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Abstract

In the literature, we can find numerous works in the fields of image and video
coding and compression that present new algorithms, techniques, or methods
that lead to some improvements in comparison to previous proposals or
standards. Some improvements are related with complexity reduction of
encoding/decoding engines, others with the use of resources such as memory
or computational cost, and others with the quality of the reconstructed image
or sequence, i.e., obtaining the same quality with less compression rate or
more quality at the same rate.

Once a new proposal is developed, it must compare its results with
previous proposals or standards in order to quantify the gains. Such
comparisons should be done not only at the end of the proposal development,
but also during the design stages. Researchers in these fields are continuously
comparing the results obtained after any modification in the algorithms or
methods, with the results of the reference encoder, in order to tune or guide
their research to obtain higher gains in coding time, resource usage, and/or
quality.

Focusing on quality comparisons, i.e., quality comparisons at a specific bit
rate or rate comparisons at the same quality, we see that researchers have
adopted the Mean Square Error (MSE) and the Peak to Noise Ratio (PSNR) as
a de facto standard metric to compare and measure the quality of the
reconstructed images or videos. This is because MSE, and consequently
PSNR, have many attractive features [1]: they are simple to calculate and
parameter free, mathematically easy to deal for optimization purposes, are the
natural way to define the energy of the error signal, and finally they are the
most commonly used metrics. Technically, MSE measures image difference,
whereas PSNR measures image fidelity. The main idea was, therefore, that
reducing the mathematical error between images leads to a better quality of
the reconstructed image.

Also, the use of Rate/Distortion (R/D) curves to compare and measure the
behavior of the encoding proposals over a range of bit rates are widely used.
From a designer’s point of view, it is interesting to have a unique value that
measures how good a proposal is with respect to others for a specific bit rate
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range, and not only at a specific bit rate, and so recently [2], the Bjontegaard
method to compare R/D curves was also adopted as the de facto standard for
this need.

When the image reconstruction is not mathematically exact, i.e., the PSNR
difference between the original and the reconstructed image is below a
threshold, the perception of quality given by our Human Visual System (HVS)
is in many cases far from the mathematical quality value given by the PSNR.
As we will see later, there are many examples where the PSNR value for
different reconstructed images with different distortions is almost the same;
however, humans clearly perceive different qualities for each image, and can
even rank those images by quality.

Therefore, there is a need for measuring the quality of reconstructed images
and video sequences in a similar way as the HVS. As we will see later, there
are many proposals, or contributions in this field trying to achieve this from
different approaches. In this thesis, we review the most outstanding proposals
in the field of Quality Assessment Metrics (QAM), and we will focus on the
metrics for which the source code was available. We also review and discuss
the methods that must be followed in order to fairly compare different metrics
using a common quality scale.

The equation to translate a metric to this common quality scale needs some
parameters that are seldom published, and as we will see later, there are many
factors that produce variations in the comparison results, so, in this thesis, we
will perform a comprehensive comparison and we publish the parameters that
will translate each metric to that common scale. The comparison sets the
degree of correlation of a metric with the subjective quality assessment. In this
work, we will also analyze how the metrics behave in different environments,
specifically in the image and video compression environment, and in mobile
networks where packet losses are present. This study draws conclusions about
which metric adapts better to each environment.

As previously commented, the PSNR became a standard before research in
the QAM field provided the metrics, but even after, when some metrics were
available, and widely recognized as having a better correlation with subjective
quality assessment than PSNR, only a few works have used them to compare
their quality performance results.

In this thesis, we also review the most important and widely used techniques
to provide perceptual improvements in image and video encoders. As many
of the proposals include these techniques in their algorithms, in some of the
encoding stages it is reasonable to measure the performance of such proposals
from a perceptual point of view, i.e., using a QAM in the comparisons instead of
the PSNR. But nowadays, the PSNR is still predominantly used, comparing at
a specific rate or using PSNR R/D curves, i.e., R/D curves where the distortion
metric is PSNR. Recently, however, there have been some works that include,
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besides PSNR, other QAM in their performance comparisons.
We will also include the most relevant perceptual techniques into the

S-LTW encoder, a non embedded wavelet based encoder, in order to obtain a
new perceptual enhanced encoder that we call PETW (Perceptually Enhanced
Tree Wavelet). The techniques that we will explore and include in the new
encoder can also be used in other wavelet- or even DCT-based encoders with
the corresponding modifications. As our new encoder includes perceptual
techniques in its design, we will use the VIF QAM, which was the one that
obtained the best correlation in our metrics comparison tests.

The most widely used perceptual technique is the adaptation of the HVS
sensitivity to contrast by means of the Contrast Sensitivity Function (CSF)
into the quantizer. Many authors perform complex subjective tests in order to
fix the perceptual importance of each frequency band or subband, and so,
include the HVS sensitivity to contrast in the encoder using empirical
weighting matrices. Some other authors obtain the weighting matrix directly
from a model of the CSF. In order to avoid the need to perform that complex
subjective tests, in this thesis we will deeply analyze this technique so we can
improve the way in that the weighting matrix is obtained, and therefore
improve the perceptual performance of the encoder when using our proposal.
This performance comparison is also made in terms of VIF R/D analysis
against the reference work and using well-known image and video encoders
(in intra mode).

Finally, and inspired by some studies from the quantization research field,
we designed an adaptive estimator of the dead zone size in our new encoder so
that the perceptual quality of each reconstructed image is optimized. In order
to be able to use this dead zone variability, we replace the original quantization
stages of the S-LTW with a Uniform Variable Dead Zone Quantizer
(UVDZQ). Using this quantizer jointly with our dead zone adaptive estimator
and the perceptual weighting matrices, we improve the perceptual R/D
behavior of the S-LTW encoder. This new encoder is also compared with other
well-known image encoders with and without perceptual enhancements.

Our comparisons results determine that the union of the techniques used in
this thesis achieve better perceptual R/D behavior of the PETW encoder against
the reference S-LTW and other well-known encoders, with great bit rate savings
when encoding an image with the same perceptual quality.
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Resumen

En el ámbito de la codificación y compresión de imagen y vı́deo son
numerosas las aportaciones que encontramos en la literatura que presentan
mejoras sobre anteriores o sobre los estándares en algún aspecto. Unas
plantean diferentes o nuevas formas de codificar, otras refinan los métodos ya
existentes, para finalmente tratar de mejorar el rendimiento de la propuesta
sobre las anteriores, bien en tiempo de codificación, utilización de recursos,
tasa de compresión o calidad de la imagen o el video reconstruido, etc...

Una vez desarrollada una nueva propuesta la gran mayorı́a necesita
comparar sus resultados con los de propuestas anteriores. Pero estas
comparaciones no solo se producen cuando se tiene el nuevo codificador o un
nuevo método completamente terminado, sino que lo que es más costoso, es la
necesidad de recurrir continuamente a comparativas durante el tiempo de
diseño en cualquiera de sus aspectos, tiempo de procesamiento, memoria,
calidad, etc. para modificiar los métodos y lograr el mayor rendimiento.

Si nos centramos en comparativas de calidad a una misma tasa de bits o
bien en comparativas de tasa de bits para una misma calidad, vemos cómo la
comunidad cientı́fica ha adoptado historicamente el MSE (Mean Square Error)
y el PSNR (Peak to Noise Ratio) para medir la calidad y analizar los
rendimientos en Rate/Distortion (R/D) de las distintas propuestas, pues posee
cualidades muy atractivas [1] ya que es simple de calcular, su formula no
necesita parámetros, matemáticamente se puede utilizar en algoritmos de
optimización, es la forma natural de definir la energı́a del error de la señal y
por último es la métrica más utilizada por lo que permite las comparaciones.
La idea básica e indiscutible que favoreció al PSNR es que la mejor imagen
reconstruida es la que es matemáticamente idéntica a la original.

Desde el punto de vista del diseñador de un codificador lo interesante es
determinar cuan buena es la propuesta para uno o varios rangos de rate, no
únicamente para un rate determinado, pero sin que para ello sea necesario
codificar y decodificar a todaas las tasas. Por ello surgió la propuesta de
Bjontegaard que propone un único valor porcentual de la mejora de una
propuesta respecto a otra basándose en el comportamiento R/D en PSNR de
ambas y que ha sido adoptada como estandar de facto.
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Cuando la recuperación de una imagen reconstruida ya no es
matemáticamente exacta, la percepción visual de la calidad por el sistema
visual humano dista mucho en ciertos casos de lo que la comparación
matemática dicta como valor de calidad. Como veremos más adelante son
muchos los ejemplos en los que la comparación entre distintas imagenes
reconstruidas, provenientes de distintas distorsiones, contra un mismo original
resulta en un mismo valor de calidad PSNR, pero el sistema visual humano
determina claramente diferentes calidades y una ordenación diferente en
cuanto a calidad.

Por lo tanto surgió la necesidad de poder medir la calidad de las imágenes y
videos reconstruidos de una forma más parecida a cómo lo hace nuestro sistema
visual. Como veremos son muchas las aportaciones en este ámbito y desde
muchas aproximaciones diferentes. En esta tesis realizamos una revisión de las
aportaciones más relevantes en éste ámbito y nos centraremos en analizar el
comportamiento de aquellas para las que dispusimos de su código fuente. A su
vez revisamos y discutimos la metodologı́a para poder comparar métricas entre
si utilizando una escala común.

La ecuación que permite trasladar una metrica a esta escala común
requiere de unos parámetros que no suelen publicarse en la literatura y como
veremos posteriormente son muchos los factores que hacen variar los
resultados de las comparativas, por tnato en esta tesis nosotros realizamos la
comparativa completa publicando los parametros obtenidos. Esta comparativa
determina el grado de correlación de una metrica a la valoración subjetiva de
calidad. En este trabajo además se analiza cómo se comportan estas métricas
en varios escenarios, en concreto, cómo responden las métricas frente a
resultados de compresión y frente a la pérdida de paquetes en redes móviles.
Este estudio arroja conclusiones sobre qué métrica se adapta mejor a que tipos
de compresión y perdida.

Como hemos comentado, el PSNR se convirtió en estandar de facto antes
de que se pudieran utilizar métricas de calidad perceptual pero aun existiendo
éstas, posteriormente son pocos los trabajos que comparan su rendimiento
utilizando métricas perceptuales a pesar de que está ampliamente reconocido
que tienen mejor correlación con la valoración subjetiva de calidad que el
PSNR.

En este trabajo también se revisan las técnicas perceptuales más
importantes que se utilizan para incorporar aspectos perceptuales en la
codificación de imagen y video. Muchas son las propuestas que incluyen estas
técnicas en la codificación de imagen y video. Al incluir algoritmos
perceptuales en alguna de las etapas de un codificador o de una propuesta de
mejora de éstos, lo razonable es medir el rendimiento de la propuesta desde un
punto de vista perceptual. Pero aún, mayoritariamente los trabajos siguen
utilizando el PSNR o las curvas R/D donde el PSNR es la métrica de calidad,
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aunque últimamente algunos trabajos comienzan a utilizar, además del PSNR,
otras métricas de calidad perceptual.

