]
NewTy,, += error
error= Encode_And_Evaluate_Error
Points|i]=(Q,Realy,,)
else
Q=Newton(Points Last_three))
error= Encode_And_Evaluate_Error
Points|i]=(Q,Realy,,)

Figure 2.6: Iterative rate control algorithm

0.125 bpp 0.25 bpp 0.5 bpp 1 bpp

0.42 0.20 1.31 0.44
15.69 16.26 13.63 12.89
8.50 7.48 5.11 4.46

Table 2.2: (Model-based) - Relative Bit rate estimation Error

with a moderate computational complexity increase. Thus, depending on
the application requirements, we can get the proper trade-off in the predic-
tion between both factors: complexity and accuracy. Now, we can define the
maximum allowed estimation error as a relative or absolute error and the
algorithm will perform coding iterations until this condition is satisfied or a
maximum number of iterations is reached.

In the first iteration the proposed algorithm will estimate the rplanes
and () values for the target bit rate by using the algorithm described in the
previous subsection (see Figure 2.5). Then the source image will be coded
with the quantization parameters found. If the resulting bit rate error is
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lower than the maximum allowed error (MAFE), then the algorithm finishes;
otherwise, it makes a new () estimation based on the observed error. This
is done during the first three iterations, getting for each one a new real
point (), bit rate) from the Rate/Quantization second order polynomial
curve associated to the image. In the following iterations, the new three real
points obtained are used to get a new more accurate quadratic polynomial
curve for () by means of the Newton interpolation algorithm if the error has
not been previously fitted (see algorithm in Figure 2.6).

Table 2.3 shows the iterations carried out by the iterative algorithm to
produce the desired target bit rate in the range from 0.0625 to 1 bpp at
different maximum allowed relative errors (MAFE) for all images in the Kodak
set.

Iterations 2% 1% 0.5% 0.25%
Min. 1 1 2 2
Mazx. 4 5 5 6
O 2.36 289 318 3.6

Table 2.3: (Iterative) - Iterations at different values of the maximum allowed relative error

2.4 Rate control evaluation

Using a C++ implementation of the LTW encoder, the different proposals
were developed and tested on an Intel PentiumM 1.6 Ghz processor. To
determine the curve fitting and error adjustments in the first two methods,
we have used the Kodak image set as a representative set of natural images.
We restrict our proposals operation limits to the range from 0.0625 to 1 bpp.
Finally, we used the Barbara, Bike, Boat, Cafe, Goldhill, Lena, Mandrill,
Peppers, Woman and Zelda test images (outside the Kodak set) to validate
the proposed methods.

In Figure 2.7 we see that the Model-based algorithm gets the best results
for all bit rates in the range 0.625 to 1 bpp. Although for several images in
the Kodak set the Entropy-based algorithm performs better, the maximum
error peaks in the Model-based algorithm are significantly lower than in the
Entropy-based one.

In Figure 2.8, we show the bit rate accuracy of the proposed rate control
methods for the Goldhill test image. As can be seen in Table 2.4, the behavior
is very similar in the other non-Kodak test images. In general, the Model-
based method does not work efficiently at very low bit rates in the range from
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Figure 2.7: Entropy-based vs Model-based error prediction
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Figure 2.8: Bit rate accuracy for the GoldHill image

0.0625 to 0.125 bpp. This behavior is due to the model simplicity where there
is no symbol differentiation in the insignificant coefficients set. In particular,
the roots and members of lower trees (in the LTW encoder), which are very
common symbols at these compression ratios, are not handled separately.
However, at moderate and low compression ratios, the Model-based proposal
is more accurate than the Entropy-based one.

In Figure 2.9 we measured the computational cost (in CPU cycles) of the
proposed methods when coding the Goldhill test image. As can be seen, the
Model-based method is the fastest one, due to the simplicity of computations
required for issuing an estimation. The Entropy-based proposal is 3 times
slower than the Model-based one, mainly due to the higher complexity of
float type computations. In the case of iterative versions, we can observe
that with a maximum 2% relative error, we obtain a very fast rate control
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Bit Entropy Model Iterative | Entropy Model Iterative
rate based based 1% based based 1%

Barbara(512x512) Bike(2048x2560)
0.0625 pEERER] 14.35 0.44 64.16 16.51 0.10
0.125 EVEAE] 20.82 0.39 34.99 19.96 0.01
0.25 7.42 14.58 0.43 12.80 15.69 0.10
0.5 5.38 11.54 0.28 6.77 12.05 0.02
1 3.03 10.65 0.22 2.86 9.18 0.05
Boat(512x512) Cafe(2048x2560)
0.0625 puwyRl 14.45 0.29 88.02 16.39 0.16
0.125 el 5.88 0.73 60.75 0.93 0.93
0.25 0.26 5.29 0.73 34.87 10.43 0.75
0.5 1.45 6.32 0.49 19.28 9.12 0.12
1 6.86 4.10 0.31 3.54 9.66 0.06
Goldhill(512x512) Lena(512x512)
9.42 16.06 0.44 14.11 14.20 0.48
14.60 12.08 0.36 2.19 12.59 0.00
13.51 1.92 0.67 12.04 10.62 0.15
8.94 3.44 0.31 14.14 9.78 0.16
0.75 3.44 0.43 16.34 2.51 0.09
Mandrill(512x512) Peppers(512x512)
24.16 2.83 0.87 27.88 15.43 0.09
18.87 17.72 0.04 3.56 11.45 0.24
11.60 1.28 0.26 12.28 9.48 0.00
13.20 6.79 0.36 16.29 8.42 0.34
7.07 4.83 0.37 6.03 8.74 0.09
Woman (2048x2560) Zelda(512x512)
1.68 18.04 0.18 16.60 11.86 0.58
2.36 6.28 0.64 28.14 11.98 0.31
0.73 10.20 0.54 31.23 12.58 0.11
3.70 9.47 0.21 4.09 11.87 0.03
5.44 8.40 0.65 268.53  3.50 0.36

Table 2.4: Bit rate accuracy for all test images (% error)
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Entropy
based

29.65
30.05
25.67
22.76

515.08
501.36
528.78
523.34

24.96
24.98
26.39
25.28

503.94
506.71
530.43
516.30

26.61
25.46
26.81
26.65

25.50
24.67
26.01
24.59

24.70
24.55
25.67
24.68

505.87
509.67
523.85
503.98

25.25
25.25
26.12
25.23

Model Iterative Iterative Iterative
based 2% 1%
Barbara(512x512)
7.01 29.74 29.88
6.96 38.05 37.97
7.93 53.18 52.89
6.85 43.53 81.98
Bike(2048x2560)
135.66  449.86 709.75
136.91 524.78 864.79
137.38  670.16 1172.11
141.02 957.60 960.01
Boat (512x512)
6.50 18.54 29.25
6.56 37.90 37.92
8.15 30.13 53.72
6.76 45.48 84.05
Cafe(2048x2560)
146.03 211.57 211.34
147.29 554.04 550.09
145.92 702.75 1218.59
147.61 972.29 1782.59
Lena(512x512)
7.36 22.93 37.50
6.59 26.59 37.73
7.05 30.07 58.96
6.93 52.81 53.44
Mandrill(512x512)
7.78 24.62 37.65
7.81 10.82 29.91
9.37 37.56 37.55
7.44 53.73 50.66
Peppers(512x512)
6.90 23.47 36.43
7.43 26.82 43.99
8.18 34.75 60.03
8.19 58.80 59.29
Woman (2048x2560)
141.82 733.82 735.96
135.82 898.14 901.37
136.72 696.95 694.69
138.41 978.82 975.30
Zelda(512x512)
7.38 35.28 48.04
6.67 60.54 59.90
6.23 61.83 141.31
6.62 55.70 102.59

0.25%

40.81
53.42
76.82
81.75

715.62
863.45
1167.62
952.69

51.50
75.49
75.97
124.36

745.33
906.26
1215.76
1780.53

30.28
43.73
58.91
52.59

32.05
48.03
64.48
97.37

35.95
44.41
85.32
58.94

1008.54
1255.52
691.23
1805.05

74.42
59.57
140.72
148.26

Table 2.5: Complexity evaluation of different proposals (Time in Millions of CPU cycles)
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estimator (even faster than the Entropy-based). Also, we can state that
the computational cost is not dependent on the target bit rate, although in
the iterative versions the number of iterations may produce some deviations.
The behavior is very similar in other non-Kodak test images as shown in
Table 2.5.

2.5 Global performance evaluation

In order to analyze the impact of rate control proposals in the LTW encoder,
we have performed several experiments comparing the obtained results with
the original encoder. In addition to R/D performance, we also analyze other
performance metrics like coding delay and memory consumption.

So as to perform a fair evaluation, we have chosen SPIHT (original ver-
sion), JPEG 2000 (Jasper 1.701.0) and LTW version 1.1, since their source
code is available for testing. The correspondent binaries were obtained by
means of Visual C++ (version 6.0) compiler with the same project options.
All the evaluated encoders have been tested on an Intel PentiumM Dual
Core 3.0 GHz with 1 Gbyte RAM memory. The test images used in the eval-
uation were Lena (512x512), Barbara (512x512), GoldHill (512x512), Cafe
(2560x2048) and Woman (2560x2048).

Table 2.6 shows the coding and decoding delay for all the encoders under
evaluation. LTW_RC is the Model-based rate control version of LTW (de-
scribed in Section 2.2). LTW_RCi is the iterative rate control version of LTW
(described in Section 2.3) with a relative (% value) and an absolute (ABS
suffix) rate control maximum allowed error that we experimentally have fixed
to +0.04bpps. We discard the first rate control method (Entropy-based) due
to its lower accuracy with respect to the Model-based one. Although not
shown here, the behavior is very similar in all tested images as the coding
delay is affected overall by the image size, as the coding delay differences
between images with the same size were negligible (0.52 million CPU cycles
on average).

As expected, JPEG 2000 is the slowest encoder and the original LTW is
one of the fastest encoders. As shown in Table 2.6, the LTW_RC version does
not introduce great overhead and it has an acceptable accuracy. If this rate
control algorithm precision is not enough for the application, LTW_RCi is the
candidate at the expense of increasing complexity. In general, all rate control
versions of LTW are faster than SPIHT, specially the non-iterative version,
LTW_RC, that performs the encoding process twice as fast as SPIHT.

Although it could be thought that the original LTW should be faster than
the LTW_RC version due to rate control overhead, the results show just the
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Codec/ |SPIHT JPEG 2000 LTW LTW-RC LTW- LTW
RCi 2% RCi-ABS
CODING Lena (512x512)
20.82 158.79 9.75  8.316 20.25 10.03
29.12 161.92 14.09 11.726 27.08 13.42
45.82 167.14 22.46 18.356 62.07 40.74
79.56 175.64 41.46 36.656 75.75 38.61
DECODING Lena (512x512)

11.3 11.46 8.28 6.77 7.2 6.71
19.38 18.11 13.39 10.8 11.49 10.79
34.9 30.78 23.48 18.84 20.61 20.12
66.8 50.99 46.52 41.11 39.64 40.73

CODING Cafe (2560x2048)
469.73 454651 21041 192.06 26549  265.81
687.67  4527.09 299.78 255.80 670.28  327.44
112843  4591.08 459.48 392.74 947.77  950.7
2017.8  4736.99 73321 630.70 1444.62 1443.28
DECODING Cafe (2560x2048)
23253 23410 182.97 168.09 160.88  161.01
397.98 36296 29556 252.02 264.03  260.03
74569  593.92  491.96 431.59 442.87  945.90
1453.80  1040.39  830.87 738.91  764.77  763.93

Table 2.6: Execution time comparison of the coding process excluding DWT (time in
millions of CPU cycles)

opposite. The reason for this behavior is based on the differences between the
quantization process on both encoders. An image is encoded with the original
LTW using a fixed value of the rplanes parameter (rplanes=2) and moving
the @) parameter through a wide range. However, the LTW_RC version uses
the estimated value for the rplanes parameter (from 2 to 7), limiting the value
of the () parameter to a shorter range. So, as more non-significant symbols
are produced with this method, faster the algorithm becomes. However, as
a 'side effect’, the coding efficiency decreases slightly as we will see later.

In the iterative rate control versions, we have found two ways of defining
the maximum allowed error: a relative or an absolute MAE (Maximum Al-
lowed Error). The relative maximum error shows non-linear behavior, since
a rate control precision of 1% is not the same at 2 bpp than at 0.125 bpp.
For very low bit rates, achieving an accuracy of 1% has no effects upon R/D
performance. The maximum absolute error is fixed independently of the tar-
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get bit rate, so it produces different relative errors at different bit rates. It is
important to take into account that proposed rate control methods have an
average precision error around 5% at 1 bpp and 9% at 0.125 bpp, as shown
previously.

Figure 2.10: Lena compressed at 0.125 bpp and 0.0625 bpp - (a,e) LTW_RCi-2%; (b,f)
SPIHT; (c,g) JPEG 2000; and, (d) Original (not compressed)

Table 2.7 shows the R/D evaluation of the proposed encoders. In gen-
eral, the original LTW obtains very good performance results, specially in the
Lena and Woman test images. The rate control versions of LTW have slightly
lower PSNR results than SPTHT and JPEG 2000, being the LTW_RCi at 2%
the one that shows better R/D behavior. Table 2.7 also shows the absolute
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bit rate error in brackets for all LTW rate control versions. The lower per-
formance of the rate control algorithm versions is mainly due to the achieved
final bit rate that is always lower than the target one (obviously, the more
accuracy, the better R/D performance). Note that original LT'W has been
tuned to provide the exact bit rate.