En este trabajo incluiremos técnicas perceptuales de codificación en un
codificador wavelet no embedido, el S-LTW, para realizar una propuesta de un
nuevo codificador, el PETW (Perceptually Enhanced Tree Wavelet). Muchas
de las técnicas que aqui exploramos y proponemos, pueden ser extrapoladas a
otros codificadores basados en la transformada wavelet o en la DCT. Puesto
que el codificador incluye elementos perceptuales, todas nuestras
comparaciones de rendimiento se realizan utilizando la métrica perceptual
VIF, que resultó la más correlacionada con la valoración subjetiva en las
comparaciones realizadas.

La técnica perceptual más extendida en la codificación perceptual es la
inclusión mediante la CSF (Contrast Sensitivity Function) de la sensibilidad al
contraste del sistema visual humano en la etapa de cuantización. Muchos
autores realizan test subjetivos con el fin de determinar la importancia
perceptual de cada banda o subbanda de frecuencia y ası́ incluir la sensibilidad
al contraste del HVS en los codificadores gracias a unas matrices de pesos
empiricamente obtenidas. Otros autores, sin embargo, obtienen las matrices de
pesos directamente de un modelo de la CSF. Con el fin de evitar los costosos
test subjetivos, nosotros analizaremos esta técnica y propondremos mejoras en
la selección de pesos y mejorar por tanto el rendimiento del codificador al usar
nuestra matriz de pesos. Nuestra propuesta será contrastada en terminos R/D
usando la VIF como métrica de calidad comparandola con la referencia y
utilizando varios codificadores de imagen y video en modo intra en las
comparativas.

Por último, y basado en resultados de varios estudios, incluimos en nuestro
codificador un estimador adaptativo que en función de la imágen estima un
valor óptimo del ancho del dead zone para el cuantizador utilizado. Por ello
modificamos la cuantización original de S-LTW para sustituirlo por un UVDZQ
(Uniform Variable Dead Zone Quantizer). Este estimador determina el ancho
del dead zone que permitirá mejorar el rendimiento R/D perceptual respecto
a usar el dead zone que usaba el S-LTW. El rendimiento de este estimador
adaptativo se compara con otros codificadores de imagen muy conocidos.

Nuestras comparaciones determinan que la unión de las técnicas utilizadas
en esta tesis consiguen mejorar el comportamiento perceptual R/D de nuestro
codificador frente al S-LTW y a otros codificadores, y conseguir considerables
ahorros en rate al codificar una imagen a una misma calidad perceptual, es
decir, para una misma calidad perceptual el PETW consigue reducir la tasa de
bits utilizada.





Preface

Motivation

The main goal is to propose a new perceptually driven image encoder, but for
this task we have to deal with some issues that arose when we began this task
and that motivate this work. As starting point for our new encoder we chose
the S-LTW encoder [3], a non embedded wavelet based encoder. As obtaining
better results in terms of perceptual quality, drives the design and adaptations
in our encoder, it is evident that we need to measure the obtained quality from
a perceptual point of view and not using the traditional PSNR metric.

When performing the state-of-the-art review of the perceptual coding
techniques, we observe that most of the works did not use perceptual QAM.
They mainly use printed images encoded at a specific bit rate for visual
inspection of the benefits of the applied technique. Only few works use QAM
while others use also PSNR R/D curves. While working with some perceptual
techniques in our encoder, we observe also that measuring the R/D
performance with PSNR as distortion metric will produce misleading
interpretations of the suitability of these perceptual coding techniques in that
encoder, as the R/D curve of the perceptually modified encoder gets worse
results than the original one. This happen because these techniques change the
perceptual importance of the wavelet coefficients, quantizing them in a
different way. This produces higher mathematical differences in the
reconstruction image that PSNR detects as fidelity errors, but a visual
inspection of that images reveals that quality is even higher or that for the
same perceptual quality a bit rate reduction is achieved.

In order to measure the perceptual quality performance of our encoder we
could use subjective tests. But this is a very cumbersome, and time and
resource consuming task. More over, in the design stage, were each time that a
modification in the algorithms is done, a new test must be run in order to
detect if that modification works as expected. So, one motivation is to avoid
the continuous subjective tests to verify each design decision. While reviewing
the perceptual coding techniques used in wavelet based encoders, we see that
some techniques avoid the use of subjective test to determine the perceptual

XI
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importance of the wavelet coefficients, so we decide to study it deeply and try
to improve its results.

So, on the one hand we know that we have to measure the performance
from a perceptually point of view and on the other one we want to avoid the
use of continuous subjective tests. Therefore using a QAM for this task is
another motivation in this work, but the question is, which one? In order to
answer this question, we need a review in that research field. Several issues,
as we will explain later, forced us to perform an ad-hoc QAM comparison, and
as one of the future uses of our encoder is to send compressed images over
mobile networks, we have to analyze also the behavior of the metrics in that
environments, i.e., compression and mobile networks with packet losses. Once
the metric has been selected, every performance comparison should be done
with it.

Finally, another question arises while observing that most of the
perceptual coding techniques are non image adaptive, and that the existing
adaptive techniques use to have high computational costs, or use some global
parameters that are valid for a set of images but not for each specific one. In a
review of perceptual quantization techniques we observe that some authors
performed studies that were focused on obtain a better PSNR R/D
performance by modifying the dead zone size when a dead zone quantizer is
used. So our motivation was finally to design an image adaptive estimator of
the dead zone size that improves the perceptual R/D performance with lower
computational cost and easy to implement in the encoding engine.

Objectives

The specific objectives of this thesis can be detailed as follows:

• Study the state-of-the-art in the field of objective perceptual quality
assessment metrics

• Comparison of the most representative metrics, and evaluation of their
behavior in compression and packet losses environments.

• Study the state-of-the-art of the perceptual coding techniques and determine
which ones can be included in our wavelet non-embedded image encoder.

• Improve the performance results of that perceptual techniques.

• Use a wavelet-based intra encoder as reference where the most relevant per-
ceptual coding techniques will be implemented.

– Add the improved perceptual coding techniques.
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– Study the impact of the dead zone size in the final reconstructed perceptual
quality.

Thesis organization

This thesis is organized in four chapters, which are introduced here:
Chapter 1 presents the fundamentals of image and video compression. In

Section 1.1.2, we present several state-of-the-art wavelet image encoders,
emphasizing non-embedded encoders. The present image coding standard
JPEG 2000 is also presented in Section 1.1.3. On the other hand, in
Section 1.2.2 and 1.2.4, both the video coding standard H.264 (also referred to
as Moving Picture Experts Group (MPEG)-4, part-10) and other video
encoders are presented.

In Chapter 2 a study of the most commonly produced artifacts in image
and video coding is presented jointly with an overview of the Human Visual
System characteristics referred in this work. In sections 2.4 and 2.5 an in
depth objective perceptual quality assessment metrics study and classification
are presented. In Section 2.6 a review and discussion of how to compare QAM
is done, and finally in Section 2.7 some conclusions of this Chapter are
summarized.

Chapter 3 begins in Section 3.1with a brief review of the basics
quantization. In Section 3.2.1an in-depth perceptual coding study is presented
where the most relevant techniques in perceptual coding are exposed. In
Section 3.3 we analyze, propose and compare the performance of our
perceptual subband weighting matrix. In Section 3.4the PETW encoder is
introduced analyzing and discussing the use of the UVDZQ, so in Section
3.4.2 a performance evaluation of the PETW version with perceptual weights
and the new quantizer is shown. This performance comparison is performed
with other video encoders running in intra mode. And finally in section 3.4.3
we introduce the new image adaptive dead zone estimator that improves the
perceptual R/D performance. The performance of this estimator is evaluated in
Section 3.4.4.

Finally, Chapter 4 concludes and summarizes some of the main
contributions introduced in this thesis. We also advance here some of the
future research.
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1.1 Image coding

Compression of digital images plays a key role in image storage and transmis-
sion. In this chapter a brief introduction to general image compression will be
given.

1.1.1 Fundamentals

The usefulness of digital images in information transmission is not
questionable, but the cost of storing and transmitting images is much larger
compared to storage and transmission of text, so that for example image
databases require more storage than document archives.

The amount of data transmitted via the Internet doubles every year, and
a large portion of that data are images and video sequences. Reducing the
bandwidth needs of any given device will result in significant cost reductions
and will make the device more affordable. Magnetic hard discs (HD)s, CDs,
DVDs, and Solid State Drives (SSD)s of larger capacity are released every year,
in response to greater demand for storage of digital data. Image compression
offers ways to represent an image in a more compact way, so that one can store
more images and transmit images faster. The advantages of image compression
come at the expense of a computational cost. Before storing or transmitting an
image it is processed in such a way that will require fewer bits to represent it.

A compression algorithm tries to offer the best trade-off between the
bandwidth, memory, computation factors and quality for a given application.
For example, if we are limited in terms of memory we can spend more
computational time to compress the image and make sure it fits into the given
memory size. If we are computation limited we can store the image as it is
with no compression or with limited compression with a simple compression
algorithm.

Image compression algorithms have been the subject of research both in
academia and industry for many years, but there is still room for new
technologies. The first widely adopted international image compression
standard was Joint Photographic Experts Group (JPEG) [5, 6] which was
introduced in the late eighties. JPEG is based on Discrete Cosine
Transform (DCT) followed by entropy coding based on either Huffman coding
[7, 8, 9] or binary arithmetic coding [10, 11, 9, 12]. It has been widely used
from the printing industry to Internet applications. For example, all high-end
printers compress the image to be printed before they actually send it to the
print engine, and most images transmitted via the internet are JPEG
compressed. JPEG is intended for continuous tone images of more than one
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bit depth. Algorithms for binary images work in a different way, and JBIG-1
and JBIG-2 are the standards covering this area. There are other standards,
such as facsimile transmission standards [13], the FlashPix file format [14],
the TIFF file format [15], and page description languages like Probability
Density Function (PDF).

There are two major classes of image compression algorithms, namely
lossy and lossless algorithms. Lossless algorithms preserve the image data, i.e.
original and reconstructed images are exactly the same. In lossy image
compression, original and reconstructed images may or may not be identical in
a strict mathematical sense, but to a human observer they may look the same,
so the goal is to achieve compression that is visually lossless. Both lossy and
lossless compression algorithms are used today in a broad range of
applications, from transmitting satellite images, to web browsing to image
printing and scanning. With lossy compression algorithms we can achieve
significantly larger compression ratios compared to lossless algorithms.

1.1.1.1 Generic compression system

Most image coders consist of transform, quantization and entropy coding, as
seen in Figure 1.1. The transform block is in general a reversible operation,
i.e. a cascade of forward and inverse transform block is the identity operation.
T.T−1(arg) = T−1.T (arg) = arg. Quantization, on the other hand, introduces
some loss. The quantizer usually maps an interval of real numbers to a single
index, constituting the only lossy part of the coding system i.e.,
Q−1.Q(arg) � arg. It is lossy because the knowledge of an index is only
enough to give us the corresponding interval in the real line but not the exact
number in the real line. The entropy coder is the building block responsible
for compression, it maps more frequent indexes to small codewords and less
frequent indexes to larger codewords. It is also a reversible operation. A large
portion of the computational complexity of a compression system is due to the
entropy coding part of the system. More compression usually translates to
higher computational complexity. In general, arithmetic [10] and Huffman
coding [7] are the most common choices. Arithmetic coding is intended for
high-end applications where complexity is not a concern, but compression
performance is, while Huffman coding is intended for low-end applications
where simplicity is more important. Typically the most memory intensive
element is the transform. Quantization, on the other hand, is a much simpler
process than the transform or the entropy coder.
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Figure 1.1: Overview of an image coder and decoder based on transform cod-
ing. T and T−1 are the forward and inverse transform functions, respectively. Q
and Q−1 are the quantizer and dequantizer functions, respectively. The original
set of pixels is represented by P

1.1.2 Wavelet based encoders

The wavelet transform is able to spatially decorrelate the image pixels in a
linear way. However, more complex dependencies exist in natural images.
Therefore, we still need good processing techniques, beyond simple entropy
coding, in order to reduce these high-order statistical dependencies and so
improve compression efficiency. The way in which wavelet coefficients are
encoded establishes the coding model and it is the main difference among
different encoders. In this section, we survey some of the most important
wavelet-based image encoders that have been reported in the literature. In the
performance analysis of each proposal, we not only focus on their coding
efficiency but also on their complexity, since reduced complexity is one of the
objectives of this thesis.