Codec/|SPIHT JPEG LTW LTW LTW-

2000 Orig. RC RCi
2%

Lena(512x512)
31.10 | 30.81 [31.28(30.59(—0.016)[31.06
34.15 | 34.05 |34.33|33.65(—0.027)|34.05
37.25 | 37.26 |37.39(36.76(—0.049)(37.15
40.46 | 40.38 |40.55(40.34(+0.035)|40.20
Cafe(2560x2048)
20.67 | 20.74 [20.76]20.63(—0.001)[20.63(—0.001
23.03 | 23.12 |23.24(22.60(—0.026)|23.08(+40.002

(

(

—0.001
—0.004
—0.008
—0.001

30.59(—0.016)
33.65(—0.026)
37.08(—0.011)
40.34(+0.035)

o~
~— —— N S

20.63
22.60

) —0.001
)

0.006)[26.53
)

—0.027
—0.007
—0.014

26.49 | 26.79 |26.85(26.04(—0.046)|26.53
31.74 |32.03|32.02(30.89(—0.097)|31.64
Barbara(512x512)
24.86 |25.25/25.21(24.30(—0.026)|25.04(40.002
27.58 |28.33(28.04(27.09(—0.036)[27.76(—0.001

(

(

0.010)|31.64

=~
— — N e

24.21
27.09
31.34
36.25

0.027
0.036
0.012

31.39 |32.14|31.72|30.80(—0.055)|31.47(—0.002
- 0.021

36.41 |37.11|36.67(35.61(—0.101)|36.39(—0.004
GoldHill(512x512)
28.48 | 28.35 |28.59(28.15(—0.015)|28.45(—0.001)|28.15(—0.015
30.56 | 30.51 |30.66|30.48(—0.001)|30.48(—0.001)|30.48(—0.001
33.13 | 33.19 |33.29|32.84(—0.028)[33.13(+0.006)[32.84(—0.028
36.55 | 36.53 |36.71|36.17(—0.046)|36.45(—0.000)|36.45(+0.001
Woman(2560x2048)
27.33 | 27.33 [27.51/27.19(—0.007)[27.30(—0.003
29.95 | 29.98 {30.15(29.45(—0.028)]30.02(40.004
(
(

— — N

(_
(_
(_
(_

~— — — e

~— —— N —

27.19
29.45
33.54
38.23

—0.007)
—0.027)
33.59 | 33.62 |33.82(32.94(—0.050)[33.55(—0.002 —0.001)
38.27 | 38.43 |38.52|37.52(—0.098)[38.32(—0.003 )

—0.002

~— — — —
o~~~

Table 2.7: PSNR (dB) with different bit rate and coders

In Table 2.8, memory requirements of the encoders under test are shown.
The original LTW needs only the amount of memory to store the source
image. LTW_RC also requires an extra 1.2 KB, basically used to store the
histogram of significant symbols needed to accomplish the Model-based rate
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control algorithm. On the other hand, the LTW_RCi version requires twice
the memory space as LT'W and LTW_RC, since at each iteration the original
wavelet coefficients must be restored to avoid a new DWT time consuming
procedure. SPIHT requires nearly the same memory as LTW_RCi, and JPEG
2000 needs three times the memory of LTW (results obtained with Windows
XP task manager, peak memory usage column).

Codec/image|SPIHT JPEG 2000 LTW Orig. LTW-RC LTW-RCi
3228 4148 2048 2092 3140
46776 65832 21576 21632 42188

Table 2.8: Memory requirements for all evaluated encoders (KB)

Figure 2.10 shows the Lena test image (512x512) compressed at 0.125 bpp
and 0.0625 bpp with (a,e) LTW_RCi, (b,f) SPIHT and (c,g) JPEG 2000.
Although the SPIHT encoder is, in terms of PSNR, slightly better than
LTW_RCi and JPEG 2000, the subjective test does not show perceptible
differences between reconstructed versions of the Lena image. At 0.0625
bpp the difference in PSNR between LTW_RCi or SPIHT and JPEG 2000
is nearly 0.5 dB. This difference is only visible if we carry out a zoom over
the eye zone as can be seen in Figure 2.11. Both SPIHT and LTW _RCi have
similar behavior.

2.5.1 Optimized encoders

All LTW encoder versions were developed finding the optimizations for max-
imizing R/D performance, so its software code is not optimized, just like the
JPEG 2000 reference software. However, we have compared its performance
with respect to a full optimized implementation of JPEG 2000: Kakadu [45],
in order to evaluate whether a full optimization of LTW is worth the ef-
fort. For that purpose, we have used the 5.2.5 version, one of the latest
Kakadu versions which is fully optimized including multi-thread and multi-
core hardware support, processor intrinsics like MMX/SSE/SSE2/SIMD and
fast multicomponent transforms.

As shown in Figure 2.12, LTW_RC is a very fast encoder even though
not being fully optimized. The speed of LTW_RC lies in the simple engine
coding model. LTW_RC is on average 1.2 times faster than Kakadu-5.2.5.

Regarding memory requirements, LTW_RC needs only the amount of
memory to store the source image and 1.2 KB to store the model histogram
as mentioned before, while Kakadu memory requirements are independent of
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(d)

Figure 2.11: Zoom over eye zone in reconstructed Lena at 0.0625 bpp - (a) LTW_RCi_2%;
(b) SPIHT; (¢) JPEG 2000; and, (d) Original (not compressed)

the image size due to its DWT block-based implementation and they are on
average 1660 KB.

In terms of R/D, there are slight differences between all codecs as Table
2.9 shows. For images with lots of high frequency components, like Barbara,
Kakadu provides a better PSNR than LTW, but for images like Lena or
Woman, LTW outperforms Kakadu.

2.6 Conclusions

In this chapter, we have presented three different rate control tools suitable
for non-embedded wavelet-based encoders. We have implemented them over
the LTW encoder in order to evaluate their behavior and compare the per-
formance results with SPIHT and JPEG 2000 encoders in terms of R/D, exe-
cution time and memory consumption. Furthermore, we have shown that we
can add rate control functionality to non-embedded wavelet encoders without
a significant increase in complexity and little performance loss. Among the
proposed simple rate control tools, the Model-based rate control algorithm
implemented in the LTW_RC proposal is the one that exhibits the best trade-
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Figure 2.12: Execution time comparison (end-to-end) of the coding process at 0.5 bpp

off between R/D performance, coding delay (twice as fast as SPIHT and 8.8
times faster than JPEG 2000) and overall memory usage (similar to the orig-
inal LTW).

Also, we have compared the LTW_RC coder with a highly optimized ver-
sion of JPEG 2000 (Kakadu), resulting competitive in terms of coding delay
(up to 1.8 times faster than Kakadu for medium size images) with slightly
lower R/D performance. So, a full optimization process will make LTW_RC
even faster and with lower memory requirements. These optimizations will
be mainly focused on the DWT coding step by using fast and low memory
demanding DWT techniques like line-based [70] or block-based ones and ex-
ploiting the parallel capabilities of modern processors (like multithreading
and SIMD instructions).



2.6. Conclusions

Codec/ | KAKADU LTW LTW

bit rate Orig. RC
Lena(512x512)
0.125 30.95  |31.28]30.59(—0.0157)
0.25 3411  |34.33|33.65(—0.0266)
0.5 37.30 37.39(36.76(—0.0489)
1 4040 |40.55|40.34(-+0.0350)
Cafe(2560x2048)

20.78 20.76 [20.63(—0.0012)

23.15 23.2422.60(—0.0261)

26.84 | 26.85]26.04(—0.0456)

32.03 32.02 {30.89(—0.0967)

Barbara(512x512)

25.24 | 25.21 [24.30(—0.0264)

28.36 28.04 [27.09(—0.0363)

32.17 31.72130.80(—0.0552)

37.15 36.67 {35.61(—0.1008)

Woman (2560x2048)

27.36 27.51|27.19(—0.0070)

30.05  |30.15|29.45(—0.0280)

33.64 |33.82[32.94(—0.0505)

38.43 38.52(37.52(—0.0980)

Table 2.9: PSNR (dB) comparison between Kakadu and LTW_RC
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The energy of a wavelet transform coefficient is restricted to non-negative
real numbers, but the coefficients themselves are not, and they are defined
by both a magnitude and a sign. Shapiro stated in [94] that a quantized
transform coefficient is equally likely to be positive or negative and thus one
bit must be used to transmit the sign. In recent years, several authors have
begun to use context modeling for sign coding [114][104][24].

In [24] sign coding is examined in detail in the context of an embedded
wavelet image coder. The paper shows that a PSNR improvement up to 0.7
dB is possible when sign entropy coding and a new extrapolation technique
to improve the estimation of insignificant coefficients are combined. However,
the contribution of sign coding to the PSNR improvement is only up to 0.4
dB for Crowd image. As reported in the paper, the PSNR improvement for
Lena image is up to 0.14 dB at low compression ratios and up to 0.36 dB for
Barbara image at medium compression ratios.

In [104] the Embedded Block Coding with Optimized Truncation of the
embedded bit-streams (EBCOT), core coding tool of the JPEG 2000 stan-
dard, encodes the sign of wavelet coefficients using context information from
the sign of horizontal and vertical neighbor coefficients (N, S, E, W direc-
tions).

In [114] a high order context modeling encoder is presented. In this coder,
the sign and the textures share the same context modeling. This model is
based on a different neighborhood for the HL., LH and HH wavelet subbands.
For the HH subband, an inter-band prediction is used besides the intra-band
prediction used by the HL. and LH subbands.

In this chapter, we perform a study about the usefulness of sign coding
techniques for fast non-embedded image encoders, showing the benefits and
drawbacks of adding sign coding capability to the encoder. For that purpose,
we use the LTW encoder as the reference framework for our study, with
results useful for other non-embedded encoders.

3.1 Context-based sign coding approach

In the former wavelet image encoders, sign coding of wavelet coefficients
was not considered because those coefficients located at the high frequency
subbands form a zero-mean process, and therefore are equally likely positive
as negative.

Schwartz, Zandi and Boliek were the first authors to consider sign coding,
using the sign of one neighboring pixel in their context modeling algorithm
[88]. The main idea behind this approach is to find correlations along and
across edges.
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The HL subbands of a multi-scale 2-D wavelet decomposition are formed
from low-pass vertical filtering and high-pass horizontal filtering. The high-
pass filtering detects vertical edges and so the HL subbands contain mainly
vertical edge information. Oppositely defined are the LH subbands that
contain primarily horizontal edge information.

As explained in [24], given a vertical edge in an HL subband, it is rea-
sonable to expect the transform coefficients along this edge to be positively
correlated. This is because vertical correlation often remains very high along
vertical edges in images. When a low-pass filter is applied along the image
columns, it results in a series of similar rows, as elements in a row tend to
be very similar to elements directly above or below due to the high vertical
correlation. Subsequent high-pass filtering along similar rows is expected to
yield vertically correlated transform coefficients. In Figure 3.2, vertical edges
exist along the vertical picture frame edge. The pixels along this edge remain
highly correlated in the vertical direction. Hence it is predicted that the as-
sociated strong edge in the HL subband will possess positive correlation in
the vertical direction along this edge. Neighboring coefficients along the edge
are considered valuable context information, and are expected to have the
same sign as the coefficient being coded. This is independent of the type of
wavelet filter employed.

It is also important to consider correlation across edges. In this case,
the nature of the correlation is directly affected by the structure of the high
pass filter. For Daubechies’ 9/7 filters, wavelet coefficient signs are strongly
negatively correlated across edges. This strong negative correlation can be
seen in Figure 3.2, where lighter colored wavelet coefficients are positive, and
darker colored wavelet coefficients are negative. An explanation for negative
correlation across edges comes from the theory of zero crossings and edge
detection. Most edge detectors utilize a first or second order derivative of a
Gaussian-like function to identify edges. The signal is smoothed, and then
extrema in the first derivative, corresponding to zero crossings of the second
derivative, are classified as edges [56]. As it is well known, wavelet decom-
position used in Daubechies’ 9/7 filter is very similar to a second derivative
of a Gaussian, so it is expected that wavelet coefficients will change sign as
the edge is crossed. Although the discrete wavelet transform involves sub-
sampling, the subsampled coefficients remain strongly negatively correlated
across edges. In this manner, when the wavelet coefficient in question is
optimally predicted as a function of its across-edge neighbors (e.g. left and
right neighbors in HL subbands), the optimal prediction coefficients are neg-
ative, indicating an expected sign change. This conclusion is general for any
wavelet with a shape similar to a second derivative of a Gaussian.

In Figure 3.1 we plot the spatial distributions of signs in the HL. subband
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of two popular test images, Barbara and Lena. The visible sign structures
suggest that the sign bits of wavelet coefficients are compressible.

b) Sign map for Lena

(a) Sign map for Barbara

Figure 3.1: Sign patterns in the HL subband for Barbara (left) and Lena (right). Black
for negative signs, grey for positive signs and white for non-significant coefficients

In order to identify the neighborhood with the highest sign correlation
in the LTW encoder, we have defined a neighboring set with a maximum
distance of two, that is W, N, WW, NN, NW and NN-W (see Figure 3.3).
Remark that LTW uses a Morton order (Z-order)[64] in the coding stage, so
no information is available about S (South) and E (East) neighbors. This
is a restriction when looking for sign correlation among the neighborhood
shared by most of the non-embedded encoders. All the neighbors have three
possible sign values, positive (+), negative (-) or non-significant (*), but the
current coefficient being evaluated has only two possible signs, positive (+)
or negative (-). This forms a total of 2 % 6° neighbor sign combinations.
To estimate sign correlation in a practical way, we have performed a 6-level
DWT decomposition of the source image (Lena) and after that we have
applied a very low quantization process to the resulting wavelet coefficients
(rplanes = 2).

In order to build an histogram with the occurrences of the neighbor sign
combinations, we follow a raster order inside each subband to determine the
signs of the current significant (non-zero) coefficient and its neighbors. Once
we have obtained the probability distribution of sign combinations, we have
dismissed several neighbors trying to group probabilities as much as possible.
This process has been done independently for each subband type and for each
wavelet decomposition level. After compacting the probability distribution
function of sign combinations, we noticed that sign neighborhood correlation
depends on the subband type (HL,LH,HH) as Deever assesses in [24]. So,
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Figure 3.2: Boat image and HL(b), LH(c) and HH(d) wavelet subbands

for the HL subband, the neighbors, whose sign is more correlated with the
sign of the current coefficient are N, NN and W. Taking symmetry into
account, for the LH subband, those neighbors are W, WW  and N. For the
HH subband they are N, W, and NW| exploiting the correlation along and
across the diagonal edges. At this point, we have a maximum of 3* neighbor
sign combinations for each subband type.

In table 3.1 we show neighbors sign probabilities for the HL. subband in
the Lena image at the last wavelet decomposition level. As can be seen, the
probability that the current coefficient (C) sign was positive when its N, NN,
and W were positive is aproximately 20%. If we observe with more detail,
we can see that there is a high probability when the N, and NN neighbors
have the same sign and the W neighbor has the opposite sign.

After having analyzed all the possible combinations of neighbors for each
subband type and for each wavelet decomposition level, we could make a
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Figure 3.3: Sign intraband neighborhood

Level|C N NN W | Occurrences Total %Probability
occurrences

6 |+ + + + 13 64 20.31
6 |+ + + - 8 12.50
6 - - -+ 8 12.50
6 -+ + + 6 9.38
6 - -+ + 6 9.38
6 ||+ + - - 4 6.25
6 ||+ - - - 4 6.25
6 -+ + - 4 6.25
6 ||+ - + + 2 3.13
6 e 2 3.13
6 - -+ - 2 3.13
6 - - - - 2 3.13
6 ||+ - + - 1 1.56
6 ||+ - - + 1 1.56
6 -+ -+ 1 1.56

Table 3.1: Neighbor’s sign probability distribution for the HL. subband in the Lena image
at the last DWT decomposition level

prediction of the current coefficient sign. As an example in table 3.2 we show
the sign predictions for the HL. subband. With the prediction obtained for
the current coefficient (SC; ; [k]) based on the neighborhood sign information
(context info), what we are going to encode is the correctness of this sign
prediction. That is, a binary valued symbol from SC;; [k] - SC;;. In order
to compress this binary valued symbol as much as possible, we have used
two contexts for every subband type. So as to minimize the zero order
entropy of both contexts, we have distributed all sign coding predictions from
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the neighborhood between them. The selection criteria is to isolate in one
context those neighbors combinations with the highest correctness prediction
probability and highest number of occurrences. The remaining combinations
are grouped into the other context. However, there are certain combinations
with low correctness probability but with a great amount of occurrences, so
we have to heuristically determine the convenience of including them in the
first context or not.

Combination (k) N NN W | Prediction (SC;; [k])

0 >k * * +
1 k * _|_ +
2 k * _ +
3 4 * +
4 4+ + +
5 4+ - +
6 k _ * _
7 o + -
8 oo - -
9 + * * +
10 + o+ +
11 + - +
12 + + % +
13 +  + o+ +
14 + + - +
15 + - * +
16 + - + +
17 + - - +
18 - * * +
19 - o+ +
20 - * - +
21 -+ % +
22 -+ 4+ +
23 -+ - +
24 - - * +
25 - - + -
26 - - - +

Table 3.2: Sign prediction for the HL subband
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3.2 Evaluation

In this section we analyze the behavior of the sign coding when implemented
on the original LTW. This new encoder implementation is called S-LTW. For
further evaluation we will also compare the S-LTW encoder versus JPEG
2000 (Jasper 1.701.0) and SPIHT (Spiht 8.01) in terms of R/D and coding
and decoding delay. All the evaluated encoders have been tested on an Intel
PentiumM Dual Core 3.0 GHz with 1 Gbyte RAM memory. The correspon-
dent encoders binaries were obtained by means of Microsoft Visual C++
(2005 version) compiler with the same project options.

In Table 3.4 we show the relative compression gain with respect to the
original LTW due only to the sign coding capability in several test images.
As we can see, the maximum compression gain is 17.35% for Barbara at
1 bpp. For further evaluation in Table 3.3, the maximun, minimum and
average percentage (%) gains for the whole Kodak set is presented and as
can be seen it presents a similar behavior as in the test images.

Maximum Minimum Average
% gain % gain % gain

14.47 4.76 9.08
13.25 3.52 8.11
16.53 2.38 7.32
18.45 0.72 7.67
22.68 0 9.25

Table 3.3: Summary of sign compression gain for Kodak image set at different bit rates

In order to obtain the real compression gain of the new codec, we have
evaluated this new encoder version (S-LTW) in terms of R/D and global
compression rate gain. In Figure 3.4 we show the R/D performance of the new
codec when compared to the original LTW for the Lena and Barbara images
at diferent compression ratios. As can be seen, S-LTW has slightly better
PSNR behavior than the original LTW, specially for high textured images
like Barbara, where there are more significant coefficients. Specifically, the
PSNR improvement is up to 0.1 dB for Lena image and up to 0.28 dB for
Barbara image at low compression ratios.

In Figure 3.5 we show the R/D increment when comparing in pairs, on the
one hand, the original LTW versus JPEG 2000 and SPIHT, and on the other
hand, S-LTW versus JPEG 2000 and SPIHT. As shown, there is an increase
in the PSNR difference between the new S-LTW encoder and SPIHT, and
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Figure 3.4: PSNR (dB) comparison between LTW and S-LTW for Lena and Barbara test
images

regarding JPEG 2000, we can see that now S-LTW has a lesser loss in PSNR
than the original LTW.

As could be expected, the use of higher context modeling in the arithmetic
encoder in the S-LTW encoder, implies a higher computational cost in the
coding and decoding process, as shown in Table 3.5. However, this increase in
the coding time still keeps S-LTW competitive. At high compression ratios,
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Figure 3.5: PSNR-Gain for Bike image

SPIHT has a similar behavior as S-LTW, but at medium and low compression
ratios, S-LLTW still remains faster. As shown, the behavior is similar in all
tested images, and better results were obtained in high textured images like
Cafe.



3.2. Evaluation 75
Bit rate| Significant Bits %Gain| Significant Bits %Gain
Coefficients Gain Coefficients Gain
Barbara (512x512) Bike (2048x2560)
95299 12768  13.40 1887252 169864 9.00
45740 7936 17.35 855266 115200 13.47
22331 3648  16.34 412212 64424 15.63
10484 1520  14.50 198943 30472 15.32
4343 304 7.00 91767 11992 13.07
2180 72 3.30 46543 4664  10.02
Cafe (2048x2560) GoldHill (512x512)
1723583 154160 8.94 117713 4400  3.74
866839 80240  9.26 46563 2248  4.83
426670 29560  6.93 21777 960 4.41
200617 9408  4.69 11106 456 4.11
107553 4216 3.92 4747 184 3.88
42890 1488  3.47 2126 24 1.13
Lena (512x512) Mandrill (512x512)
109014 3696  3.39 105351 3128 297
51113 4032 7.89 48326 1232 2.55
20886 2328 11.15 22223 240 1.08
10038 880 8.77 11487 32 0.28
4724 256 5.42 4088 40 0.98
2178 64 2.94 2246 32 1.42
Peppers (512x512) Woman (2048x2560)
131399 2240  1.70 1964238 159952 8.14
57008 1880  3.30 909513 93192 10.25
19902 1512 7.60 443131 43472  9.81
9647 720 7.46 210433 17656  8.39
4717 328 6.95 106977 7416 6.93
2189 88 4.02 42272 2056  4.86

Table 3.4: Relative bit rate compression gain at different bit rates for several test images
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JPEG SPIHT LTW S-LTW |[JPEG SPIHT LTW S-LTW
CODING Barbara (512x512) DECODING Barbara
0.080 | 0.042 10.037| 0.045 | 0.022 | 0.031 |0.021| 0.029
0.076 | 0.026 |0.022| 0.026 | 0.012 | 0.016 |0.012] 0.015
0.074 | 0.018 ]0.013| 0.016 | 0.007 | 0.009 |0.006| 0.008
0.073 | 0.014 |0.010{ 0.011 | 0.005 | 0.005 |0.003| 0.005
0.072 | 0.011 |0.008| 0.008 | 0.003 | 0.003 |0.002| 0.003
CODING Bike (2048x2560) DECODING Bike
2423 | 0.915 |0.649| 0.787 | 0.481 | 0.676 |0.437| 0.568
2.397 | 0.539 ]0.354| 0.428 | 0.282 | 0.343 |0.230| 0.300
2.371 | 0.314 ]0.220| 0.248 | 0.170 | 0.183 |0.131| 0.161
2.312 | 0.218 |0.136| 0.159 | 0.109 | 0.103 |0.072| 0.093
2.337 | 0.172 ]0.105| 0.118 | 0.078 | 0.063 |0.049| 0.061
CODING Cafe (2048x2560) DECODING Cafe
2.623 | 0.920 ]0.647| 0.795 | 0.576 | 0.674 |0.438| 0.580
2.543 | 0.521 ]0.381| 0.460 | 0.329 | 0.349 |0.249| 0.323
2.507 | 0.323 ]0.224| 0.269 | 0.201 | 0.188 |0.135| 0.176
2,518 | 0.221 ]0.158| 0.184 | 0.130 | 0.106 |0.086| 0.112
2.509 | 0.172 ]0.105| 0.119 || 0.056 | 0.062 |0.048| 0.062
CODING GoldHill (512x512) DECODING GoldHill
0.082 | 0.045 |0.039| 0.047 | 0.022| 0.033 |0.024| 0.032
0.078 | 0.028 ]0.023| 0.027 | 0.012| 0.018 [0.013| 0.017
0.076 | 0.022 ]0.015| 0.017 | 0.008 | 0.009 |0.007| 0.010
0.075 | 0.016 |0.011| 0.011 | 0.005 | 0.005 |0.004| 0.005
0.074 | 0.012 |0.007| 0.008 | 0.004 | 0.003 |0.002| 0.003
CODING Lena (512x512) DECODING Lena
0.072 | 0.043 ]0.042| 0.051 | 0.022| 0.032 |0.026| 0.034
0.069 | 0.026 |0.022| 0.025 | 0.013 | 0.017 |0.012| 0.015
0.066 | 0.018 |0.014| 0.016 || 0.008 | 0.009 [0.006| 0.008
0.065 | 0.014 |0.010|{ 0.011 | 0.005 | 0.005 [0.004| 0.005
0.064 | 0.011 |0.007| 0.008 | 0.004 | 0.003 |0.002| 0.003
CODING Mandrill (512x512) DECODING Mandrill
0.103 | 0.044 ]0.040| 0.050 |/ 0.019| 0.032 |0.025| 0.033
0.099 | 0.027 ]0.024| 0.028 | 0.011| 0.018 |0.013| 0.018
0.097 | 0.019 ]0.016| 0.019 | 0.007 | 0.009 |0.008| 0.010
0.095 | 0.014 |0.010| 0.012 | 0.004 | 0.005 [0.004| 0.005
0.095 | 0.011 |0.008| 0.009 | 0.003| 0.003 |0.003| 0.004
CODING Woman (2048x2560) DECODING Woman
2423 | 0.944 ]0.668| 0.808 | 0.573 | 0.687 |0.444| 0.582
2.345 | 0.546 |0.375| 0.459 | 0.259 | 0.364 |0.242| 0.322
2.345 | 0.325 ]0.231| 0.273 | 0.161 | 0.190 |0.137| 0.177
2.337 | 0.219 ]0.157| 0.185 | 0.100 | 0.105 |0.084| 0.110
2.337 | 0.169 ]0.109| 0.123 | 0.073 | 0.063 |0.051| 0.064

Table 3.5: Coding and decoding delay (time in seconds)
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3.2.1 Fast arithmetic encoder evaluation

In order to compensate the coding speed loss we have changed the arithmetic
encoder stage by a fast arithmetic encoder [85]. So in this subsection we will
evaluate both S-LTW encoder versions: S-LTW (uses Witten’s arithmetic
encoder[111]) and S-LTW-Fast (uses Said’s fast arithmetic encoder [85]).
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Figure 3.6: Coding and Decoding delay comparison between Witten’s and Said’s arithmetic
encoders

Firstly, we have tested both arithmetic encoders ([111] and [85]) inde-
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pendently using a test aplication, where given a number of data symbols it
defines several values of source entropy, and for each value it generates mil-
lions of pseudo-random source samples. The times to encode and decode this
data are measured, and it finally compares the decoded with the original to
make sure the code is correct.

In Figure 3.6 we show the test results when encoding a 256 symbol source.
As shown, the encoding speed of Said’s fast arithmetic encoder is up to
22 times faster than Witten’s. Regarding the decoding process, the fast
arithmetic encoder is up to 2 times faster than Witten’s.

Now we will compare the S-LTW and the S-LTW-Fast encoders in terms
of coding/decoding delay and compression performance. As shown in Fig-
ure 3.7, both S-LTW encoder versions have similar behavior, being S-LTW
slightly better than S-LTW-Fast, mainly due to the lower compression rate
achieved by the fast arithmetic encoder.

Regarding coding and decoding delay, the S-LTW-Fast version is 28%
faster on average in the coding process and 47% faster on average in the
decoding process than the S-LTW version as shown in Figure 3.8.

3.3 Conclusions

In this chapter we have presented a study about sign coding for non-em-
bedded image encoders. We propose a simplified context model formation
that is oriented to maximize the successful prediction of the sign for every
non-zero wavelet coefficient. The prediction result is encoded with an adap-
tive arithmetic encoder to compact the sign as much as possible. We have
implemented it over the LTW encoder in order to evaluate the sign con-
text model behavior. The new S-LTW encoder proposed has slightly better
performance in R/D (up to 0.28 dB), with the improvements being greater
at low and medium compression ratios. Regarding coding delay, the use of
six contexts (two contexts for each subband type) implies an increase in the
coding and decoding delay (around 17% on average), and still competitive
against SPIHT and JPEG 2000. In order to compensate for the coding speed
loss, we have changed the arithmetic coder stage. The new arithmetic en-
coder [85] is 28% faster on average when coding and 47% faster on average
in the decoding process with minimum compression performance loss (3% on
average).
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In this chapter, we propose an enhanced version of the LTW encoder
(E-LTW) that includes the sign coding tool presented in Section 3.1 and
a new precise rate control method. These new features will improve the
R/D behavior, providing non-embedded encoders with a highly accurate rate
control tool.

4.1 Rate control improvement

The new rate control method is based on a modified version of the Model-
based rate control algorithm presented in Section 2.2. Given a source image
and the target bit rate, the proposed model should supply an accurate es-
timation of both quantization parameters (@ and rplanes). As presented
previously, the Model-based rate control method has an intrinsic average er-
ror of 5% at 1 bpp and 9% at 0.125 bpp. It is important to say that the
resulting bit rate is always lower than the target one leading to a PSNR
performance loss.