1.1.2.1 Overview

The wavelet transform computation represents only the first step in transform
coding, and it is employed to decorrelate the input samples (pixels in the case
of image coding), achieving a less redundant smaller area of coefficients, which
concentrates most energy, whereas the remaining coefficients are reduced and,
in many cases, become zero or very close to zero. Therefore, the Discrete
Wavelet Transform (DWT) is a common point in wavelet coding, and there is
almost no difference in this part from one wavelet-based encoder to another one.
In this step, almost the only degree of freedom for an encoder is the wavelet
family and the type of wavelet decomposition. Although most schemes are
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based on the B9/7 transform [16] with a dyadic decomposition, other wavelet
families and wavelet decompositions (such as wavelet packets [17, 18]) have
been employed [19, 20, 21, 22].

Following the scheme depicted in Figure 1.1, after the DWT computation
an encoder must define the way in which rate/distortion is modified through
quantization, and how to encode the quantized coefficients. The way
quantization and coding is applied defines a specific model for each wavelet
encoder, and it is probably the main difference among different encoders.

Some wavelet encoders apply in combination the quantization and entropy
coding steps, so as to improve coding performance by means of optimization
algorithms (such as the Lagrange multiplier method [23, 18]), or to allow
other features, like Signal to Noise Ratio (SNR) scalability (e.g., by applying
quantization through successive approximation [24, 25]). Actually, the model
employed not only establishes the compression performance but also other
additional features of the output bit-stream. E.g., generally speaking,
depending on the order in which coefficients are encoded, an image can be
decoded with resolution or quality scalability.

A wide variety of wavelet-based image compression schemes have been
reported in the literature, ranging from simple entropy coding to more complex
techniques such as vector quantization [26, 27], tree-based coding [24, 25],
block-based coding [28, 29], edge-based coding [30], joint space-frequency
quantization schemes [31, 19], trellis coding [32], etc.

The early wavelet-based image coders [33, 16] were designed in order to
exploit the ability of the wavelet transform to compact the energy of an image
in a simple way. They employed scalar or vector quantizers and
variable-length entropy coding, showing little improvement with respect to
popular DCT-based algorithms like JPEG. In fact, in [34], some early wavelet
encoders were compared with JPEG, concluding that these encoders obtained
better results than JPEG only when very low bit rates were used (below 0.25
bits per pixel (bpp) for an original grey-scale 8 bpp image). However, despite
a not very brilliant beginning, DWT has been successfully employed later in
the field of image coding.

In this chapter, some of the most relevant and efficient wavelet tree-based
coding techniques that have been proposed recently are surveyed. Among the
wide variety of efficient encoders available in the literature, we highlight the
non-embedded proposals and the fastest coding/decoding schemes. The reason
why we focus on this type of encoder is that we are interested in models with
low computational requirements.
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1.1.2.2 Embedded zero-tree wavelet coding

In the early 90s, there was the general idea that more efficient image coding
would only be achieved by means of sophisticated techniques with high
complexity. The embedded zero-tree wavelet encoder (Embedded Zero-tree
Wavelet (EZW)) [24] can be considered the first wavelet image coder that
broke that trend. This encoder exploits the properties of the wavelet
coefficients more efficiently than the rest of early techniques and thereby, it
considerably outperforms their coding performance.

The EZW algorithm is mainly based on two basic ideas: (a) the similarity
between the same type of wavelet subband, with higher energy as the subband
level increases, and (b) a type of quantization based on a
successive-approximation scheme that can be adjusted in order to get a
specific bit rate in an embedded way. The former idea is exploited by means of
coefficient trees, whereas the latter is usually implemented with bit-plane
coding. In addition, the encoder includes an adaptive arithmetic encoder to
encode the generated symbols. Although the EZW technique never became a
standard, it is of great historical importance in the field of wavelet-based
image coding because the aforementioned two principles were later used and
refined by many other coding methods.

Let us define the coefficient trees employed in EZW. In a dyadic wavelet
decomposition there are coefficients from different subbands representing the
same spatial location in the sense that one coefficient in a scale corresponds
spatially with four coefficients in the correspondent previous subband. This
connection can be extended recursively with these four coefficients and the
corresponding direct descendants (sometimes called offspring) at the previous
levels, so that coefficient trees can be defined as shown in Figure 1.2. Since
each node in a tree has four direct descendants (except the coefficients at the
first level, corresponding with the leaf nodes), this type of tree is sometimes
called quadtree. Note that a quadtree (or subquadtree) can be built from each
coefficient by considering it as the root node of a tree.

The key idea employed by EZW to perform tree-based coding is that, in
natural images, most energy tends to concentrate at coarser scales (i.e., higher
decomposition levels). Then, it can be expected that the closer to the root node
a coefficient is, the larger magnitude it has. Therefore, if a node of a coefficient
tree is lower than a threshold, its descendant coefficients are likely to be lower
as well. In other words, the probability for all four children to be lower than
a threshold is much higher if the parent is also lower than that threshold. We
can take advantage of this fact by coding the subband coefficients by means of
trees and successive approximation, so that when a node and all its descendant
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LH1 HH1

HL1LH2 HH2

HL2
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HL3

HL2

HL1

Figure 1.2: Definition of wavelet coefficient trees. In (a), it is shown that co-
efficients of the same type of subband (HL, LH or HH) representing the same
image area through different levels can be logically arranged as a quadtree, in
which each node is a wavelet coefficient. The parent/child relation between
each pair of nodes in the quadtree is presented in (b)

coefficients are lower than a threshold, just a symbol is used to encode that
entire branch.

The EZW algorithm is performed in several steps, with two stages per
step: the dominant pass and the subordinate pass. Successive-approximation
can be implemented as a bit-plane encoder so that the method can be outlined
as follows: Consider that we need n bits to represent the highest coefficient of
the image (in absolute value). Then, the first step will be focused on all those
coefficients that need exactly n bits to be coded (ranging from 2n−1 to 2n − 1),
which are considered to be significant with respect to n. In the dominant pass,
each coefficient falling in this range (in absolute value) is labeled and encoded
as significant positive/negative (sp/sn), depending on its sign. These
coefficients will no longer be processed in further dominant passes, but in
subordinate passes. On the other hand, the remaining coefficients (those in the
range [0, 2n−1[) are encoded as zero-tree root (zr) if all its descendants also
belong to this range, or as isolated zero (iz) if any descendant is significant.
Note that no descendant of a zero-tree root needs to be encoded in this step,
because they are already represented by the zero-tree root symbol. In the
subordinate pass, the bit n of coefficients labeled as sp/sn in any prior step is
coded. In the next step, the n value is decreased by one, so that we focus now
on the following bit (from Most Significant Bit (MSB) to Least Significant
Bit (LSB)). This compression process finishes when the desired bit rate is
reached, and the decoder can partially use the incoming bit-stream to
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reconstruct a progressively improved version of the original image. That is
why this coder is called embedded.

In the dominant pass, four types of symbols need to be coded: sp, sn, zr,
and iz, whereas in the subordinate pass only two are needed (bit zero and bit
one). In order to get higher compression, an adaptive arithmetic encoder is used
to encode the symbols computed during the dominant pass.

Due to its successive-approximation nature, EZW is SNR scalable,
although at the expense of sacrificing spatial scalability. In addition,
line-based wavelet transforms [35] are not suitable for this encoder, because
the whole image is needed in memory to perform several image scans
focusing on different bit planes and searching for zero-trees. Moreover, EZW
needs to compute coefficient trees and performs multiple scans on the
transform coefficients, which involves high computational time, most of all in
cache-based architectures due to the higher cache miss rate.

1.1.2.3 Set partitioning in hierarchical trees

Said and Pearlman [25] proposed a variation of EZW, called SPIHT, which is
able to achieve better results than EZW even without arithmetic coding.
SPIHT is based on the same principles as EZW. However, improvements are
mainly due to the way it searches for significant coefficients in the quadtrees,
by splitting them with a novel partitioning algorithm.

Like in EZW, SPIHT encodes the wavelet subbands in successive steps,
focusing on a different bit plane in each step. For a certain bit plane (n), the
set partitioning sorting algorithm included in SPIHT identifies the insignificant
coefficients in the transformed image. This algorithm encodes the coefficient
significance by means of significance tests, which query each set to know if it
has at least one significant coefficient. If so, it divides that set into more subsets
and it then repeats the same question, otherwise we have identified a group
of insignificant coefficients with respect to the current bit plane. The result of
each query is encoded with a simple binary symbol, so that the decoder can
reconstruct the same groups of insignificant sets. The subsets with significant
coefficients are successively divided until each single significant coefficient is
identified. When all the subsets are found to be insignificant with respect to
the current bit plane, all the significant coefficients have been located, and the
sorting pass is over for this step. The algorithm then encodes the corresponding
bit (n) of those coefficients found significant in previous steps, which is called
the refinement pass. Afterward, it focuses on the following bit plane (n − 1)
and repeats the same process until the desired bit rate is reached. Note that
the sorting and refinement passes of SPIHT are equivalent in concept to the
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dominant and subordinate passes of EZW, respectively.

(a)

… … … … … … … … … … … … … … … …

… … … … … … … … … … … … … … … …

… … … … … … … … … … … … … … … …

(b)

(c)

ci j

O(ci,j)

L(ci,j)

D(ci,j)

Figure 1.3: Example of division of coefficient sets arranged in spatial orienta-
tion trees. This division is carried out by the set partitioning sorting algorithm
executed in the sorting pass of SPIHT. The descendants of ci, j presented in (a)
are partitioned as shown in (b); if needed, the subset of (b) is divided as shown
in (c), and so on

SPIHT uses spatial orientation trees (which are basically the quadtrees of
Figure 1.2) to construct the initial set of coefficients and to establish the rules to
divide them in the sorting algorithm. The notation employed in the algorithm
is shown in Figure 1.3(b). For a given coefficient ci, j, D(ci, j) is the set of all the
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descendant coefficients of ci, j. This set can be split into direct descendants (or
offspring) O(ci, j) and non-direct descendants L(ci, j).