The modified rate control method should take into account the new sign
coding tool presented in Section 3.1 and the Model-based rate control intrin-
sic error. The idea is to fix the underestimation error in order to match the
final bit rate with the target one. To do that, we first estimate a 'Delta_Q)’
reduction factor in such a way that the resulting bit rate is under the target
one, but this time very close to it. The main idea behind this approach is to
overcompensate the scalar uniform quantization parameter (@). In order to
obtain this 'Delta_Q’ value, we have obtained the best () reduction value for
all images in the Kodak set. There is a different 'Delta_Q’ value at each T,
range and for each rplanes value. Also, we will apply this reduction factor
only when the original @ value is in the range [0.56-0.9] in order to avoid an
rplanes change. The 'Delta_Q’ value is in the range [0.02-0.08].

After applying the new scalar uniform quantization factor, we encode the
source image using the LTW encoder engine, but this time, when a significant
coefficient is found, we will store its rplanes less significant bits. Finally, if
we have not reached the target bit rate, then we append the number of
bits required to match the target bit rate to the bit-stream by using those
bits of the significant coefficients that correspond to bit planes lower than
equal to the rplanes quantization parameter (bits that were removed after
applying rplanes coarser quantization). These extra bits are appended to
the bit-stream in a bit plane order (from bit plane 'rplane’ to 0), scanning
the significant coefficients from the lowest frequency subbands to the highest
ones (see Figure 4.1).

The whole algorithm, shown in Figure 4.2, works as follows:
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Wavelet subbands order (resolution scalability)

Ord. Coeff_bits

LL, | HL, | LH, | HH, HH, rplanes...0

Subband coefficient

Symbol Sign & bits [ Raw bits
Caeff | (if significant) e

[ Sign coding

Sign prediction | Coeff_bit Coeff_bit [ZZ1 Symbol coding
(OK or ERR) MSB t rplanes+1

Figure 4.1: E-LTW bistream format

e First (E1), we obtain the quantization parameters rplanes and @ using
the Model-based algorithm presented in Section 2.2.

e Second (E2), we apply the corresponding overcompensation ('Delta_Q’)
to the estimated () parameter, taking into account the target bit rate
(Typ) and the previously obtained rplanes parameter.

e Third (E3), we encode with the LTW encoder using the rplanes and
the new () quantization parameters. But, if the bit rate obtained is
under the target one (7,,), extra bits are added to match the target
bit rate. These extra bits that come from the rplanes less significant
bits from the wavelet coefficients (C; ;) are appended to the bit-stream
in bit plane order, scanning the significant coefficients from the low
frequency subbands to the highest ones.

Input: Wavelet Coefficients (C; ;), Target bit rate (Tp,p),
Curve minimum (K ,,;,)
Output: @, rplanes
(E1) Obtain rplanes and @ from Model-based algorithm
(rplanes,))=Model-based(C; ;, Topp: K min)
(E2) Delta_Q = Overcompensate(Q,rplanes,Tyy,)
Q = @ - Delta_Q
(E3) Encode (Append extra bits from rplanes to 0 if needed)

Figure 4.2: Enhanced Model-based rate control algorithm

In Figure 4.3, we show the bit rate accuracy of the proposed rate control
method for the Woman test image. As shown in Figure 4.4, the behavior is
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very similar in the other test images, with the average relative error below

0.5%.
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Figure 4.3: E-LTW bit rate accuracy for Woman test image
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Figure 4.4: Bit rate accuracy for all tested images

4.2 Evaluation

In this section we analyze the behavior of the proposed encoder (E-LTW). We
will compare the E-LTW encoder versus JPEG 2000 (Jasper 1.701.0), SPIHT
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Bit rate | E-LTW LTW Gain | E-LTW LTW Gain

Barbara (512x512)

Bike (2048x2560)

2 42.59 41.51  1.08 43.59 4275 0.84

1 36.69 35.61  1.08 37.82 36.97  0.85
0.5 31.63  30.80 0.83 33.28 3236 0.92
0.25 27.92 27.09  0.82 29.45 28.40 1.04
0.125 25.02 2429  0.72 26.09 25.09  1.00
0.0625 23.28 23.02  0.26 23.40 22.85  0.55

Cafe (2048x2560) GoldHill (512x512)

2 39.10 37.66 1.44 42.34 4221  0.13

1 31.95  30.88 1.07 36.55  36.18  0.37
0.5 26.77  26.04 0.73 33.10 3285 0.26
0.25 23.13 22.60  0.53 30.54 30.49  0.05
0.125 20.70 20.65 0.05 28.49 28.15 0.34
0.0625 18.93 18.60  0.32 26.75 26.34 041

Lena (512x512) Mandrill (512x512)

2 44.88 4475  0.13 34.98 34.77  0.21

1 40.34  40.34 0 29.19 2883 0.36
0.5 3729  36.76  0.53 25,54 2526 0.28
0.25 34.18 33.65  0.53 23.28 23.28  0.00
0.125 31.14 30.59  0.55 21.65 21.34  0.31
0.0625 2836 27.79  0.57 20.67  20.64 0.03

Woman (2048x2560) Zelda (512x512)

2 43.75 43.05  0.70 46.30 44.70  1.60

1 38.41 37.56  0.84 41.89 41.80  0.09
0.5 33.66 32.96  0.70 39.49 38.94  0.55
0.25 30.05 29.44  0.61 37.45 36.93  0.52
0.125 27.40 27.20  0.20 34.98 34.51  0.47
0.0625 25,55  25.09 0.46 3233 3187 047

Table 4.1: PSNR (dB) gain for several test images

(Spiht 8.01) and the original LTW_RC (Model-based rate control version),
in terms of R/D, coding and decoding delay and memory requirements. All
the evaluated encoders have been tested on an Intel PentiumM Dual Core
3.0 GHz with 1 Gbyte RAM memory. The encoders binaries were obtained
by means of Microsoft Visual C++ (2005 version) compiler with the same
project options.

In Table 4.1 we show the PSNR (dB) gain when comparing E-LTW with
LTW-RC. As can be seen there is great improvement in PSNR (1.08 dB
for the Barbara image), with the improvement greater at low compression
ratios. The maximum PSNR improvement obtained is 1.6 dB for the Zelda
image at 2 bpp. In Figures 4.5, 4.6 and 4.7 we show the E-LTW behavior
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in R/D when compared to SPTHT and JPEG 2000. As shown, for high
textured images like Barbara, JPEG 2000 has better behavior than E-LTW
and SPIHT, and E-LTW better than SPTHT (up to 0.34 dB for the Barbara
image at 0.25 bpp). On the other hand, in images like Lena or Zelda, both
SPIHT and E-LTW have better behavior than JPEG 2000 (up to 0.52 dB at
high compression ratios).

Codec/image |SPITHT JPEG 2000 LTW-RC E-LTW
Lena 3228 4148 2092 2212
Cafe 46776 65832 21632 25392

Table 4.2: Memory requirements for evaluated encoders (KB)

E-LTW LTW-RC JPEG 2000 SPIHT
Barbara (512x512

0.051 0.037 0.080 0.042
0.031 0.023 0.076 0.026
0.026 0.018 0.074 0.018
0.015 0.010 0.073 0.014
0.014 0.008 0.072 0.011
Cafe (2048x2560)
0.914 0.648 2.623 0.920
0.527 0.382 2.543 0.521
0.349 0.225 2.507 0.323
0.198 0.158 2.518 0.221
0.140 0.105 2.509 0.172

Table 4.3: Coding delay (seconds) excluding DWT time

In Table 4.2, the memory requirements of the encoders under test are
shown. The original LTW-RC needs only the amount of memory to store the
source image and an extra 1.2 KB, basically used to store the histogram of
significant symbols needed to accomplish the Model-based rate control algo-
rithm. On the other hand, the E-LTW version requires little extra memory
space to store the rplanes less significant bits of the significant coefficients.
SPIHT requires more memory space than LTW-RC and E-LTW, and JPEG
2000 needs twice the memory of LTW-RC for medium size images and three
times for high definition images (results obtained with Windows XP task
manager, peak memory usage column).

As could be expected, E-LTW uses the arithmetic encoder more than
LTW when coding the sign, so this fact implies a higher computational cost
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in the coding and decoding process as shown in Table 4.3. The computational
cost increase is 40% on average. For high resolution images like Bike or Cafe,
E-LTW still remains competitive with respect to SPIHT and JPEG 2000.

4.2.1 Fast arithmetic encoder evaluation

In a similar way like in the previous chapter, we have changed the arith-
metic encoder stage by a fast arithmetic encoder [85] in order to compensate
the coding speed loss due to the higher arithmetic encoder use. So in this
subsection we will evaluate the original E-LTW encoder which uses an im-
plementation of Witten’s arithmetic encoder [111] against the E-LTW-Fast
encoder which includes Said’s fast arithmetic encoder [85].

As shown in Figure 4.8 and Figure 4.9, E-LTW-Fast is faster than the
original E-LTW regarding coding and decoding delay (up to 43% faster in the
coding process and up to 67% faster in the decoding process). As presented
in Chapter 3, there is slight compression loss by the use of the fast arithmetic
encoder. In Figure 4.10 the PSNR difference between both encoders is shown.
As can be seen, there is practically no difference between them.

4.3 Conclusions

In this chapter we have presented a new LTW encoder version (E-LTW), and
we have compared its performance with SPIHT and JPEG 2000 encoders in
terms of R/D performance, execution time and memory consumption. The
E-LTW encoder exhibits good R/D performance (up to 0.52 dB at high
compression ratios compared to JPEG 2000 and up to 0.34 dB for high
textured images compared to SPTHT). The use of high context modeling for
sign coding together with the extra bit plane passes over the image has a high
computational cost (40% overhead) but E-LTW still remains competitive for
high resolution images (similar coding time as SPIHT and up to 2.3 times
faster than JPEG 2000). Even more, the computational cost of our proposal
is dominated by the arithmetic encoder processing, so in order to compensate
the coding speed loss, we have changed the arithmetic encoder stage for a fast
arithmetic encoder [85]. This new implementation is on average 30% faster
in the coding process and 50% faster in the decoding process. Regarding
memory requirements, E-LTW needs only a little extra amount of memory
to store the rplanes less significant bits, and these requirements are 1.5 times
fewer than SPIHT and 2 times fewer than JPEG 2000.



Chapter 4. Enhanced LTW

Barbara
&
3
4
4
0
a
1 0.5 0.25 0.125 0.0625
HE-LTW 36.69 31.64 27.92 25.02 23.28
ELTW 35.61 30.81 27.09 24.30 23.02
= JPEG2000 37.11 32.14 28.33 25.25 23.09
B SPIHT 36.41 31.39 27.58 24.86 23.35
40
35
30
o 25
Z
@ 20
%
@ 15
10
5
0
1 0.5 0.25 0.125 0.0625
BE-LTW 37.83 33.29 29.45 26.09 23.40
uLTW 36.97 32.36 28.40 25.09 22.85
=JPEG2000  38.09 33.50 29.59 26.32 23.75
HSPIHT 37.70 33.00 29.12 25.89 23.44
o
RoA
x
z
0
o
1 0.5 0.25 0.125 0.0625
BE-LTW 31.95 26.77 23.13 20.70 18.93
BLTW 30.88 26.04 22.60 20.65 18.60
=JPEG2000  32.04 26.79 23.12 20.74 19.03
u SPIHT 31.74 26.49 23.03 20.67 18.95

Figure 4.5: PSNR (dB) with different bit rate and coders



4.3. Conclusions

Goldhill
40 e
35
30
) 25
Z
4 20
5
@ 15
10
1 0.5 0.25 0.125 0.0625
BE-LTW 36.55 33.10 30.54 28.49 26.75
mLTW 36.18 32.85 30.49 28.15 26.34
=JPEG2000, 36.53 33.19 30.51 28.35 26.45
= SPIHT 36.55 33.13 30.56 28.48 26.73
)
Z
4
z
0
a
1 0.5 0.25 0.125 0.0625
BE-LTW 40.34 37.29 34.18 31.14 28.37
mLTW 40.34 36.76 33.65 30.59 27.80
=JPEG2000, 40.38 37.27 34.05 30.82 27.84
= SPIHT 40.46 37.25 34.15 31.10 28.38
Mandrill
)
Z
4
z
0
a
1 0.5 0.25 0.125 0.0625
HE-LTW 29.19 25.54 23.28 21.65 20.67
ELTW 28.83 25.26 23.28 21.34 20.64
=JPEG2000, 29.06 25.54 23.15 21.60 20.58
= SPIHT 29.17 25.64 23.27 21.72 20.74

Figure 4.6: PSNR (dB) with different bit rate and coders



Chapter 4. Enhanced LTW

o
=
x
4
7]
o
1 0.5 0.25 0.125 0.0625
BE-LTW 38.41 33.66 30.05 27.40 25.55
BLTW 37.56 32.96 29.44 27.20 25.09
= JPEG2000 38.44 33.62 29.98 27.33 25.58
u SPIHT 38.27 33.59 29.95 27.33 25.43
45
40
35
™ 30
o2 25
x
zZ 20
7]
o 15
10
5
0
1 0.5 0.25 0.125 0.0625
BE-LTW 41.89 39.49 37.45 34.98 32.33
BLTW 41.80 38.94 36.93 34.51 31.87
= JPEG2000 42.15 39.60 37.31 34.55 31.83
u SPIHT 42.13 39.66 37.50 34.99 32.40

Figure 4.7: PSNR (dB) with different bit rate and coders



4.3. Conclusions

91

45

40

. .

30

25

20

% Coding Speed Gain

15 4---

10 4----

0.0625 0.125 0.25 0.5
Bit-rate (Bpp)

Figure 4.8: % Coding speed gain using Said’s arithmetic encoder for all tested images
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Figure 4.9: % Decoding speed gain using Said’s arithmetic encoder for all tested images
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Figure 4.10: PSNR differences between E-LTW and E-LTW-Fast encoders for all tested
images
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Applications such as wireless video communications, wireless video cam-
eras, disposable video cameras, and networked camcorders require low com-
plexity encoders due to memory, computation, and power consumption limi-
tations. Many compression approaches are currently being investigated tar-
geting such applications, including distributed video coding [2, 78, 61] and
low complexity hybrid video coding [109]. In distributed video coding, inter-
frame coding based on motion estimation and compensation is performed
in the decoder side in order to reduce the encoder complexity. However,
typically such approaches still use traditional intra coding schemes such as
H.264/AVC intra coding and JPEG 2000. Thus, intra coding is a potential
bottleneck to achieving very low complexity video coding. In [60] a fast in-
tra video encoder is used as the reference information in a distributed video
coding scheme. Of course, beyond such advanced approaches, intra video
coding is also widely used as a coding method in its own right, particularly
in surveillance video applications.