In the SPIHT algorithm, the initial sets of coefficients are defined as D(ci, j)
∀ci, j ∈ LLN . The way a set D(ci, j) is partitioned in a sorting pass is shown in
Figure 1.3. Each set D(ci, j), such as the one shown in Figure 1.3(a), is
partitioned into its four direct descendants d1, d2, d3, d4 ∈ O(ci, j) as four single
coefficients, and its non-direct descendants L(ci, j) as a new subset (see
Figure 1.3(b)). Later, if the L(ci, j) subset has to be partitioned, it is divided
into four subsets formed by D(d1), D(d2), D(d3) and D(d4), as shown in
Figure 1.3(c). Each of these subsets can be further partitioned as we have just
described. The detailed coding and decoding algorithms are described in [25].
In these algorithms, the sorting pass includes two lists to identify single
coefficients: a list for the significant coefficients (called List of Significant
Pixels (LSP)) and another for the insignificant ones (List of Insignificant
Pixels (LIP)). On the other hand, the insignificant subsets are identified with
another list (called List of Insignificant Sets (LIS)), in which each subset can
be of type D(ci, j) or L(ci, j) (an extra tag is needed to specify it). Note that
there is no list of significant subsets because when a subset is found to have a
significant coefficient, it is successively partitioned until the significant
coefficient or coefficients are refined to the granularity of a single coefficient.

The coding efficiency of SPIHT can be improved by using adaptive
arithmetic coding to encode as a single symbol the significance values
resulting from the significance tests (queries). The SPIHT algorithm has been
considered a reference benchmark for wavelet image coding in a large number
of papers. In addition, many papers have been published based on the
tree-based SPIHT algorithm, including video coding [36, 37], hyperspectral
image coding [38] and a generalization of the set partitioning algorithm [39].
Due to its similarities to EZW, the features of SPIHT are the same as those
mentioned for EZW, except for the improvements in coding performance.

1.1.2.4 Lower tree wavelet encoder

Not all the tree-based algorithms in the literature are based on successive
quantization implemented with bit-plane coding, leading to an embedded
bit-stream. Lower Tree Wavelet (LTW) is a tree-based wavelet image encoder,
with state-of-the-art coding efficiency, but less resource demanding than other
encoders in the literature. The basic idea of this encoder is very simple: after
computing a dyadic wavelet transform of an image, the wavelet coefficients
are first quantized (using uniform scalar quantization by a factor Q) and then
encoded with arithmetic coding.
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In LTW [40], the quantization process is performed by two strategies: one
coarser and another finer. The finer one consists in applying a scalar uniform
quantization, Q, to wavelet coefficients. The coarser one is based on removing
the least significant bit planes, rplanes, from wavelet coefficients. A tree
structure (similar to that of [25]) is used not only to reduce data redundancy
among subbands, but also as a simple and fast way of grouping coefficients.
As a consequence, the total number of symbols needed to encode the image is
reduced, decreasing the overall execution time. This structure is called lower
tree, and it is a coefficient tree in which all its coefficients are lower than
2rplanes.

The LTW algorithm consists of two stages. In the first one, the
significance map is built after quantizing the wavelet coefficients (by means of
both Q and rplanes parameters). In Figure 1.6 (right) we can see the
significance map built from wavelet decomposition shown in Figure 1.6 (left).
The symbol set employed in this proposal is the following one: a LOWER
symbol represents an insignificant coefficient that is the root of a lower-tree,
the rest of coefficients in a lower-tree are labeled as LOWER COMPONENT,
but they are never encoded because they are already represented by the root
coefficient. If a coefficient is insignificant but it does not belong to a lower-tree
because it has at least one significant descendant, it is labeled as an
ISOLATED LOWER symbol. For a significant coefficient, two types of
’numeric symbols’ are used according to the coefficient offspring. (a) A
’regular numeric symbol’ (nbitsi, j) shows the number of bits needed to encode
a coefficient, (b) and a special ’LOWER numeric symbol’ (nbitsLOWER

i, j ) not
only indicates the number of bits of the coefficient, but also the fact that all its
descendants are labeled as LOWER COMPONENT, and thus they belong to a
lower-tree (i.e, 4L in Figure 1.6 (right)).

Let us describe the coding algorithm. In the first stage (symbol
computation), all wavelet subbands are scanned in 2x2 blocks of coefficients,
from the first decomposition level to the Nth (to be able to build the
lower-trees from leaves to root). In the first level subband, if the four
coefficients in each 2x2 block are insignificant (i.e., lower than 2rplanes), they
are considered to be part of the same lower-tree, labeled as
LOWER COMPONENT. Then, when scanning upper level subbands, if a 2x2
block has four insignificant coefficients, and all their direct descendants are
LOWER COMPONENT, the coefficients in that block are labeled as
LOWER COMPONENT, increasing the lower-tree size. However, when at
least one coefficient in the block is significant, the lower-tree cannot continue
growing. In that case, a symbol for each coefficient is computed one by one.
Each insignificant coefficient in the block is assigned a LOWER symbol if all
its descendants are LOWER COMPONENT, otherwise it is assigned an
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ISOLATED LOWER symbol. On the other hand, for each significant
coefficient, a symbol indicating the number of bits needed to represent that
coefficient is employed (see algorithm in Figure 1.4).

Function: LTWCalculateSymbols( )
Scan the first level subbands (HH1, LH1 and HL1) in 2x2 blocks.
For each block Bn

if
∣∣∣ci, j

∣∣∣ < 2rplanes ∀ci, j ∈ Bn

Set ci, j = LOWER COMPONENT
else

For each ci, j ∈ Bn)
if
∣∣∣ci, j

∣∣∣ < 2rplanes

Set ci, j = LOWER
Scan the remaining subbands (from level 2 to N) in 2x2 blocks.
For each block Bn

if
(∣∣∣ci, j

∣∣∣ < 2rplanes ∧ descendant(ci, j) = LOWER COMPONENT
)

∀ci, j ∈ Bn

Set ci, j = LOWER COMPONENT ∀ci, j ∈ Bn

else
For each ci, j ∈ Bn)

if
∣∣∣ci, j

∣∣∣ < 2rplanes∧ descendant(ci, j)=LOWER COMPONENT
Set Ci, j = LOWER

if
∣∣∣ci, j

∣∣∣ < 2rplanes∧ descendant(ci, j)�LOWER COMPONENT
Set ci, j = ISOLATED LOWER

End

Figure 1.4: Lower tree coding. Symbol computation

In order to reduce memory overhead, labels are applied by overwriting the
coefficient value by an integer value associated to the corresponding label,
which must be outside the possible range of significant coefficients (typically,
by reusing the values in the quantized range

[
0 . . . 2rplanes

]
).

Finally, in the second stage (see algorithm in Figure 1.5), subbands are
encoded from the LLN subband to the first-level wavelet subbands, as shown in
Figure 1.7. Observe that this is the order in which the decoder needs to know the
symbols, so that lower-tree roots are decoded before its leaves. In addition, this
order provides resolution scalability, because LLN is a low-resolution scaled
version of the original image, and as more subbands are being received, the
low-resolution image can be doubled in size. In each subband, for each 2x2
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block, the symbols computed in the first stage are entropy coded by means of
an arithmetic encoder. Recall that no LOWERCOMPONENT is encoded. In
addition, significant bits and its sign are needed for each significant coefficient
and therefore binary encoded.

Function: LTWOutputCoefficients( )
Scan subbands (from N to 1, in 2x2 blocks)
For each ci, j in a subband

if ci, j �LOWER COMPONENT
if ci, j =LOWER

arithmetic output LOWER
else if ci, j =ISOLATED LOWER

arithmetic output ISOLATED LOWER
else

nbitsi, j =
⌈
log2

(∣∣∣ci, j

∣∣∣)⌉
if descendant(ci, j) �LOWER COMPONENT

arithmetic output nbitsi, j

else
arithmetic output nbitsLOWER

i, j

output bitnbitsi, j−1

(∣∣∣ci, j

∣∣∣). . . bitrplane+1

(∣∣∣ci, j

∣∣∣)
output sign(ci, j)

End
Note: bitn(c) is a function that returns the nth bit of c.

Figure 1.5: Lower tree coding. Output the wavelet coefficients

1.1.2.5 Space-frequency quantization

Space-Frequency Quantization (SFQ) encoder presented in [31] is a
nonembedded tree-based image encoder. In order to minimize distortion for a
target bit rate, this algorithm relies on: (1) the construction of trees of
zero-coefficients (which is considered a space quantization) and, (2) a single
common uniform scalar quantization applied to the wavelet subbands (this is
the frequency quantization). The joint application of (1) and (2) is performed
in an optimal manner, with the Lagrange multiplier method [41]. To this end,
the algorithm tries to identify the optimal subset of coefficients to be discarded
by encoding them as a quadtree, and the optimal step-size to quantize the
remaining coefficients by applying a uniform scalar quantizer. In order to
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Figure 1.6: left: 2-level wavelet transform of an 8x8 example image, right:
Symbol Map using rplanes=2
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Figure 1.7: Example image encoded using LTW

determine the best option for the space quantization, the algorithm considers
not only entire quad-trees, like the one shown in Figure 1.2, but also different
shapes of trees, by pruning tree branches. Information about tree pruning and
the rest of quantized coefficients, along with the employed step-size, are
encoded with entropy coding and sent to the decoder as part of the compressed
bit-stream.

Despite not being embedded, SFQ achieves precise rate control due to the
use of an iterative rate/distortion optimization algorithm for a given bit rate. As
a result of this algorithm, the coding performance of SFQ is slightly better than
SPIHT. However, this iterative optimization algorithm is time-consuming and
causes the SFQ encoder to be about five times slower than SPIHT.
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1.1.2.6 Non-embedded SPIHT

In [42], Pearlman introduces the discussion about the general necessity of
embedding in image coding. As we have mentioned in subsection 1.1.2.3, bit
plane coding slows the execution of both the encoder and decoder, and
sometimes it provides no benefit to the application, or even worse, it is not
feasible. In particular, a line-based wavelet transform cannot be employed
along with bit plane coding unless further rearrangement of the bit-stream is
performed, needing at least the entire bit-stream in memory. On the other
hand, we may just want to encode an image at a constant quality. In this case,
successive approximation is not strictly required, except eventually to improve
coding efficiency.

The variation of SPIHT introduced in [42] is to send all the bits down to
a given bit plane (r) once a single coefficient has been found significant, so
as to avoid the refinement passes. In this version, the coding process finishes
when that bit plane (r) is reached in a sorting pass. Another option is to pre-
quantize all the coefficients with a uniform scalar quantizer, and then encode
all the bit planes (again without refinement passes). The desired distortion
level (or compression level) is controlled by modifying the r parameter in the
first variation, or the quantization step in the second one. Note that in both
approaches, the LSP list of SPIHT is no longer needed.

Although this version is faster than the original one, neither multiple image
scans nor bit plane processing of the sorting passes is avoided. Hence, the
problems addressed in subsection 1.1.2.3 still remain.

1.1.2.7 Progressive resolution decomposition

The modification of SPIHT described in the previous subsection is neither
SNR nor resolution scalable. Recently, the authors of SPIHT have proposed a
new version of SPIHT [43] for very fast resolution scalable encoding, based
on the principles of decreasing energy of the wavelet coefficients along the
subband levels, and the fact that the energy is quite similar for coefficients at
the same level. Since it supports resolution scalability with great speed, the
authors consider that it is an excellent choice for remote sensing and
Geographic Information System (GIS) applications, where rapid browsing of
various scales of large images is necessary.