It is well known that the H.264/AVC standard achieves much higher cod-
ing efficiency than previous video coding standards such as MPEG-1/2/4
[110]. The key feature of H.264/AVC intra coding is the prediction which is
used to find spatial correlation. Although MPEG-4 uses a prediction method
in the transform domain using the DC and several AC coefficients, its per-
formance is not particularly good compared to H.264/AVC since new coding
tools are deployed in H.264/AVC such as prediction based on pixel interpola-
tion and rate distortion (RD) optimization. These kinds of spatial prediction
coding methods are designed for reducing spatial redundancy by using the
neighboring pixels of the current block. However, the resulting compression
gain comes at the cost of a significant increase in processing time and memory
access.

In this chapter, we present a new fast intra video encoder which includes
an accurate rate control algorithm. This new encoder is able to encode an
ITU D1 size image in real time with good R/D.

5.1 Extension of the Model-based rate con-
trol to intra video coding

In order to perform the rate control in the overall video sequence, we have ex-
tended the rate control algorithm explained in Section 2.2 (Figure 2.5) using
a very simple approach. Firstly, we apply the rate control algorithm to the
first frame to estimate the values of rplanes and () quantization parameters
that fit the frame bit rate budget. After coding the first frame, we compute
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the estimation error, so we will try to compensate it when coding the follow-
ing frames. We will do that keeping the same rplanes value and estimating
the appropriate value for ¢) based on the observed error. During the video
sequence coding, when the observed error reaches a threshold (SCy,), the
algorithm launches the initial estimation algorithm to re-estimate more suit-
able rplanes and () parameters so as to converge to the desired bit rate as
fast as possible; then the accumulated error will be corrected gradually so as
to avoid great R/D alterations. The threshold fixed on 20% of the target bit
rate has been obtained from the Model-based algorithm inherent estimation
error, that tends to be below 9% as concluded in Section 2.2.

In Figure 5.1 we show the accuracy of the proposed algorithm for the
Container sequence with a CIF size and we compare it with respect to the
embedded encoder SPIHT and JPEG 2000. Both SPIHT and JPEG 2000
obtain the exact target bit rate. With respect to the proposed rate control
implemented in M-LTW and M-LTW __Integer, its accuracy was always better
than 98.5%, and the worst case at very low target bit rates where the average
relative error is approximately 0.4%. In Table 5.1 we show the accuracy of the
proposed algorithm for several sequence frame sizes. As shown, the proposed
rate control has similar behavior for all video sequences and with other frame
sizes.

0.6

—M-LTW

= M-JPEG2000
==-M-LTW_INTEGER
—4—M-SPIHT

% Relative Error

-
Seo
-~
-
Sccaama

240 1240 2240 3240 4240 5240

Figure 5.1: Rate-control accuracy for Container CIF sequence

In Figure 5.2 we can see the effect of the rate control algorithm over the
CIF Coastguard sequence. As shown, during most parts of the sequence,
the bit rate remains constant, but when significant alterations in the scene
like camera movements, appearing objects or illumination changes occur,
the algorithm produces a bit rate that reaches the fixed threshold. Then, the
algorithm detects this situation and converges quickly to the desired bit rate.
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Bit rate | M-JPEG M-SPIHT M-LTW M-LTW

(Kbps) 2000 Integer
Container (QCIF)

83.16 0.004 0.158 1.236 1.243
136.87 0.004 0.051 0.774 0.775
233.21 0.009 0.093 0.467 0.476
382.29 0.020 0.003 0.285 0.294
627.95 0.002 0.007 0.199 0.202
996.42 0.001 0.008 0.141 0.156
1494.67 0.003 0.004 0.107 0.142

Foreman (CIF)

209.08 0.001 0.071 0.500 0.505
370.92 0.012 0.025 0.203 0.208
638.84 0.004 0.007 0.082 0.088
1112.68 0.006 0.001 0.049 0.039
1943.06 0.000 0.002 0.261 0.126
3340.75 0.007 0.003 0.271 0.313
5323.21 0.001 0.001 0.150 0.122

Mobile (ITU D1)

542.72 0.015 0.013 0.732 0.798
1142.41 0.066 0.011 0.543 0.658
2100.33 0.021 0.004 0.249 0.280
3598.16 0.008 0.004 0.416 0.586
6400.96 0.002 0.001 0.254 0.606
11587.03 0.012 0.002 0.043 0.371
20653.04 0.009 0.001 0.003 0.147

Station2 (HD)

1553.86 0.001 0.009 0.070 0.084
2348.20 0.003 0.000 0.073 0.085
4500.19 0.004 0.004 0.017 0.001
8400.44 0.000 0.001 0.075 0.065
15116.05 0.000 0.001 0.040 0.013
27938.34 0.000 0.000 0.113 0.081
53295.38 0.000 0.000 0.067 0.498

Table 5.1: Rate-control accuracy (% relative error) for several test sequences

If we focus on frames between 65-75 in Figure 5.2 we can see this behavior.
This figure also shows the M-LTW encoder behavior when no rate control is
applied.

Note that with the proposed rate control algorithm, we choose the quan-
tization parameters of the last encoded frame as a reference to encode the
current frame and reduce the accumulated rate control error. This works
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fine while consecutive frames have similar contents (general case). However,
when there are dramatic content changes compared to the previous frame
(frames 65-75 at Figure 5.2), large bit rate oscillations are produced because
our proposal does not know the complexity or similarity of the next frame.

In order to reduce the rate oscillations, several approaches may be fol-
lowed: (1) Apply the algorithm presented in Figure 2.5 to all video frames
so rate fluctuations are confined to the rate control algorithm precision and
as a consequence the encoder becomes slower (45% complexity increment);
and, (2) obtain the Mean Absolute Difference (MAD) of the lowest frequency
subband (LL,) between the current frame and the previously encoded one so
as to detect scene changes. As Figure 5.3 shows, the use of MAD works fine
and large rate oscillations are avoided at the expense of a 1.5% complexity
increment.

1600 -

1400 ~ --- NO-RATE
—— Rate-Control

[any
N
o
o

1000 4

Bit-rate(Kbps)

800 { .

600 -

400

0 100 200 300 400 500 600 700 800 900
Frame

Figure 5.2: Rate-control progression for three concatenated Coastguard sequences (CIF)

The video rate control algorithm (Figure 5.4) will lead as follows:

e First, we obtain rplanes and () parameters for the first frame by means
of Model-based algorithm (see Figure 2.5).

e Secondly, we encode and evaluate the estimation error (Pgy).

e Then, for the remaining frames, we obtain the LL,, MAD from the
current and following frames.

e If the previously evaluated error (Pg,,) is greater than the threshold
input parameter (SCy,), or the MAD is greater than the MAD thresh-
old parameter(M AD;y,), then we force new rplanes and @ estimation.
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Figure 5.3: Rate-control proposals progression for Coastguard sequences (focused on
frames 65-75) (CIF)

So, in the following frames we will gradually correct the bit rate error
(AdJUSt%(PETT))

e On the other hand, if the previously evaluated error (Pg,,) is lower
than the threshold input parameter (SC};,), we correct the bit rate error
estimating with only a new ) value and fixing the rplanes parameter
to the one obtained in previous encoded frames.

5.2 Integer Version

To carry out a fast integer version of LTW, we have developed the DW'T
with an integer-to-integer lifting scheme based on [12] and [22]. We have im-
plemented the normalization factor of the lifting scheme (K') as an approx-
imation to integer operations (multiply and shift). In this manner we avoid
three extra lifting steps at the expense of making the DWT unreversible.
Since we are interested in lossy compression, the fact of performing that ap-
proximation does not introduce a meaningful error, because the difference
with respect to the regular lifting scheme is negligible.

Concerning the LTW encoder engine, we have converted all float opera-
tions to integer ones, and relating to the quantization process, this is similar
to the one used by LTW described previously. The main difference lies in
the scalar uniform quantization process, which is performed using only fixed
point arithmetic operations.

Before adopting this approach, we tried other integer-to-integer DW'T fil-
ters so as to obtain a fast version of DWT with similar R/D values. From
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Input: Video Sequence Frames, Target bit rate (7},,), Threshold(SCy,)
and M AD,, Threshold.
(E1) Obtain rplanes and Q using Algorithm 2.5 for the first frame.
Pp,.. = Encode_And_Evaluate_Error
Initialize SCcpange= false
(E2) For all remaining frames
Obtain LL, MAD from current and next frame.
if MAD > MADy,
SCChange: true
if (PErr > SCth) or (SCChange)
Obtain new rplanes and Q using Algorithm 2.5.
SCchange= true
else
if SCChange:: true
NewTy,, = Tyyp+Adjust%(Prg.,)
else
Newapp = prp + PE'rr
Pg,.,= Encode_And_Evaluate_Error

Figure 5.4: Video rate control algorithm

the study carried out by M.D. Adams and F. Kossentini in [4], we decided
to implement 13/7T and 9/7M filters because these filters only use two lift-
ing steps instead of the four lifting steps required by the 9/7F filter. After
evaluating the filters we concluded that the use of other filters lead us to an
R/D loss of approximately 1 dB with respect to the 9/7F filter, as shown in
Figure 5.5. However, we do not use the original 9/7F filter but an approxima-
tion (9/7F_int_Aprox.), which replaces the three extra lifting steps required
for the normalization factor (K) by an integer approximation that truncates
the wavelet coefficients to integers and thus introduces a small quantization
noise. Contrary to what could be thought, it does not introduce any R/D
loss, even showing slightly better behavior than the original one at low com-
pression ratios. This behavior is similar in all tested images and appears only
at low to very low compression ratios (rplanes=2).

This curious effect is due to the asymmetric error produced by the pro-
posed integer approximation of the normalization factor. In the DW'T, the
introduced error is slightly greater in low frequency subbands than in high
frequency subbands (error propagation in successive decomposition levels).
However, this error has higher influence over the high frequency subbands
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producing a bit plane change in several significant coefficients (notice that at
low compression ratios there are many small significant coefficients in those
subbands), and as a consequence fewer bits are needed to represent them. On
the other hand, the Inverse Discrete Wavelet Transform (IDWT) introduces
a greater error over high frequency subbands. So, the previously introduced
DWT error is further compensated, obtaining slightly better behavior than
in the fully reversible DWT version. This behavior disappears at higher com-
pression ratios (rplanes>2) when the encoder quantization noise is greater
than the error introduced by the DW'T.

41 q
--97FInt  __P..-
—o—9/7F_Int_Aprox. <

40 +— =137  —————— e ———— — ——
—=—9/7TM -

g 39

©

=z

& 38 -
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0.5 0.75 1 1.25 15 1.75
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Figure 5.5: R/D evolution using different filters for Lena (512x512)

In order to determine the most appropriate DWT kernel, we have imple-
mented three versions of the LTW encoder. The first one implements the
DWT 9/7F filter with a traditional convolution, the second one implements
a lifting scheme of DW'T with floating point arithmetic operations and the
third one implements an integer-to-integer lifting scheme of DW'T with an
integer approximation of the normalization factor (K'). So as to measure the
R/D loss due to fixed-point arithmetic operations, in Figures 5.6 and 5.7 we
compare the R/D performance for both floating-point and fixed-point im-
plementations. As shown in Figure 5.6, for the Barbara test image there is
almost no difference in R/D between all proposals (note that both floating
point DWT implementations obtain the same PSNR because they use the
same filter D(9/7F), so only convolution implementation is represented in
figures 5.6 and 5.7), but if we focus on Figure 5.7, for the Lena test image
there is a loss of approximately 0.5 dB at a compression rate of 0.5 bpp.
These results are in concordance with the ones presented by Grangetto in
[29].
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Figure 5.6: R/D evaluation for different DWT proposals for the Barbara (512x512) test
image
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Figure 5.7: R/D evaluation for different DWT proposals for the Lena (512x512) test image

With regard to execution time, as we can see in Figure 5.8, both lift-
ing scheme DW'T implementations are faster than traditional convolution.
In this figure, the execution time of the floating point implementations also
includes a cast from float to integer, because the rate control algorithm pre-
sented in Section 2.2 operates only with fixed point values. This fact causes
that differences in execution time between lifting scheme implementation
and traditional convolution are not as significant as the results presented
by Grangetto in [29]. The integer-to-integer lifting scheme implementation
of DWT is the fastest one, being 50% faster than the floating point arith-
metic lifting scheme implementation due to the cast to integer differences
mentioned previously.
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Figure 5.8: Execution time comparison between different proposals of DWT for the Bar-
bara test image

As a consequence of this study, we have finally planned to carry out
two versions of LTW, one based on floating point arithmetic operations that
implements DW'T with a lifting scheme and another based on fixed point
arithmetic operations that implements DW'T with an integer-to-integer lifting
scheme approximation.

5.3 Evaluation

In addition to R/D performance we will also employ other performance met-
rics like coding delay and memory consumption. All the evaluated encoders
have been tested on an Intel PentiumM Dual Core 3.0 GHz with 1 Gbyte
RAM memory. We have selected H.264 (Baseline, JM10.2) working in intra
mode, M-JPEG 2000 (Jasper 1.701.0), M-SPIHT (Spiht 8.01), M-LTW and
M-LTW_Int (integer version of M-LTW), since their source code is available
for testing. The correspondent binaries were obtained by means of Microsoft
Visual C++ (2005 version) compiler with the same project options and under
the aforementioned machine.