Progressive resolution decomposition (PROGRESS) uses a pre-defined
constant quality factor, just like the non-embedded SPIHT algorithm. In order
to reduce complexity, bit plane coding is avoided and each coefficient is
visited only once. Entropy coding is also avoided.
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For each coefficient, the goal is to encode the sign and the bits below the
most significant non-zero bit. To this end, the number of bits required for each
coefficient must be known in advance. Basically, at a subband level, for each
coefficient ci, j in that subband, the PROGRESS algorithm identifies the number
of bits needed to encode the highest coefficient in a SPIHT-like subset D(ci, j)
(let us call this value r), and then it encodes each coefficient contained in O(ci, j)
with that number of bits. In order that the decoder can reconstruct the original
coefficients, r is also encoded. In the next subband level, PROGRESS repeats
the same operation for each D(dm,n)∀dm,n ∈ O(ci, j). This algorithm is repeated
through the successive subband levels, from the LLN subband down to the first
subband level. However, when the number of bits needed to encode a subset is
found to be zero, a group of insignificant coefficients has been identified, and
then this subset is no longer partitioned and encoded.

In order to improve coding efficiency, each r for a given subset is not
encoded as a single value, but rather as the difference between that value in
this subset and in its parent subset (i.e., the direct subset from which a subset
stems). Since this difference is always positive (or zero), and its probability
distribution is higher as it approaches zero, unary coding1 is employed. Some
other implementation details and the complete encoding algorithm are given in
[43].

Experimental results show that PROGRESS is up to two times faster in
coding and four times faster in decoding than the binary version of SPIHT (i.e.,
SPIHT without entropy coding). However, its coding efficiency is relatively
poor, being slightly worse than binary SPIHT. The low coding performance is
not only due to its lack of entropy coding, but also because it always employs
the number of bits required by the highest coefficient in a subset. This problem
especially affects highly detailed images. These images are more likely to have
high descendant coefficients, which could cause their parents to use more bits
than actually needed.

1.1.3 Image coding standard: JPEG 2000

1.1.3.0.1 Embedded Block Coding with Optimized Truncation (EBCOT)

The EBCOT [28] encoder is certainly the most important block-based wavelet
encoder reported in the literature. This encoder is a refined version of the
Layered Zero Coding (LZC) technique proposed by Taubman and Zakhor in
[44]. The importance of EBCOT lies in the fact that it was selected to be
included as the coding subsystem of the JPEG 2000 standard [45]. EBCOT

1In unary coding, a number n is represented with n ones followed by a zero.
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achieves most requirements of JPEG 2000, such as a rich embedded bit-stream
with advanced scalability, random access, robustness, etc., by means of
block-based coding for the reasons given above. Furthermore, the decrease in
coding efficiency caused by the lack of inter-band redundancy removal is
compensated by the use of more contexts in the arithmetic encoder, a
finer-granularity coding algorithm (with three passes per bit plane instead of
two), and a Post-Compression Rate Distortion (PCRD) optimization algorithm
based on the Lagrange multiplier method.

Due to the importance of EBCOT in the JPEG 2000 standard, we will
describe it in some detail. For a more complete and general description, there
are many other references such as [46, 47, 48] or even the standard document
[45]. Note that the EBCOT algorithm originally published by Taubman in [28]
was slightly changed for the JPEG 2000 standard in order to reduce
complexity and other issues. We will focus on this adapted version.

After applying the DWT to the image, the EBCOT algorithm encodes the
wavelet coefficients in fixed-size code blocks. In this first step, called tier 1
coding, each code block is completely and independently encoded, getting in
this manner an independent bit-stream for each code block. Then, in the
second step, tier 2 coding, fragments of bit-stream of each codeblock are
selected to achieve the desired target bit rate (rate control) in an optimal way
(i.e., minimizing distortion), and it is arranged in such a way so that the
selected scalability is accomplished.

Prior to EBCOT, a uniform scalar quantization with deadzone is applied to
the wavelet coefficients. All the code blocks in the same subband are
quantized with the same step-size so that blocking artifacts are avoided.
Therefore, in general, this quantization has little rate control meaning, which
is performed later in tier 2 coding. Rather, it is used to balance the importance
of the coefficient values (recall that the DWT employed in JPEG 2000 avoids
dynamic range expansion but is not energy preserving), and in a practical way,
to convert the floating point coefficients resulting from most wavelet
transforms into integer data. Another way to select the quantizer step size is
depending on the perceptual importance of each subband to improve visual
quality based on the human visual system [49, 50, 51].

Regarding the code block size, the total number of coefficients in a block
should not exceed 4096, and both width and height must be an integer power
of two. Thereby, the typical code block size is 64x64, although other smaller
sizes can be used (e.g., for memory saving or complexity issues). Of course,
once a block size is determined, smaller code blocks can appear on the subband
boundary or in subbands smaller than a regular block.



1.1. Image coding 19

Block coding: tier 1 coding. Once the wavelet subbands are divided into
blocks, an independent bit-stream is generated from each code block in the
tier 1 coding stage. Each bit-stream is created with a special adaptive binary
arithmetic encoder with several contexts called MQ-coder [52]. The MQ-coder
is a reduced-complexity version of the usual arithmetic encoder [12], limited
to coding binary symbols. The JPEG 2000 standard document [45] gives a
detailed flowchart description of this encoder.

In this stage, each code block is encoded bit plane by bit plane, starting
from the most significant non-zero bit plane. For each bit plane, several passes
are given in order to identify the coefficients which become significant in this
bit plane, and to encode the significant bits of those coefficients found
significant in previous bit planes. This working philosophy is shared by many
other well known encoders like EZW and SPIHT. However, unlike these
encoders, three passes (instead of two) are given for each bit plane2. In the
first pass, called significance propagation pass, the significance of the
coefficients that were insignificant in previous bit planes but are likely to
become significant in this bit plane are encoded. Then, in the second pass,
called magnitude refinement pass, a refinement bit is encoded for each
coefficient found significant in a previous bit plane. Finally, the significance of
the rest of coefficients (i.e., those that were insignificant and are likely to
remain insignificant in this bit plane) are encoded in the third pass, called
clean-up pass.

In tier 2 coding, the bit-stream resulting from several contiguous full
passes are selected from each code block to build the final bit-stream.
Therefore, the bit-stream generated from each pass is the lowest granularity
for the final bit-stream formation. In each code block, the point in which its
bit-stream is truncated to contribute to the final bit-stream for a given bit rate
is called the optimal truncation point. Figure 1.8 illustrates the encoding
process and gives an example of truncation points.

The order of the passes has been decided according to their contribution
to rate/distortion improvements, so that a pass that is more likely to introduce
more reduction of distortion with a lower rate increase is encoded in first place.
Of course, after encoding the three passes, the same reduction of distortion and
the same bit rate is reached independently of the order of the passes. However,
the proposed order yields more benefits if the truncation point is not at the end
of a bit-plane coding (i.e., it is not between a clean-up pass and a significance
propagation pass), but in the middle of it.

If we compare this algorithm with EZW or SPIHT in broad terms, we see

2The original EBCOT algorithm [28] had four passes instead of three.
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block 1 block 3 block 2 block 4 block 5 

magnitude refinement pass 

significance propagation pass 
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bit-plane 1 
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bit-plane 2 
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bit-stream for a 

desired target bit rate 

Figure 1.8: Example of block coding in JPEG 2000. In tier 1 coding, each
code block is completely encoded bit plane by bit plane, with three passes per
bit plane (namely signification propagation, magnitude refinement and clean-
up passes). Only part of each code block is included in the final bit-stream. In
this figure, the truncation point for each code block is pointed out with a dotted
line. These truncation points are computed with an optimization algorithm in
tier 2 coding, in order to match the desired bit rate with the lowest distortion

that the main difference (apart from the lack of trees) is that the pass employed
to identify new significant coefficients (called dominant pass in EZW and
sorting pass in SPIHT) has been split into two passes in order to have more
passes from which to choose a truncation point.

For implementation convenience, the order in which coefficients are
scanned in a codeblock is in stripes formed by columns of four coefficients, as
shown in Figure 1.9(a).

Let us see more details of each coding pass. In the significance
propagation pass, a coefficient is said to be likely to become significant if, at
the beginning of that pass, it has at least one significant neighbor. Certainly,
this condition does not guarantee that it will become significant in this bit
plane, and therefore its significance still has to be encoded. In order to
improve coding efficiency, nine contexts are used according to the significance
of its eight immediate neighbors (see Figure 1.9(b)). The exact context
assignment, mapping from the 28 − 1 possible contexts to nine contexts, can
be found in [28]. In addition, when a coefficient eventually becomes
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Figure 1.9: (a) Scan order within an 8x8 code block in JPEG 2000, and (b)
context employed for a coefficient, formed by its eight neighbor coefficients
(two horizontal, two vertical, and four diagonal)

significant, its sign is also arithmetically encoded with five different contexts.

In the case of the magnitude refinement pass, a refinement bit is
arithmetically encoded with two contexts if it has just become significant in
the previous bit plane (i.e., it is the first bit encoded for this coefficient). For
the rest of bits, they are considered to have even distribution and thereby
another single context is used without dependence of the neighboring values.

The clean-up pass is implemented in a similar manner to the signification
propagation pass, with the same nine contexts employed to encode the
significance of a single coefficient. However, the clean-up pass includes a
novel run mode, which serves to reduce complexity, rather than improve
coding efficiency. Observe that most coefficients are insignificant in this pass,
and therefore the same binary symbol is encoded many times. We can reduce
complexity if we take advantage of this fact and reduce the number of encoded
symbols. To this end, when four coefficients forming a column have
insignificant neighbors, a run mode is entered. In this mode, we do not encode
single coefficients but a binary symbol that specifies if any of the four
coefficients in a column is significant. This binary symbol is encoded with a
single context.

Note that, for the most significant non-zero bit plane (i.e., the first bit
plane that is encoded), neither a significance propagation pass nor a magnitude
refinement pass is performed, because there is no previous significant
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Figure 1.10: Example of convex hull formed by distortion-rate pairs from block
1 of Figure 1.8. In a convex hull, the slopes must be strictly decreasing. Four
rate-distortion pairs are not on the convex hull, and therefore they are not el-
igible for the set of possible truncation points. A line with a slope of 1 ÷ λ
determines the optimal truncation point for a given value of λ

coefficient (see example in Figure 1.8). Finally, it is also worth mentioning
that, from the above description, we can deduce that the MQ-coder must be
able to support (at least) eighteen contexts.

Bit-stream organization: tier 2 coding. In tier 2 coding, the bit-streams
generated from each code block are multiplexed using a specific file format to
accomplish the desired scalability. Rate control tasks are also performed in this
second stage.

In order to determine the optimal truncation point in each code block for a
desired bit rate, EBCOT proposes a post-compression rate distortion (PCRD)
optimization algorithm, which is basically a variation of the Lagrange
multiplier method [41]. This algorithm computes a convex hull (where slopes
must be strictly decreasing) for each code block from a set of distortion-rate
pairs (see Figure 1.10 for an example of a convex hull). Each pair defines the
contribution of a coding pass to reduce image distortion (e.g., measured as
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Mean Squared Error (MSE) reduction) and the cost of that pass (e.g., the
number of bytes required to encode that pass). For an optimal bit-stream
formation, the rate-distortion pairs in the interior of the convex hull cannot be
selected as truncation points.