The test video sequences used in the evaluation are: Foreman (QCIF
and CIF) 300 frames, Container (QCIF and CIF) 300 frames, News (QCIF
and CIF) 300 frames, Mobile (ITU D1 576p30) 40 frames and Station2 (HD
1024p25) 312 frames.
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5.3.1 Objective/Subjective quality evaluation

Table 5.2 shows the R/D evaluation of all proposed encoders. Although
H.264 obtains better results for sequence sizes smaller than CIF at several
compression ratios, it is for I'TU D1 and HD sizes where encoders based on
DWT can exploit optimal DWT decompositions obtaining better results (up
to 2 dB with respect to H.264 in Station2 HD at high compression ratios).
The M-LTW_Int encoder produces slightly lower PSNR results than H.264.
The lower performance of the integer version is mainly due to the arithmetic
precision loss, which is more noticeable at lower compression ratios.
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Figure 5.9: R/D evaluation with VIF metric on DMOSp space for Foreman (CIF) sequence
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Figure 5.10: R/D evaluation with VIF metric on DMOSp space for Mobile (ITU D1)
sequence
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We have also compared all proposed encoders using the Visual Infor-
mation Fidelity (VIF) distortion metric [95]. We have chosen this metric
because it is one of the best ’full reference’ objective quality metrics as con-
cluded in [62]. In Figure 5.9 and Figure 5.10 we can observe the behavior
of evaluated encoders for Foreman (CIF) and Mobile (ITU D1) sequences.
As can be seen, all encoders based on DWT have similar performance at
high compression ratios with a lower DMOSp (Predicted Differential Mean
Opinion Score) value (better quality) than H.264. Only at lower compression
ratios does H.264 outperform M-LTW _Int, although at these compression ra-
tios, the differences are not visually perceptible. The remaining coders show
very similar results under the VIF quality metric, so they can be considered
equivalent in terms of R/D performance.

In Figure 5.11 we present a subjective evaluation between M-LTW and
M-LTW_Int in order to determine the R/D loss in the fixed point version.
Although differences in PSNR between both M-LTW and M-LTW _Int en-
coders are approximately 0.4 dB, it is difficult to determine which one has
better subjective quality at low compression ratios. On the other hand, at

(a) 34.66dB (b) 34.24dB (¢) Original

Figure 5.11: Subjective comparison between a) M-LTW; and, b) M-LTW _Int for Foreman
(QCIF) at 20.49 Kb/frame, frame # 33

high compression ratios differences of 1 dB on PSNR are visually perceptible
as shown in Figure 5.12. All wavelet based encoders show similar behavior,
but if we focus on the calendar (number 15), we could asses that M-LTW
(c) and M-LTW_Int (d) have better subjective quality than JPEG 2000 (a)
and SPIHT (b). In spite of the fact that SPTHT shows a better PSNR value,
M-LTW _Int is visually slightly better at this compression rate.

5.3.2 Execution time and memory consumption com-
parison

In Table 5.3 we show the coding delay for all encoders under evaluation. As
expected, H.264 is the slowest encoder and M-LTW is one of the fastest.
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Codec/Bit rate
(Kb/frame)

2.77

777
20.93
33.21

8.97
24.44
70.49

118.20

2.36
7.40
20.49
33.73

6.97
21.29
64.77

111.36

3.22

9.12
22.72
34.22

9.27
14.91
36.76
89.91

38.08
119.93
213.36
386.23

93.92
180.00
604.64

1117.53

H.264 M-JPEG M-SPIHT M-LTW M-LTW

22.85
28.94
35.76
39.52

23.58
29.44
35.64
39.36

22.86
28.72
35.36
39.24

24.57
29.97
36.00
39.59

22.24
28.73
36.11
40.22

24.43
27.37
33.97
41.14

27.04
32.29
35.29
38.59

30.49
32.58
37.55
40.37

2000
Container (QCIF, 30Hz
22.07 23.08 22.08
27.36 27.54 27.23
34.71 34.70 34.89
39.03 38.76 39.39
Container (CIF, 30Hz)
24.43 24.47 24.38
28.69 28.40 28.53
35.93 34.94 35.28
39.47 38.74 39.44
Foreman (QCIF, 30Hz)
21.10 24.16 23.03
28.21 28.69 28.69
34.68 34.59 34.99
38.89 38.47 39.37
Foreman (CIF, 30Hz)
25.95 26.34 26.20
30.43 30.55 30.66
36.06 35.86 36.31
39.43 39.09 39.98
News (QCIF, 30Hz)
21.60 23.00 21.97
27.53 27.86 27.98
34.74 34.84 35.19
39.31 39.02 39.90
News (CIF, 30Hz)
25.21 25.54 25.57
27.34 27.76 27.73
33.11 33.01 33.37
40.63 40.08 41.00
Mobile (ITU D1, 30Hz)
28.48 28.53 28.59
32.41 32.36 32.57
35.09 35.05 35.40
38.43 38.29 38.87
Station2 (HD, 25Hz)
32.37 32.29 32.45
34.38 34.25 34.49
38.67 38.39 39.02
40.78 40.44 41.38

_Int

22.06
27.17
34.37
37.99

24.34
28.42
34.70
38.01

23.01
28.58
34.40
37.62

26.13
30.47
35.54
37.96

21.91
27.88
34.54
38.22

25.51
27.63
33.01
38.91

28.48
32.26
34.75
37.21

32.19
34.06
37.73
39.08

Table 5.2: Average PSNR (dB) with different bit rate and coders
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(a) JPEG 2000 28.56dB (b) SPIHT 28.60dB

(¢c) M-LTW 28.68dB (d) M-LTW_Int 28.57dB

(e) H.264 27.11dB (f) Original

Figure 5.12: Subjective comparison between a) JPEG 2000; b) SPIHT; ¢) M-LTW; d)
M-LTW _Int; e) H.264; and, f) Original for Mobile (ITU D1) at 38.08 Kb/frame, frame #
20
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All M-LTW versions are faster than M-JPEG 2000, specially the fixed point
version that performs the encoding process six times faster on average than
M-JPEG 2000. On the other hand, M-SPIHT is faster than M-LTW only in
HD video format.

Codec/Bit rate| H.264 M-JPEG M-SPIHT M-LTW M-LTW

(Kb/frame) 2000 Int
CODING Container (QCIF, 30Hz)
2.77 121.59 3.95 1.68 0.84 0.54
7.77 137.14 4.15 2.13 1.09 0.72
20.93 167.38 4.26 2.86 1.63 1.16
33.21 189.90 4.43 3.55 2.13 1.54
CODING News (CIF, 30Hz)
14.91 531.40 15.63 3.77 3.96 2.62
23.62 559.45 15.20 4.33 4.26 2.81
57.73 650.47 15.54 6.67 5.98 3.94
89.91 720.44 16.43 8.23 7.17 4.95
CODING Mobile (ITU D1, 30Hz)
38.08 233.27 8.99 1.06 1.83 1.25
119.94 266.94 7.88 1.83 2.38 1.68
213.37 297.11 8.02 2.63 2.93 2.13
386.23 351.41 8.29 4.24 3.97 2.96
CODING Station2 (HD, 25Hz)

93.93 11840.89  326.05 34.13 75.78 53.86
180.01 12106.46  327.18 41.12 79.24 56.59
604.64 13573.54  326.04 73.75 104.67 76.13
1117.53 15067.72  330.81 113.66 129.25 93.13

Table 5.3: Execution time comparison of the coding process including DWT (time in
seconds)

Figure 5.13 shows the maximum frame rate for all evaluated encoders at
different sequence sizes for an average PSNR video quality of 30 dB. The
integer version of M-LTW is one of the fastest encoders and it can encode
an ITU D1 size sequence in real time. For HD images, M-LTW is slower
than M-SPIHT. This behavior is due to the cache page miss fail of the lifting
DWT implementation where a lazy transform is carried out for both rows
and columns. In the lazy transform, the input samples are split into two data
sets, one with the even samples of a row or column and the other one with
the odd ones. This causes a significative cache page miss fail increase, being
more noticeable for columns, as the frame size becomes larger. In order to
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measure the impact of the cache page miss fail, in Figure 5.14 we evaluate
the performance of M-LTW implemented with both lifting and convolution
DWT in a processor with an L2 cache size of IMB. As can be seen, lifting
DWT is 16.6% slower than convolution DWT for the HD format and 10%
slower for the I'TU D1 format. With the increase of the L2 cache size, these
differences are significatively reduced, being the difference for HD format of
9% as shown in Figure 5.15.

1000 aM-LTW
3428 OM-LTW-INTEGER
& M-JPEG2000
“H264
100 {- 19 M-SPIHT
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Figure 5.13: Maximum Frames/sec. for an average R/D of 30dB

T mDWT-Convolution
|~ BDWT-Liftng ~ —

Figure 5.14: Execution time comparison between DWT Lifting and DWT Convolution (1
frame, 1MB L2 cache)

In Table 5.4 the memory requirements of different encoders under test are
shown. M-LTW needs only the amount of memory to store the source image
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Figure 5.15: Execution time comparison between DWT Lifting and DWT Convolution (1
frame, 2MB L2 Cache)

Codec/Format | H.264 M-JPEG M-SPIHT M-LTW M-LTW

6508 2264 1864 1104 1104
13016 3920 2880 1540 1540

Table 5.4: Memory requirements for evaluated encoders (KB) (results obtained with Win-
dows XP task manager, peak memory usage column)

(in-line processing) and an extra 100 KB basically used to store the histogram
of significant symbols required by the rate control algorithm, variables and
structures needed to accomplish the coding process. M-JPEG 2000 requires
twice the memory amount of M-LTW, and H.264 needs six times the memory
amount of M-LTW for the QCIF format and eight times for the CIF format.
M-SPIHT uses 1.7 times the memory amount of M-LTW. Note that M-
LTW_Int could be implemented using a 16-bit integer, reducing the memory
requirements by one-half.

5.3.3 Optimized encoders

The M-LTW implementation was developed finding the optimizations for
maximizing R/D performance, so its software code is not optimized, just like
H.264 and JPEG 2000 reference software. However, we have compared its
performance with respect to a full optimized implementation of JPEG 2000:
Kakadu [45], in order to evaluate whether a full optimization of M-LTW is
worth the effort. For that purpose, we have used two versions of Kakadu
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software: (a) version 2.2.3, compiled without optimization options, and (b)
the 5.2.5 version which is fully optimized including multi-thread and multi-
core hardware capabilities, processor intrinsics like MMX/SSE/SSE2/SIMD
and fast multicomponent transform.

0.3 7
O Kkdu-2.2.3
0.25 - D Kkdu-5.2.5
aM-LTw
B M-LTW-Convolution
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o | e ||||||| |
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Figure 5.16: Execution time comparison (end-to-end) of the coding process

As shown in Figure 5.16, M-LTW is a very fast encoder even though
not being fully optimized. The speed of M-LTW lies in the simple engine
coding model. M-LTW is approximately equally as fast as Kakadu-5.2.5
for News CIF sequence at a PSNR of 32dB. For HD images, M-LTW is
slower than Kakadu-2.2.3, due to the cache page miss fail of the lifting DWT
implementation, as shown in the previous subsection. Therefore, if we use a
convolution implementation of DWT, M-LTW would be slightly faster than
Kakadu-2.2.3 and slightly slower than Kakadu-5.2.5 for the Station2 HD
sequence.

Regarding memory requirements, M-LTW needs only the amount of mem-
ory to store the source image as was said before, while Kakadu memory re-
quirements are independent of the image size due to its DWT block-based
implementation, and it is on average 1420KB.

In terms of R/D, there are slight differences between all codecs as Table
5.5 shows. For small and medium size images, M-LTW outperforms Kakadu
at medium and high compression ratios. For larger images, M-LTW provides
slightly lower PSNR than both versions of Kakadu.

So, a full optimization of M-LTW codec will certainly increase coding
speed and will reduce the memory requirements even more, making the codec
a very competitive intra video coding solution.
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Codec/(Kb/frame) | KAKADU 2.2.3 KAKADU 5.2.5 M-LTW

News (CIF, 30Hz)
14.91 27.63 27.44 27.74
23.62 30.27 29.96 30.42
36.75 33.33 33.31 33.36
57.73 37.26 37.10 36.89
Mobile (ITU D1, 30Hz)
38.08 28.59 28.39 28.61
119.93 32.56 32.52 32.62
213.36 35.34 35.34 35.47
386.23 38.85 38.89 38.90
Station2 (HD, 25Hz)
93.92 33.79 33.70 33.62
180.00 36.16 36.15 36.08
604.64 41.11 41.11 40.96
1117.53 43.18 43.18 42.94

Table 5.5: PSNR (dB) comparison between Kakadu and M-LTW

5.4 Conclusions

In this chapter we have presented a fast an efficient intra video coder, M-
LTW, which is based on the non-embedded LTW image coder. We have pro-
posed a fast and lightweight rate control algorithm for both M-LTW encoder
versions, a float-point implementation and another one implemented with
integers. After evaluating M-LTW performance in terms of R/D, execution
time and memory consumption, it exhibits the best trade-off between R/D
performance, coding delay (3 times faster than M-JPEG 2000 and 108 times
faster than H.264) and overall memory usage (half the amount of memory of
M-JPEG 2000 and 6 times less than H.264). In addition, the M-LTW coder
is able to encode an I'TU D1 video signal in real time with very low memory
demands and good R/D performance at moderate to high compression ratios
(2 dB better than H.264 for HD video format).

For further evaluation, we have compared the M-LTW coder with a highly
optimized version of JPEG 2000 (Kakadu), being also competitive in terms
of coding delay (similar to Kakadu for small and medium size images) and
R/D performance (0.4 dB for CIF, and 0.1 dB for ITU D1 at medium and
high compression ratios). So, a fully optimization process will make M-LTW
even faster and with lower memory requirements. These optimizations will
be mainly focused on the DWT coding step by using fast and low memory
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demanding DW'T techniques like line-based or block-based ones and exploit-
ing the parallel capabilities of modern processors (like multithreading and

SIMD instructions).
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In recent years, three-dimensional wavelet transform (3D-DWT) has fo-
cused the attention of the research community, most of all in areas such as
video watermarking [13] and 3D coding (e.g., compression of volumetric data
[86] or multispectral images [25], 3D model coding [8], and especially, video
coding).