Given the set of convex hulls for each code block, an optimal bit-stream can
be achieved as follows. Consider a factor λ that defines a straight line with 1÷λ
slope. The optimal truncation point for each convex hull is given by the point
to which that line is ”tangent-like”3. In other words, it is the point at which the
rate/distortion slope changes from being greater than 1 ÷ λ to less than it (see
example in Figure 1.10). In this way, we can compute an optimal bit-stream by
calculating a truncation point for each code block with a given λ. However, no
rate control is performed. In order to achieve a target bit rate, the value of λ
is iteratively changed and the optimal set of truncation points are recomputed
with each value of λ. From all the sets of truncation points iteratively computed
that do not exceed the desired bit rate, the one that yields the highest distortion
reduction is selected. In other words, we select the largest bit-stream that does
not exceed the target bit rate.

Quality (SNR) scalability can be achieved if this rate control algorithm is
executed several times, once for each partial target bit rate (R1, R2,. . . , Rn).
Therefore, the selected coding passes that optimally lead to a bit rate R1 are
said to form the quality layer 1; then, the added coding passes that lead to a bit
rate R2 form the quality layer 2, and so on. In this way, EBCOT produces an
embedded bit-stream, but with a coarser granularity than the one of EZW and
SPIHT. On the other hand, for resolution scalability, we just have to arrange the
selected code blocks depending on the subband level, from the LLN to the first-
level wavelet subbands. A wide variety of types of scalability is accomplished
by combining various quality layers and the suitable code block arrangement
in the final bit-stream.

Performance and complexity analysis. Although EBCOT only exploits
intra-block redundancy, it generally performs as well as SPIHT, or even better
than it, in terms of coding efficiency, mainly due to (1) the use of more contexts,
(2) the introduction of a third pass to encode the most important information
in first place, and (3) the PCRD optimization algorithm. In addition, if we
consider artificial images or highly detailed natural images, EBCOT clearly
outperforms SPIHT, because in this type of image, SPIHT can establish fewer

3Formally speaking, the given convex hulls are not curves and then we cannot consider a line
tangent to it. Here, we actually mean a line that touches a convex hull and does not intersect it.
Note that in the case of a curve, there is only a line tangent to each point, whereas in our convex
hulls, there are many ”tangent-like” lines for each possible truncation point.
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coefficient trees, and also due to the use of more contexts in EBCOT, enabling
a better and more precise adaptation of its probability model.

Let us perform a complexity analysis of EBCOT. Recall that the main
complexity problem in SPIHT is introduced by bit-plane coding. Nonetheless,
although both EBCOT and SPIHT use bit-plane coding, EBCOT avoids the
locality problems that increase the cache miss rate by encoding an image block-
by-block. Moreover, the set of code block bit-streams is more likely to fit into
the cache, and therefore further post-processing does not cause so many cache
misses. In spite of this, the EBCOT algorithm can be considered more complex
than SPIHT (except for very large images in cache-based systems). There are
several reasons for this. First, bit plane coding is still present, and for each
bit plane, it must be performed for all the coefficients in a block. Compare
it with EZW and SPIHT, where the coefficients in a tree are neither encoded
nor scanned. Second, the significance analysis is more complex in EBCOT,
since more contexts are used. Third, in a regular implementation of EBCOT,
each coefficient is fully encoded, bit plane by bit plane, despite the fact that
some bit planes will not be included in the final bit-stream due to rate control
restrictions although some advanced implementations of JPEG 2000 perform a
conservative heuristic for incrementally estimating the number of coding passes
that will be included in the final bit-stream, and determine those bit planes
that do not need to be computed. Finally, the PCRD optimization algorithm is
performed and it is an iterative process.
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1.2 Video coding

Television won’t last. It’s a flash in the pan.
(Mary Somerville, radio presenter, in 1948)

1.2.1 Fundamentals

Compression is an almost mandatory step in storage and transmission of
video, since, as simple computation can show, one hour of color video at
International Radio Consultative Committee - Comité Consultatif
International des Radiocommunications (CCIR) 601 resolution (576x704
pixels per frame) requires about 110 Giga Byte (GB) for storing or 240 Mega
bits per second (Mbps) for real time transmission.

Transform
Spatial Quantization
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Motion

Transform
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SpatialCompensation
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Figure 1.11: General Scheme of a Hybrid Video Encoder

On the other hand, video is a highly redundant signal, as it is made up of
still images (called frames) which are usually very similar to one another, and
moreover are composed by homogeneous regions. The similarity among
different frames is also known as temporal redundancy, while the homogeneity
of single frames is called spatial redundancy. Most video encoders perform
their job by exploiting both kinds of redundancy and thus using a spatial
analysis (or spatial compression) stage and a temporal analysis (or temporal
compression) stage.
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1.2.1.1 Hybrid video coding

The most successful video compression schemes to date are those based on
Hybrid video coding. This definition refers to two different techniques used in
order to exploit spatial redundancy and temporal redundancy. Spatial
compression is indeed obtained by means of a transform based approach,
which makes use of the DCT, or its variations. Temporal compression is
achieved by computing a Motion-Compensated (MC-ed) prediction of the
current frame and then encoding the corresponding prediction error. Of
course, such an encoding scheme needs a Motion Estimation (ME) stage in
order to find Motion information necessary for prediction.

A general scheme of a hybrid encoder is given in Figure 1.11. Its main
characteristics are briefly recalled here.

The hybrid encoder works in two possible modes: Intraframe and
Interframe. In the intraframe mode, the current frame is encoded without any
reference to other frames, so it can be decoded independently from the others.
Intra-coded frames (also called anchor frames) have worse compression
performances than inter-coded frames, as the latter benefits from
Motion-compensated prediction. Nevertheless they are very important as they
assure random access, error propagation control and fast-forward decoding
capabilities. The intra frames are usually encoded with a JPEG-like algorithm,
as they undergo DCT, Quantization and Variable Length Coding (VLC). The
spatial transform stage concentrates signal energy in a few significative
coefficients, which can be quantized differently according to their visual
importance. The quantization step here is usually tuned in order to match the
output bit rate to the channel characteristics.

In the interframe mode, the current frame is predicted by Motion
compensation from previously encoded frames. Usually,
Motion-Compensated prediction of the current frame is generated by
composing blocks taken at displaced positions in the reference frame(s). The
position at which blocks should be considered is obtained by adding to the
current position a displacement vector, also known as Motion Vector (MV).
Once current frame prediction is obtained, the prediction error is computed,
and it is encoded with the same scheme as intra frames, that is, it undergoes a
spatial transform, quantization and entropy coding.

In order to obtain Motion vectors, a ME stage is needed. This stage has to
find which vector better describe current block motion with respect to one (or
several) reference frame. Motion Vectors have to be encoded and transmitted
as well. A VLC stage is used at this end.
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All existing video coding standards share this basic structure, except for
some MPEG-4 features. The simple scheme described so far does not integrate
any scalability support. A scalable compressed bit-stream can be defined as one
made up of multiple embedded subsets, each of them representing the original
video sequence at a particular resolution, frame rate or quality. Moreover, each
subset should be an efficient compression of the data it represents. Scalability
is a very important feature in network delivery of multimedia (and of video in
particular), as it allows encoding the video just once, while it can be decoded at
different rates and quality parameters, according to the requirements of different
users.

The importance of scalability was gradually recognized in video coding
standards. The earliest algorithms (as ITU H.261 norm [53, 54]) did not
provide scalability features, but as soon as MPEG-1 was released [55], the
standardization boards had already begun to address this issue. In fact,
MPEG-1 scalability is very limited (it allows a sort of temporal scalability
thanks to the subdivision in Group of Pictures (GOP). The following
International Organization for Standardization (ISO) standards, MPEG-2 and
MPEG-4 [56, 57, 58] increasingly recognized scalability importance, allowing
more sophisticated features. MPEG-2 compressed bit-stream can be separated
in subsets corresponding to multiple spatial resolutions and quantization
precisions. This is achieved by introducing multiple motion compensation
loops, which, on the other hand, involves a remarkable reduction in
compression efficiency. For this reason, it is not convenient to use more than
two or three scales.

Scalability issues were even more deeply addressed in MPEG-4, whose
Fine Grain Scalability (FGS) allows a large number of scales. It is possible to
avoid further Motion Compensation (MC) loops, but this comes at the cost of
a drift phenomenon in motion compensation at different scales. In any case,
introducing scalability affects significantly performances. The fundamental
reason is the predictive MC loop, which is based on the assumption that at any
moment the decoder is completely aware of all information already encoded.
This means that for each embedded subset to be consistently decodable,
multiple motion compensation loops must be employed, and they inherently
degrade performances. An alternative approach (always within a hybrid
scheme) could provide the possibility, for the local decoding loop at the
encoder side, to lose synchronization with the decoder at certain scales;
otherwise, the enhancement information at certain scales should ignore motion
redundancy. However, both solutions degrade performances at those scales.

The conclusion is that hybrid schemes, characterized with a feedback loop
at the encoder, are inherently limited in scalability.
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1.2.2 Video coding standard: H.264

The encoder (shown in Figure 1.12) has two paths known as the forward path
(left to right) and the reconstruction path (right to left). In the forward path an
input frame or field Fn is processed in MBs (16x16 pixels), and can be coded
in Intra or in Inter mode. The encoder creates a reconstructed frame (P),
based on reconstructed pictures samples. In Intra mode, P is formed from
samples in the current slice that have been previously encoded, decoded and
reconstructed (uFn in the Figure 1.12). In the Inter mode, P is created by
Motion Compensation (MC) prediction from the reference pictures. These
reference pictures may be chosen from a selection of past or future pictures
that have already been encoded, reconstructed and filtered. This prediction
image (P) is subtracted from the current image to produce a residual image,
which will be transformed and quantized to obtain X, a set of quantized
transform coefficients which are reordered and entropy encoded. The encoder
also decodes the frame to provide a reference for future predictions. The X
image is scaled (Q−1) and inverse transformed (T−1) to produce Dn. The P
image is added to Dn to create the reconstructed image uFn. However, this
image is unfiltered. In the last step, a filter is used to reduce the effects of
blocking distortion.

Figure 1.12: Block Diagram for an H.264 encoder

A Deblocking Filter is used to reduce blocking distortion and is applied to
each decoded macroblock. This module may improve the compression
performance, because the filtered image is often a more reliable reproduction
of the original frame than a block and unfiltered image. In the encoder (see
Figure 1.12) this filter processes the macroblock after the inverse transform
T−1, prior to the stage of reconstruction and storing for future predictions. In
the decoder (Figure 1.13), it is the last operation of the process. The function
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of this module is to smooth block edges, improving the appearance of the
decoded frames. The filtered image is used for motion compensation in future
frames. The filter is applied to vertical and horizontal edges of 4x4 blocks in a
macroblock but the edges on slices boundaries.

Figure 1.13: Block Diagram for an H.264 decoder

The Transform, used in the H.264 standard, T and T−1, depends on the
type of residual data to be coded. There are three kinds of transforms
available: a Hadamard Transform (HT) for the 4x4 array of luminance
Dominant Component (DC) coefficients in Intra MBs predicted in 16x16
mode, a HT for the 2x2 array of chrominance DC coefficients in any
macroblock and a DCT-based transform for all other 4x4 blocks in the residual
data. The H.264 transform [59] is based on the DCT but with some
fundamental differences:

• It is an integer transform, which implies no floating point operations are
needed. The mismatch between the encoder and the decoder is zero without
loss of accuracy.

• It can be implemented using only additions and shifts.

• The number of operations can be reduced by integrating part of the
operations involved in the transform into the quantizer.