In video compression, some early proposals were based on merely apply-
ing the wavelet transform on the time axis after computing the 2D-DW'T
for each frame [51]. Then, an adapted version of an image encoder can be
used, taking into account the new dimension. For instance, instead of the
typical quad-trees of image coding, a tree with eight descendants per coef-
ficient is used in [51] to extend the SPIHT image encoder to video coding.
However, the coding efficiency of these video encoders is poor in moderate-
to-high motion sequences due to the appearance of misaligned objects in the
time direction, causing an energy increase in high-frequency subbands, and
thereby preventing energy concentration in low-frequency subbands. A more
efficient strategy for video coding with time filtering is Motion Compensated
Temporal Filtering (MCTF) [89, 15]. In these techniques, in order to com-
pensate object (or pixel) misalignment between frames, and hence avoid the
significant amount of energy that appears in high-frequency subbands, a mo-
tion compensation algorithm is introduced to align all the objects (or pixels)
in the frames before being temporally filtered.

In all these applications, the first problem that arises is the extremely high
memory consumption of the 3D wavelet transform if the regular algorithm
is used, since a group of frames must be kept in memory before applying
temporal filtering, and in the case of video coding, we know that greater the
temporal decorrelation, the more number of frames are needed in memory.
Another drawback is the necessity of grouping images in small GOPs to
prevent very high memory usage, because the 3D-DWT must be computed
along a set of images which are held in memory. This division of the video
sequence in GOPs containing only a few images hinders the decorrelation of
the temporal dimension and causes boundary effects between GOPs.

Even though several proposals have been made to avoid the aforemen-
tioned problems, most of them are not general (for any wavelet transform)
and/or complete (the wavelet coefficients are not the same as those from the
usual dyadic wavelet transform). In addition, software implementation is
not always easy. In this paper, we extend to video the line-based approach
introduced in [18] to compute the 2D-DWT. This approach is general so
any wavelet transform can be computed using this new approach. To ease
software implementation, we use the same recursive strategy as in [72].
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6.1 3D Wavelet Transform

In the regular 3D-DWT, the wavelet transform is applied in the three direc-
tions, i.e., in the spatial directions (horizontal and vertical) and in the time di-
rection (which is known as temporal filtering), resulting in eight first level wa-
velet subbands (typically named LLLy, LHL,, LLH,, LHH,, HLL,, HH L,
HLH,, HHH,). Afterwards, the same decomposition can be done, focusing
on the low-frequency subband (LLL,), achieving in this way a second-level
wavelet decomposition, and so on (see example in Figure 6.1(b)).

\

|
LLH,, LHL,, / /
LHH,, HLL,, i

\
HLH,, HHL,, i
HHH, \//? T~ —
LLH;, LHLy, LHH,, HLL,, \/

HLH;, HHL, HHH,,
(a) (b)

Figure 6.1: Overview of the 3D-DWT computation in a two-level decomposition, (a)
following a frame-by-frame scheme as shown in Algorithm 1; or, (b) the regular 3D-DWT
algorithm

Because this algorithm is clearly memory intensive, with very high mem-
ory requirements, and exhibits high coding delay (the whole 3D-DW'T needs
to be computed before starting the coding stage) several alternative proposals
have been made.

Some of these alternatives are based on modifying the order in which the
temporal filtering is calculated. E.g., in [65] the authors propose computing
the wavelet transform in the time direction with only a few frames; then the
resulting high-frequency frames are released as a part of the final result, and
the low-frequency frames are employed along with a few more frames so as
to continue computing the wavelet transform in the time direction. A similar
example is [67], where the temporal decomposition is done by interleaving
frames in small groups, getting a low-frequency frame per group, which is
stored to be decomposed later with the low-frequency frames from the rest
of groups. Although both algorithms ([65] and [67]) require less memory, the
resulting coefficients are far from being the same as in the regular algorithm.

Other proposals rely on blocking algorithms [9], in which the transform
is computed in working subsets to reduce memory usage and exploit data
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locality. Despite the use of overlapping techniques to avoid typical block-
ing artifacts, the coding efficiency decreases because the redundancy among
neighboring blocks is not exploited.

In Motion Compensation Temporal Filtering (MCTF) [89, 15], the tem-
poral decomposition is usually carried out with a very simple transform based
on the lifting scheme [101]. When using filters with only a prediction and
an update step (or even sometimes the update step is skipped), only a few
frames need to be handled in MCTF. However, if longer filters with sev-
eral decomposition levels are applied in the temporal dimension, memory
handling becomes difficult.

6.2 Frame-By-Frame 3D-DWT

In this section we propose an extension to a three-dimensional wavelet trans-
form of the line-based approach [18], which computes the 2D-DWT with re-
duced memory consumption. In the new approach, frames are continuously
input with no need to divide the video sequence into GOPs. Moreover, the
algorithm yields slices of wavelet subbands (which we call subband frames)
as soon as it has enough frames to compute them. This approach works as
follows:

For the first decomposition level the algorithm directly receives frames one
by one. On every input frame, a one-level 2D-DW'T is applied. Then, this
transformed image is stored in a buffer associated to the first decomposition
level. This buffer must be able to keep 2N+1 frames, where 2N+1 is the
number of taps for the largest analysis filter bank. We only consider odd
filter lengths because they have higher compression efficiency; however, this
analysis could be extended to even filters as well.

When there are enough frames in the buffer to perform one step of a wa-
velet transform in the temporal direction (z-axis), the convolution process is
calculated twice, first using the low-pass filter and then the high-pass filter.
The result of this operation is the first frame of each high-frequency sub-
band (the HHL,, HLH,, HHH,, HLL,, LHL,, LLH, and LH H; wavelet
subbands), and the first frame of the LLL; subband. At this moment, for a
dyadic wavelet decomposition, we can process and release the first frame of
the wavelet subbands. However, the first frame of the LLL; subband does
not belong to the final result, but it is needed as incoming data for the fol-
lowing decomposition level. On the other hand, once the frames at the first
level buffer have been used, this buffer is shifted twice (using a rotation op-
eration) so that two frames are discarded while another two frames are input
at the other end. Once the buffer is updated, the process can be repeated
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and more subband frames are obtained.

At the second level, its buffer is filled with the LLL; frames that have
been computed in the first level. Once the buffer is completely filled, it is
processed in the very same way as we have described for the first level. In
this manner, the frames of the second level wavelet subbands are achieved,
and the low-frequency frames from LLL, are passed to the third level. As
depicted in Figure 6.1(a), this process can be repeated until the desired
decomposition level (nlevel) is reached.

In this algorithm a major problem arises when it is implemented. This
drawback is the synchronization among buffers. Before a buffer can pro-
duce frames, it must be completely filled with frames from previous buffers,
therefore they start working at different moments, i.e., they have different
delays. Moreover, all the buffers exchange their result at different intervals,
according to their level.

Handling several buffers with different delays and rhythms becomes a hard
task. The next section proposes a recursive algorithm that clearly specifies
how to perform this communication between buffers.

6.3 A recursive implementation of the frame-
by-frame 3D-DWT

In this section, we present an algorithm based on [72] that automatically
solves the synchronization problem among levels that has been addressed in
the previous section. To solve this problem, this algorithm defines a recursive
function that obtains the next low-frequency subband frame (LLL) from a
contiguous level.

The algorithm starts requesting LLL frames to the last level (nlevel). As
seen in Figure 6.1, the nlevel buffer must be filled with subband frames from
the nlevel-1 level before it can generate frames. In order to get them, this
function recursively calls itself until level 0 is reached. At this point, it no
longer needs to call itself since it can return a frame from the video sequence,
which can be directly read from the input/output system.

The complete recursive algorithm is formally described in Figure 6.2,
while Figure 6.3 sets up the variables and performs the DWT by calling the
recursive algorithm. Let us see the first algorithm.

The first time that the recursive function is called at every level, it has its
buffer (bufferiepe;) empty. Then, its upper half (from N to 2N) is recursively
filled with frames from the previous level. Recall that once a frame is received,
it must be transformed using a 2D-DW'T before being stored. Once the upper
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function GetLLLFrame (level)
1) First base case: No more frames to read at this level
if FramesRead;e,e; = MaxFrameseye
return EOF
2) Second base case: The current level belongs
to the space domain and not to the wavelet domain
else if level =0
return InputFrame()
else
3) Recursive case
3.1) Recursively fill or update the buffer for this level
if bufferc e is empty
fort=N...2N
bufferiepe (i) = 2DFWT (Get LLLFrame(level — 1))
FullSymmetricExtension(buffer;cye )
else
repeat twice
Shift (buffericpe)
frame = GetLLLFrame(level — 1)
if frame = EOF
bufferieve(2N) = SymmetricExt(buffer;eyer)
else
bufferievel(2N) = 2DFEWT(frame)
3.2) Calculate the WT for the time direction from the frames
in buffer, then process the resulting high frequency subband frames
{LLL,LLH,LHL, LHH} =Z7-axis . FWT_LowPass(buffercye)
{HLL,HLH,HHL, HHH } =Z7-axis_ FWT_HighPass(buffer;cye )
ProcessSubFrames({ LLH, LHL,LHH,HLL, HLH,HHL, HHH})
set F'ramesRead;.,e;=FramesRead;,e; + 1
return LLL
end of fuction

Figure 6.2: GetLLLFrame Recursive function

half is full, the lower half is filled by using symmetric extension (the N-+1
frame is copied into the N-1 position,. .., the 2N is copied into the 0 position).
On the other hand, if the buffer is not empty, it simply has to be updated.
In order to update it, it is shifted one position so that the frame contained
in the first position is discarded and a new frame can be introduced in the
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function LowMemUsage3D_FWT(nlevel)
set F'ramesRead;e.e; = 0 Vievel € nlevel

set FramesLines)ppe = & g}ﬁ’;}es Vievel € nlevel
set buffer;.,o; = empty Vievel € nlevel
repeat

LLL = GetLLLFrame(nlevel)
if (LLL != EOF) ProcessLowFreqSubFrame(LLL)
until LLL = EOF
end of fuction

Figure 6.3: Perform the 3DFWT by calling GetLLLFrame recursive function

last position (2N) by using a recursive call. This operation is repeated twice.

However, if there are no more frames in the previous level, this recursive
call will return End of Frame (EOF). That points out that we are about to
finish the computation at this level, but we still need to continue filling the
buffer. We fill it by using symmetric extension again.

Once the buffer is filled or updated, both high-pass and low-pass filter
banks are applied to the frames in the buffer. As a result of the convolution,
we get a frame of every wavelet subband at this level, and an LLL frame.
The high-frequency coefficients are processed according to the application
(compressed, saved to secondary storage, etc.) and this function returns the
LLL frame.

Every recursive function needs at least one base case to stop backtracking.
This function has two base cases. The first case is when all the frames at
this level have been read. It is detected by keeping an account of the number
of frames read and the maximum number of frames that can be read at
every level. In this case, the function returns EOF. An alternative when
the number of frames in the sequence is unknown a priori is propagating the
EOF label. The second base case is reached when the level gets 0 and then
no further recursive call is needed since a frame can be directly read from
the input video sequence.

The inverse DWT algorithm (IWT) is similar to the forward DWT, but
applied in reverse order. An important difference between this proposal and
those based on GOPs is how the video can be decoded from the middle
of the bit-stream, that is, if the user begins receiving the video broadcast
while it is already in progress. In the regular algorithm, the current group
of frames being received is ignored, and then, the following group is stored
in memory. After it has been entirely received, it can be decoded, and the
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3D-IWT can be applied. On the other hand, for the inverse transform in the
frame-by-frame scheme, the decoding process begins immediately by filling
up the highest-level buffer (nlevel) with the information received from the
bit-stream. During this process, other information from the bit-stream is
ignored. Afterwards, once this buffer is full, we also begin to accept infor-
mation from the previous level, and so forth, until all the buffers are full. At
that moment, the video can be sequentially decoded as usual. The latency of
this process is determinist and depends on the filter length and the number
of decomposition levels (the higher they are, the higher latency). However,
for the regular 3D algorithm, the latency depends on the remaining number
of frames in the current group when the process begins, and the GOP size.

A drawback that has not been considered yet is the need to reverse the
order of the subbands, from the forward DWT to the inverse one. This
problem can be solved by using some buffers at both ends, so that data are
supplied in the right order [18]. Other simpler solutions are to save every
level in secondary storage separately so that it can be read in a different order
and, if the WT is used for compression, to keep the compressed bit-stream
in memory.

6.4 Coding stage

A fast encoding algorithm for the frame-by-frame 3D wavelet transform has
been developed. This new coding stage is based on a run-length approach.
The quantization used in this coding stage is similar to the one used in
LTW-RC previously presented in Chapter 2. There are two quantization
parameters, one coarser (rplanes) and one finer (@Q). The finer consists in
applying a uniform scalar quantization to all wavelet coefficients, while the
coarser one consists in removing the rplanes less significant bits to all the
coefficients.

Because of the need to reverse the order of the subbands, we store the
compressed bit-stream in buffers until we reach the maximum decomposition
level. At this moment, an LLL subband is obtained, and so it is encoded
and sent to the final bit-stream in conjunction with the previously stored
bit-stream.

6.5 Evaluation

In this section we analyze the behavior of the proposed encoder (3D-RLW).
We will compare the 3D-RLW encoder versus the M-LTW Intra video en-
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coder presented in Chapter 5, 3D-SPIHT [51] and H.264 (JM16.1 version),
in terms of R/D, coding and decoding delay and memory requirements. All

the evaluated encoders have been tested on an Intel PentiumM Dual Core
3.0 GHz with 1 Gbyte RAM memory.

6.5.1 Memory consumption comparison

In this new algorithm (frame-by-frame 3D wavelet transform), each buffer
must be able to keep either 2N + 1 low frequency frames at every level
(recall that 2N + 1 is the filter length), or even less if the lifting scheme is
used as shown in [72]. As presented in Figure 6.1(a), each buffer at a level
i needs a quarter of coefficients if compared with the previous level (i — 1).
Therefore, for a frame size of (w x h) and an nlevel time decomposition, the
number of coefficients required by this algorithm is:

(2N + 1)x(w x h)+(2N + 1)x(w X h) 4+ -+ (2N + 1) x (w x h) /4"eve=

(6.1)
which is asymptotically (as nlevel approaches infinity)
< (2N +1 h 4
3 +)4:(“’X ):(zzv+1)><(w><h)><g (6.2)

n=0

independent of the number of frames to be encoded, less than the regular
case, which needs (w x h x G), being G the number of frames in a GOP.
For instance, in a C implementation, a 3D-DWT of a CIF sequence (with
B5/3 and three decomposition levels) has required 2.5 MB with our new
proposal, while the regular algorithm with 32 frames/GOP needs 12.4 MB,
and introduces discontinuities in the transform, being less efficient for coding
purposes. In Table 6.1, the memory requirements of different encoders under
test are shown. 3D-RLW (using 9/7F time filter) uses 3 times less mem-
ory than 3D-SPIHT and up to 10 times less memory than H.264 for QCIF
sequence size.