As depicted in the H.264 reference standard [60] the two dimensional DCT
transform is implemented applying a one-dimensional DCT transform twice,
one to the horizontal dimension and another to the vertical one [61]. In the first
step, the horizontal correlation within the nxn samples block is exploited and
in the second step the one-dimensional DCT transform is applied to exploit the
vertical correlation.

The transformation matrix H is a 4x4 matrix defined as [60] in 1.1:
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H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (1.1)

The inverse transformation matrix Hinv is a 4x4 matrix defined as [60] in
1.2:

Hinv =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 1 1 1

2
2 1

2 −1 −1
1 −1

2 −1 1
1 −1 1 − 1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (1.2)

The relationship between the matrices Hinv and H is given by equation 1.3),
where I is the Identity matrix:

Hinv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
4 0 0 0
0 1

5 0 0
0 0 1

4 0
0 0 0 1

5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠H = I (1.3)

The Quantizer, Q and Q−1 (Figure 1.12 and Figure 1.13), adopted by the
H.264 standard, is a scalar quantizer. A total of 52 values for the
Quantification Parameter (QP) are supported by the standard. The
quantification step is doubled in size for every increment of 6 in QP. The wide
range of quantizer step sizes makes it possible for an encoder to control the
trade-off accurately and flexibly between bit rate and quality. Besides, the
H.264 standard allows different values for the QP for luminance and
chrominance. The quantization step-sizes are not linearly related to the
quantization parameter (as in all prior standards). A default relationship is
specified between the quantization step sizes used for luminance and
chrominance, and the encoder can adjust this relationship at the slice level to
balance the desired fidelity of the color components.

The Entropy encoding (Figure 1.12) or the Entropy decoding (Figure 1.13)
are the modules where the elements of the sequence are encoded/decoded,
using fixed or variable length binary codes. As shown later, this operation
depends of the profile being used to encode/decode the video sequence.

The entropy-encoded coefficients, together with side information required
to decode each macroblock from the compressed bit-stream pass to the
Network Abstraction Layer (NAL) where the picture will be prepared for



1.2. Video coding 31

transmission or storage. The H.264 standard does not specify the mechanism
of transmitting NAL units, but a distinction is made between transmission over
packet-based transport mechanisms (packet networks) and transmission in a
continuous data stream (circuit-switched channels). Each NAL unit contains a
Raw Byte Sequence Payload (Raw Byte Sequence Payload (RBSP)), a set of
data corresponding to coded video data or header information. The reason to
use variable code lengths and NAL is to discriminate between coding and
transport features.

On the other hand, the decoder (Figure 1.13) only has the forward path
(left to right). The data flow path in the decoder shows the similarities between
encoder and decoder.

The input for the decoder is a compressed bit-stream from the NAL, and
the entropy module decodes the data to generate a set of quantized coefficients,
denoted by X in Figure 1.13. These are scaled and inverse transformed to give
D′n, exactly the same D′n created in the encoder (Figure 1.12), in case that
there were no errors during the process. Using the information stored in the
video sequence, the decoder generates the P image. The decoder adds these
two images to produce uF′n, which will be filtered to obtain F′n.

In the decoder (Figure 1.13), each block coming from the quantizer is
mapped into a sixteen element array in a zig-zag order. This is the function
made by the reorder. This module has the function to prepare the data
(reordering the coefficients for optimization) for the next module, where the
entropy coding is performed. The inverse process is made by the decoder
(Figure 1.13). The MB coefficients are reordered before the inverse
quantification.

1.2.2.1 H.264 Inter prediction

There are some concepts redefined in the H.264 standard which will be used in
the next sections. They are summarized in the following paragraphs:

The fields and the frames are used in a different way. Both can be encoded
to produce a coded picture of interlaced video, however only a frame can be
coded using progressive video. The decoding order is not necessarily related
to the number of frames of each encoded frame. Each coded field or frame has
an associated picture order count, which defines the decoding order. Previously
coded pictures, reference pictures, may be used for Inter prediction of further
coded pictures.

A coded picture consists of a number of MBs, each containing 16x16
luminance samples and associated 8x8 chrominance samples (Chrominance
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blue (Cb) and Chrominance red (Cr) in the H.264 standard) if any, depending
on the sampling format. Within each picture, MBs are ordered in slices, where
a slice is a set of MBs in raster scan order, but not necessarily contiguous. An
I slice may contain only I MBs types, a P slice may contain P and I MB types
and a B slice may contain B and I MB types.

The MB prediction (Intra or Inter) is performed in the H.264 standard
using previously encoded data. In the case of the Intra prediction, an Intra MB
is predicted from the current slice after having been encoded, decoded and
reconstructed. For the Inter prediction, the MB is predicted using samples
previously encoded. The MB prediction and the current MB are subtracted,
and the result is compressed and transmitted to the decoder, together with the
information required for the decoder to repeat the prediction process (motion
vectors, prediction mode, etc.). The decoder needs this information to create
the prediction and adds the residual to it. The encoder must encode and
decode the sequence to make sure that the decoder will have the same
reconstructed information.

H.264 allows 4:2:0 progressive or interlaced video. In the default sampling
format (4:2:0), chrominance samples (Cb and Cr) are aligned horizontally with
every 2nd luminance sample and are located vertically between two luminance
samples. Chrominance components have half the horizontal and vertical reso-
lution of the luminance component.

The basic mechanism used to encode the residual is the Context Based
Adaptive Variable Length Coding (Context Based Adaptive Variable Length
Coding (CAVLC)) [62]. CAVLC uses run-level coding to represent strings of
zeros compactly. The number of coefficients is encoded using a look-up table,
and the choice depends on the number of nonzero coefficients in neighboring
blocks. This mechanism can take advantage, just in case the magnitude of
nonzero coefficients tends to be larger at the start of the reordered array, and
smaller towards the higher frequencies. CAVLC chooses the entry of Variable
Length Code (VLC) look-up table for the level parameter, depending on
recently coded level magnitudes.

In the H.264 standard, the MB mode decision in Inter frames (those where
the motion estimation is carried out) is the most computationally expensive
process due to the use of the variable block-size, motion estimation, quarter-
pixel motion compensation, etc. Inter prediction creates a prediction model
from one or more previously encoded video frames or fields using block based
motion compensation as depicted in Figure 1.14.

H.264 uses block-based motion compensation, the same principle adopted
by every major coding standard since H.261. Important differences from
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Figure 1.14: MB partitions: 16x16, 16x8, 8x16 and 8x8

earlier standards include the support for a range of block sizes (down to 4x4)
and fine sub-pixel motion vectors (1/4 pixel in the luminance component).
H.264 supports motion compensation block sizes ranging from 16x16 to 4x4
luminance samples with many options between the two.

The luminance component of each MB (16x16 samples) may be divided
into four different ways (Figure 1.14): one 16x16 MB partition, two 16x8
partitions, two 8x16 partitions or four 8x8 partitions. Each of the sub-divided
regions is a MB partition. If the 8x8 mode is chosen, each of the four 8x8 MB
partitions within the MB may be further separated into four different ways
(Figure 1.15): one 8x8 partition, two 8x4 partitions, two 4x8 partitions or four
4x4 partitions (known as sub-macroblock partitions). These partitions and
sub-partitions give rise to a large number of possible combinations within each
macroblock. This method of partitioning MBs into motion compensated
sub-blocks of varying size is known as tree structured motion compensation.

Figure 1.15: Sub-macroblock partitions: 8x8, 8x4, 4x8 and 4x4

The resolution of each chrominance component in a macroblock (Cr and
Cb) is half that of the luminance component. Each chrominance block is
partitioned in the same way as the luminance component, except that the
partition sizes have exactly half the horizontal and vertical resolution (an 8x16
partition in luminance corresponds to a 4x8 partition in chrominance; an 8x4
partition in luminance corresponds to 4x2 in chrominance and so on). The
horizontal and vertical components of each motion vector (one per partition)
are halved when applied to the chrominance blocks.

Figure 1.16 shows the second frame of sequences Foreman, Flower and
Garden and Paris, and their mode decisions made by the Inter prediction, in
the Baseline Profile with all parameters as default. In the example, the best
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(a) Foreman second frame (b) Foreman second frame mode deci-
sion

(c) Flower second frame (d) Flower second frame mode decision

(e) Paris second frame (f) Paris second frame mode decision

Figure 1.16: Inter prediction in H.264

match for the present current block is given for the mode that has the smallest
Sum Absolute Differences (SAE). See 1.17 for legend.

In order to evaluate the motion vectors, each partition in an inter-coded
MB is predicted from an area of the same size in a reference picture. The
offset between the two areas (the motion vector) has 1/4-pixel resolution (for
the luminance component). If the video source sampling is 4:2:0, 1/8 pixel
samples are required in the chrominance components (corresponding to
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Figure 1.17: Different kinds of Inter MBs in Figure 1.16

1/4-pixel samples in the luminance). The luminance and chrominance samples
at sub-pixel positions do not exist in the reference picture and so it is
necessary to create them using interpolation from nearby image samples. For
example, in Figure 1.18, a 4x4 block in a frame is predicted from a region of
the reference picture in the neighborhood of the current position. If the
horizontal and vertical components of the motion vectors are integers, the
relevant samples in the reference block actually exist. If one or both vectors
components are fractional values, the prediction samples are generated by
interpolation between adjacent samples in the reference frame. Sub-pixel
motion compensation can provide significantly better compression
performance than integer-pixel compensation, at the expense of increased
complexity. Quarter-pixel accuracy outperforms half-pixel accuracy.

Encoding a motion vector for each partition can take a significant number
of bits, especially if small partition sizes are chosen. Motion vectors for
neighboring partitions are often highly correlated and therefore each motion
vector is predicted from vectors of nearby, previously coded partitions. The
method of forming a predicted motion vector depends on the motion
compensation partition size and on the availability of nearby vectors.

1.2.2.2 H.264 Intra prediction

H.264 incorporates an Intra picture prediction into its coding process (defined
within the pixel domain) whose main aim is to improve the compression
efficiency of the Intra coded pictures and Intra MBs. Intra prediction can result
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(a) 4x4 block current frame (b) Reference vector (1,-1) (c) Reference vector
(0.75,-0.5)

Figure 1.18: 4x4 example of integer and sub-sample prediction

in significant savings when the motion present in the video sequence is
minimal and the spatial correlations are significant. Throughout this section,
the principle of operation of the Intra frame prediction modes as applied to the
luminance and chrominance blocks will be illustrated.

While macro blocks of 16x16 pixels are still used, predicting an MB from
the previously encoded MBs in the same picture is new in H.264. For
luminance component, an MB may make use of 4x4 and 16x16 block
prediction modes, referred to as Intra 4x4 and Intra 16x16, respectively.
Recently, the Intra 8x8 block prediction mode has been added as part of the
Fidelity Range Extension (Fidelity Range Extension (FRExt)) of the standard.
There are nine 4x4 and 8x8 possible block prediction directions and four
16x16 block prediction directions. For the chrominance component, an MB
makes use of 8x8 block prediction mode only. There are four 8x8 possible
block prediction directions. The prediction directions for the 8x8 prediction
mode are similar to the ones used for the 16x16 prediction mode in the
luminance component.

These intra prediction modes include a directional prediction, thus greatly
improving the prediction in the presence of directional structures. With the
Intra frame prediction, the I pictures can be more efficiently encoded than in
other standards which do not use Intra frame prediction.