Codec/Format | H.264 3D-SPIHT 3D-RLW
35824 10152 3556
86272 34504 11616

Table 6.1: Memory requirements for evaluated encoders (KB) (results obtained with Win-
dows XP task manager, peak memory usage column)
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6.5.2 Coding delay and R/D

In Figure 6.4 and 6.5 we can see the R/D behavior of all evaluated encoders.
As shown, H.264 is the one that obtains best results, mainly due to the
ME/MC stage included in this encoder, contrary to 3D-SPIHT and 3D-
RLW that do not include any ME/MC stage. It is interesting to see the
improvement of 3D-SPIHT and 3D-RLW when compared to an INTRA video
encoder. As mentioned, no ME stage is included in 3D-SPIHT and 3D-
RLW, so this improvement is accomplished by exploiting only the temporal
redundancy among video frames.
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Figure 6.4: PSNR (dB) for all evaluated encoders for a) Container; b) Foreman; ¢) Hall;
and, d) News sequences in CIF format

Regarding coding delay, in Figure 6.6 we can see that the 3D-RLW en-
coder is the fastest one, being 6 times faster than 3D-SPIHT and 3 times
faster than the M-LTW INTRA video encoder.
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6.6 Conclusions

In this chapter a frame-by-frame 3D-DW'T transform algorithm has been pre-
sented, considering the existing problems about different delays and rhythms
among the buffers. The new algorithm reduces the memory requirements
compared with the regular one, computing exactly the same coefficients. In
addition, there is no need to artificially divide the video sequence in constant-
size groups of pictures. Even more, a fast run-length encoder stage has been
included in this 3D scheme. The new 3D encoder is very fast (6 times faster
than 3D-SPIHT) and it has better R/D behavior than the INTRA video
coder M-LTW. In order to improve the coding efficiency, an ME/MC stage
could be added. In this manner, the objects/pixels of the input video se-
quence will be aligned, and so, fewer frequencies will appear at the higher
frequency subbands.
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Figure 6.6: Execution time comparison of the coding process including DWT (time in
seconds)
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7.1 Conclusions

Although a detailed summary section with the main contributions and con-
clusions is presented at the end of each chapter, it is interesting to summarize
some of the main contributions introduced in this thesis.

In Chapter 2 we propose three different rate control tools for non-embedd-
ed wavelet-based encoders with increasing complexity and accuracy. We have
shown that we can add rate control functionality to non-embedded wavelet
encoders without a significant increase in complexity and little performance
loss. Among the proposed simple rate control tools, the LTW_RC proposal
presented in Section 2.2 is the one that exhibits the best trade-off between
R/D performance and coding delay (twice faster than SPIHT and 8.8 times
faster than JPEG 2000).

In Chapter 3 we perform a study about the usefulness of sign coding
techniques for non-embedded image encoders. Furthermore, we present a
simplified context model formation oriented to maximize the successful pre-
diction of the sign for every non-zero wavelet coefficient. As shown in this
study, the R/D performance improves (up to 0.25 dB), with the improvement
greater at low and medium compression rates. Of course, there is an increase
in coding delay due to the higher arithmetic encoder use (two contexts for
every subband type), but the proposed encoder (S-LTW) is still competi-
tive against SPIHT and JPEG 2000. Moreover, if we change the arithmetic
encoder stage by a faster arithmetic encoder like the one presented in [85],
the coding process becomes 28% faster on average and the decoding process
becomes 47% faster on average than the original S-LTW encoder.

In Chapter 4 a new enhanced LTW encoder version (E-LTW) is pre-
sented. This new encoder incorporates an improved rate control algorithm
with high accuracy (less than 0.5% error) and the sign coding stage presented
in Chapter 3. The E-LTW encoder exhibits good R/D performance (up to
0.52 dB at high compression rates compared to JPEG 2000 and up to 0.34
dB for high textured images compared to SPTHT).

Regarding video coding, in Chapter 5 we present a fast INTRA video
encoder called M-LTW. This encoder includes an extension of the rate control
algorithm proposed in Section 2.2. The new video rate control algorithm has
great accuracy (always better than 98.5%) and is also able to detect scene
changes. This fast INTRA video encoder is able to encode an I'TU D1 video
signal in real time with good R/D performance.

Also, in Chapter 6, we present a fast coding stage (6 times faster than
3D-SPIHT) for a 3D wavelet recursive transform with low memory usage (3
times less memory than 3D-SPIHT and up to 10 times less memory than
H.264).
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7.2 Future work

There are several open problems and more work to be done related with the
subject of this thesis. Future work includes:

Bio-inspired quantization in order to improve the visual subjective qual-
ity of the proposed image encoders.

Regarding sign coding, we are planning to use genetic algorithms or
data mining to separate all neighbor sign combinations (K) in the two
contexts used by the S-LTW codec to encode the sign.

Presently there is an integer implementation of the INTRA video en-
coder M-LTW, but it is implemented using 32-bit integer precision. We
want to obtain an implementation using 16-bit integer precision, reduc-
ing by one-half the total amount of memory needed by the encoder.

With respect to 3D video encoding, we have just began our research
in this field, so we are planning to introduce an ME stage just before
applying the temporal filter to the wavelet transform.

Also, related with 3D video encoding, we wanted to develop an encoder
stage for the frame-by-frame 3D-DWT using the LTW coding engine so
as to improve the coding efficiency. Furthermore, a rate control stage
for the encoder stage could be developed.

7.3 Publications resulting from this thesis

Some fragments of the work presented in this thesis have been published in
proceedings of both international and national conferences and in research
journals. In particular, the main contributions are:

—

From Chapter 2:

e A Heuristic Bitrate Control for Non-embedded Wavelet
Image Encoders
O. Lopez, M. Martinez-Rach, J. Oliver, M.P. Malumbres
48th International Symposium ELMAR-2006 (ELMAR 2006), Za-
dar (Croatia), June 2006, ISBN:953-7044-03-3, pp. 13-16.
This paper presents a preliminary study about rate control for
non-embedded wavelet image encoders. In this paper, several
rate control algorithms for non-embedded image encoders are pre-
sented. They correspond to the ones presented in this thesis in
Sections 2.1, 2.2 and 2.3.
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e Analysis of fast Bitrate Control Algorithms for Non em-

bedded Wavelet Image Encoders

O. Lépez, M. Martinez-Rach, J. Oliver, M.P. Malumbres

XVII Jornadas de Paralelismo, Albacete (Spain), September 2006
84-690-0551-0, pp. 491-496.

In this paper, the algorithms presented in the previous paper are
explained in greater detail.

Impact of Rate Control Tools on very fast Non-Embedded
Wavelet Image Encoders

O. Loépez, M. Martinez-Rach, M.P. Malumbres and J.Oliver
Visual Communications and Image Processing, San Jose (USA),
January 2007 ISBN:0277-786X, pp. 291-298.

In this paper, the rate control algorithms are evaluated in de-
tail and a further evaluation is performed when implemented on
the LTW encoder, including both an objective and a subjective
evaluation. The paper corresponds to the results presented in
Section 2.5.

— From Chapter 3:

e Embedded Lower Tree Wavelet Encoder

O. Lopez; M. Martinez-Rach; P. Pinol; J. Oliver; M. P. Malum-
bres

XIX Jornadas de Paralelismo, Castellon (Spain), 2008, ISBN:978-
84-8021-676-0.

This paper shows a preliminary study of sign coding in non-
embedded image encoders. This preliminary results are related
to the sign coding neighborhood presented in Section 3.1.

— From Chapter 4:

e E-LTW: An Enhanced LTW Encoder with Sign Coding

and precise Rate Control

O. Lopez; M. Martinez-Rach; P. Pinol; J. Oliver; M. P. Malumbres
International Conference on Image Processing, Cairo (Egypt), No-
vember 2009.

This paper presents the improved E-LTW image encoder which
includes a sign coding stage and a precise rate control algorithm.

Enhanced Non-embedded Lower Tree Wavelet Encoder
O. Lopez; M. Martinez-Rach; P. Pinol; J. Oliver; M. P. Malumbres
XX Jornadas de Paralelismo, A Coruna (Spain), September 2009.
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In this paper we present an improved version of the LTW encoder
called E-LTW which includes an exact rate control and also a sign
coding stage. This E-LTW encoder is presented in Chapter 4.

— From Chapter 5:

e Motion-LTW: a fast and efficient intra video coding sys-
tem with low memory consumption
Otoniel Lépez, Miguel Martinez, Pablo Pinol, Manuel P. Malum-
bres, J. Oliver
XVIII Jornadas de Paralelismo, 2007, Zaragoza (Spain), ISBN:-
978-84-9732-672-8.
In this paper we present a new INTRA video encoder that it is
able to encode an ITU D1 size image in real time with good R/D
behavior. In this thesis this new encoder is presented in Chapter 5

e M-LTW: A Fast and Efficient Non-Embedded Intra Video
Codec
O. Lopez, M. Martinez-Rach, P. Pinol, J. Oliver, M. Malumbres
Pacific-Rim Conference on Multimedia, 2007, Hong Kong (Chi-
na), ISBN:978-3-540-77254-5, pp. 830-838.
In this paper we explain in depth the M-LTW encoder presented
in Chapter 5.

e M-LTW: A fast and efficient intra video codec
Otoniel M. Lopez; Miguel O. Martinez-Rach, Pablo Pinol, Manuel
Perez Malumbres, José Oliver
Signal Processing: Image Communication Ed. ELSEVIER,
doi:10.1016/7.image.2008.07.001, pp. 637-648.
In this paper we extended the evaluation performed in previous
papers.

— From Chapter 6:

e A General Frame-by-Frame Wavelet Transform Algorithm
for a Three-Dimensional Analysis with Reduced Memory
Usage
Oliver, J.; Lopez, O.; Martinez-Rach, M.; Malumbres, M.P.
IEEE International conference on image processing (ICIP),
doi:10.1109/ICIP.2007.4378993, Vol 1. pp. 469-472.

In this paper, a novel way of computing the 3D-DWT is presented.

— Others:
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International Standards for Image Compression

J. Oliver, O. Lépez, M. Martinez-Rach, P. Pinol, C.T. Calafate,
M.P. Malumbres

Ed. IGI-Global, ISBN:978-1-60566-026-4, pp. 5270.

An Study of Objective Quality Assessment Metrics for
Video Codec Design and Evaluation

M. Martinez-Rach, O. Loépez, P. Pinol, M.P. Malumbres and J.
Oliver

IEEE Int. Symp. on Multimedia (ISM 2006), San Diego (USA),
0-7695-2746-9, pp. 517-524.

PSNR vs. quality assessment metrics for image and video
codec performance evaluation

M. Martinez-Rach, O. Loépez, P. Pinol, M.P. Malumbres, J. Oliver
XVIII Jornadas de Paralelismo, Zaragoza (Spain), 2007 ISBN:978-
84-9732-672-8.

A practical study of video streaming over IEEE 802.11
wireless networks using DirectShow video encoders

Pablo Pinol, Miguel Martinez, Otoniel Lopez, M.P. Malumbres,
J. Oliver

XVIII Jornadas de Paralelismo, Zaragoza (Spain), 2007 ISBN:978-
84-9732-672-8.

Low-Complexity TTCM Based Distributed Video Coding
Architecture

J.L. Martinez, W.A.C. Fernando, W.A.R.J. Weerakkody, J. Oliver,
O. Lépez, M. Martinez-Rach, M.P. Malumbres, P. Cuenca and F.
Quiles

Second Pacific Rim Symposium (PSIVT) 2007, Santiago (Chile),
ISBN:978-3-540-77128-9, Vol. 4872.

Quality Assessment Metrics vs. PSNR under Packet Loss
Scenarios in MANET Wireless Networks

M. Martinez-Rach, O. Lopez, P. Pinol, M.P. Malumbres, J. Oliver,
Carlos T. Calafate

ACM MM 2007 Augsburg, Bavaria (Germany), ISBN:978-1-59593-
702-5, pp. 31-36.
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bpp bits per pixel

DCT Discrete Cosine Transform

DWT Discrete Wavelet Transform

EBCOT Embedded Block Coding with Optimized Truncation
ECECOW Embedded Conditional Entropy Coding of Wavelet Coefficients
EZW Embedded Zero-tree Wavelet

EOF End of Frame

FGS Fine Grain Scalability

GIS Geographic Information System

GOP Group of Pictures

HQ High Quality

ITU International Telecommunication Union
LSB Least Significant Bit

LSP List of Significant Pixels

LIP List of Insignificant Pixels

LIS List of Insignificant Sets

LTW Lower Tree Wavelet

LZC Layered Zero Coding

MSB Most Significant Bit

MSE Mean Squared Error

MC Motion Compensation

MCTF Motion Compensation Temporal Filtering
ME Motion Estimation

MV Motion Vector

PDA Personal Digital Assistant



133

PDF Portable Document Format

PCRD Post-Compression Rate Distortion
SBHP Subband-Block Hierarchical Partitioning
SFQ Space-Frequency Quantization

SNR Signal to Noise Ratio

SPIHT Set Partitioning In Hierarchical Trees
SSD Solid State Drives

VLC Variable Length Coding

VIF Visual Information Fidelity

WT Wavelet Transform
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Imgl1l

Figure I1.1: Kodak image set (768x512)
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Tmg22 Tmg23

Figure I1.2: Kodak image set (768x512)
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Barbara(512x512) Lena(512x512)

AP TN}

Mandrill(512x12) Peppers(512x52)

Figure III.1: Test image set
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Zelda(512x512)

Cafe(2048x2560) ' Woman (2048x2560)

Figure II1.2: Test image set
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Foreman(QCIF and CIF) News(QCIF and CIF)

Container(QCIF and CIF) Coastguard(QCIF and CIF)

Mobile(ITU)

Station2(HD)

Figure IV.1: Test video sequences set
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