For each MB, and for each color component (Y,U,V), one prediction mode
and one set of prediction directions is maintained. The H.264 encoder selects
the best combination mode/direction by using the Sum of Absolute Errors
(SAE). This implies that for each existing direction of each mode, the
predictor within the pixel domain is created from the boundary pixels of the
current partition and the SAE costs are evaluated. The best combination of
mode/direction is determined corresponding to the one presenting the
minimum SAE cost. The residual is encoded using a 4x4 integer based
transform.
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Coding functions Baseline Profile Main Profile Extended Profile

I slices X X X
P slices X X X
B slices X X

SP and SI slices X
CAVLC X X X
CABAC X

Slice Groups and ASO X X
Redundant Slices X X

Weighted Prediction X X
Data Partitioning X

Interface X

Table 1.1: H.264 Baseline, Main and Extended Profiles

1.2.2.3 H.264 Profiles

H.264 defines a set of Profiles, each supporting a set of coding functions and
each specifying the requirements of a decoder that satisfies the Profile. Table
1.1 summarizes the different options available in the three profiles defined in
the H.264 standard.

In general, the Baseline Profile is designed for video telephony, video
conferencing and wireless communications. The Main Profile may be useful
for broadcasting media applications, such as digital television and video
storage, while one potential application for the Extended Profile is multimedia
streaming.

A video picture can be coded as such, if it has all the macroblocks of the
video picture or more slices otherwise. The number of macroblocks per slice
does not need to be constant within a picture. There is a minimum inter
dependency between coded slices which can help to limit the propagation of
errors. There are five types of coded slices shown in Table 1.2. A coded
picture may be formed by different types of slices. The types of slices
available depend on the profile selected.

In the following sub-sections the different profiles available in the H.264,
the coding functions and the slice types are briefly described. Nevertheless, the
interested reader can find more information related on this topic in [61].
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Slice Type Description Profiles

Intra (I)(Intra) Contains only I MBs All
Predicted (P) (Predicted) Contains P and/or I MBs All
B! (B!) (Bi predictive) Contains B and/or I MBs Extended and Main

Switching P (SP) (Switching P) Facilitates switching between coded
streams: contains P and/or I MBs

Extended

Switching I (SI) (Switching I) Facilitates switching between coded
streams: contains SI, a kind of I MBs

Extended

Table 1.2: H.264 slice mode

1.2.2.3.1 The Baseline Profile

The Baseline Profile supports coded bit-streams containing I and P slices. P
slices can contain Intra, Inter or skipped macroblocks. If one macroblock is
encoded as skipped, no more data are sent to that macroblock. Inter MBs are
predicted using previously coded pictures, using motion compensation with
quarter sample motion vector accuracy (in the luminance component). The use
of an H.264 encoder capable of inserting a picture delimiter RBSP unit at the
boundary between coded pictures is recommended. This shows the start of a
new coded picture indicating which slice types are allowed in the following
coded picture. If this mechanism is not used, the decoder will expect to detect
the occurrence of a new picture based on the header of the first slice in the new
picture.

Other options available in the Baseline Profile are resumed in the following
lines:

• Redundant slices. The encoder can encode redundant pictures, within the
full or with part of the coded picture. These pictures will be used in case the
primary coded picture is damaged during transmission or storage.

• Arbitrary Slice Order (ASO). The slices in a coded frame may follow any
decoding order.

• Slice groups. A slice group is a subset of the macroblocks in a coded picture
and may contain one or more slices. Within each slice in a slice group, MBs
are coded in raster order. If only one slice group is used per picture, then all
the MBs in the picture are coded in raster order. In this case, ASO can not
be used.
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1.2.2.3.2 The Main Profile

In general, the Main Profile is a superset of the Baseline Profile where B slices
(bi-predicted), weighted prediction for creating a motion-compensated
prediction block, interlaced video (frames or fields) and Context-base
Adaptive Binary Arithmetic Coding (CABAC) as entropy coding method, are
mechanisms enhancing the Baseline Profile. These mechanisms are optional;
they can be enabled or disabled in the H.264 standard. However, in this profile
the redundant slices, ASO and multiple slice groups are not supported.

A B slice may be predicted from one or two reference pictures, before or
after the current picture in temporal order. It depends on the reference pictures
available in the encoder and decoder. In this way, there are more options to
select the prediction reference for the macroblocks in a B slice. Macroblock
partitions in this kind of slice can be done in direct mode, motion-compensated
or motion-compensated bi-predictive. The different algorithms proposed in this
dissertation only run with I and P slices, reason for which no more details will
be provided on this kind of slices.

Weighted Prediction is a method of modifying the samples of
motion-compensated prediction data in a P or B slice macroblock. The
prediction samples may be scaled by a weighting factor, before obtaining the
motion compensated prediction. A large weighting factor is applied if the
reference picture is temporally close to the current picture and a smaller factor
is applied if the reference picture is temporally far away from the current
picture. This tool may be useful when the sequence has fade transitions,
where one scene fades into another.

Another functionality available in the Main Profile is the interlaced video.
The encoder can choose to encode each MB pair as two frame MBs or two
field MBs and may select the optimum coding mode for each region of the
picture. Coding a slice or macroblock pair in field mode requires modifications
to a number of encoding and decoding steps. All the coded fields are treated
as separate reference pictures for the P or B slice prediction. The prediction
of coding modes in Intra macroblocks and motion vectors in Inter macroblocks
require modification, depending on whether adjacent macroblocks are coded in
frame or field mode.

The CABAC [63, 64], achieves good compression performance by
selecting probability models for each syntax element according to the
element’s context, adapting probability estimates based on local statistics and
using arithmetic coding rather than variable length coding. The definition of
the decoding process is designed to facilitate low complexity implementations
of arithmetic encoding and decoding. Besides, CABAC provides improved
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coding efficiency compared with VLC. The arithmetic operations for
implementing the CABAC are described in the H.264 standard decoder [60].

1.2.2.3.3 The Extended Profile

The Extended Profile focuses on video streaming applications. As shown in
Table 1.1, it includes all the Baseline Profile characteristics. The new features
focus on supporting efficient streaming over packet switched networks, error
resilience and noise environments.

SP and SI slices allow efficient switching between video streams and
random access for the video decoders [65]. Over the Internet, where the data
throughput may drop suddenly, the decoder can switch automatically between
the same sequence encoded using different bit rates. This is the function of the
SP slices. They are designed to support switching between similar coded
sequences. For example, the same sequence at different bit rates. In this case,
the motion compensated prediction may be very efficient. This solution is
better than inserting I frames at switching points, improving the performance
too. Besides, SP slices allow random access features. On the other hand, SI
slices are used to pass between one sequence to a completely different
sequence, in which case it will not be useful to use motion compensated
images, because there is no relationship between them. More detailed
treatment of the process can be found in [66].

The Data Partitioned Slices is a feature designed to improve the robustness
of the transmission of an H.264 encoded sequence. The coded data of a slice
are distributed into three different partitions, each of them containing a subset
of the data. The first one has the header of the slice and the header of the
data for each macroblock. This partition is highly sensitive to transmission
errors. The second partition contains the residual data for the Intra and SI slice
macroblocks and the last one contains the coded residual data for Inter coded
macroblocks, forward and bi-directional. The data of each partition can be
placed in a separate NAL unit, i.e. they can be stored or transmitted separately.
If some data from the two last partitions are lost, the sequence may be decoded
and part of the missed information can be reconstructed.

1.2.3 Video coding standard: HEVC

Recently, the ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T
Video Coding Experts Group (VCEG) established a Joint Collaborative Team
on Video Coding (JCT-VC) to develop the High Efficiency Video
Coding (HEVC) standard. The technical content of HEVC was finalized on
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January, 2013 and the specification was formally ratified as a standard on
April 2013.

HEVC is a video compression standard, a successor to H.264/MPEG-4
Advanced Video Coding (AVC), that was jointly developed by the ISO/IEC
Moving Picture Experts Group (MPEG) and ITU-T Video Coding Experts
Group (VCEG) as ISO/IEC 23008-2 MPEG-H Part 2 and ITU-T
H.265.[1][2][3][4] MPEG and VCEG established a Joint Collaborative Team
on Video Coding (JCT-VC) to develop the HEVC standard.[1][2] The
technical content of HEVC was finalized on January 25, 2013 and the
specification was formally ratified as a standard on April 13, 2013. The second
version of the standard was completed in July 2014, and is expected to be
published in late 2014.

HEVC is a video compression standard, a successor to H.264/MPEG-4
AVC (Advanced Video Coding) with the aim to significantly improve the
compression efficiency compared with the existing H.264/AVC high profile.

In this section we will review only the most relevant differences that HEVC
includes with respect to H.264/AVC, for a detailed overview pleas refer to [67,
68].

Some of the key elements of the HEVC test model are:

• A more flexible block structure with block sizes ranging from 64x64 down
to 8x8 pixels using recursive quad-tree partitioning.

• Improved mechanisms to support parallell encoding and decoding.

• More intraprediction modes, up to 35, directional and supporting several
block sizes.

• Support for several integer transforms, that can be applied to transform
blocks ranging from 32x32 to 4x4 pixels.

• Improved motion information.

1.2.3.1 Picture partitioning

HEVC is a block-based hybrid-coding scheme. One of the major contributions
to the higher performance of HEVC is the introduction of larger block
structures with flexible subpartitioning mechanisms.

The basic block is known as Larger Coding Unit (LCU) and each picture is
partitioned in LCU upt o 64x64 pixels each one.
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LCUs can be recursively split into smaller Coding Unit (CU) which are
used as the basic unit for intra- and intercoding and can have the size of the
LCU or being recursivelly partittioned up to a size of 8x8 pixels.

Each CU can be in turn further split into Prediction Unit (PU), which form
the basis for prediction. Each CU may contain one or more PUs in a non-
recursive partitioning schema, and each PU can be as large as their root CU
or as small as 4x4 pixels in luma block size. and Tansform Unit (TU). The
CU partitioning in PUs can be symetric or asymmetric. Symetric PUs must
be square or rectangular and are used in intra- and interprediction. Asymetric
PUs are always rectangular allowing to match the boundaries of objects, and
are used only in interprediction.

Each CU can also be also split in one or more transform units (TU), which
is the baisc unit for transoform and quantization processes. The size and the
shape of the TU depend on the size of the PU. The size of square-shape TUs
can be as small as 4 x4 or as large as 32x32 and can be split in a quad-tree
segmentation structure. Non square TUs can have sizes of 32x8, 8x32, 16x4,
or 4x16 luma samples.

In H.264 the block picture partitioning schema is much more rigid than in
in HEVC, and may not be well suited for all kinds of image content. Large
blocks will generally work better for smooth regions of a picture, whereas
edges and texture regions will often benefit from smaller block sizes. As the
picture resolution of videos increases from standard definition to HD and
beyond, the picture will contain larger smooth regions. This is the reason that
HEVC supports larger encoding blocks while allowing smaller blocks to be
used for more textured regions.

1.2.3.2 Slices and tiles

HEVC introduced tiles as a means to support parallel processing, with more
flexibility than normal slices in H.264/AVC. Tiles are specified by vertical and
horizontal boundaries with intersections that partition a picture into rectangular
regions whose size could be not uniform. This offers greater flexibility and can
be useful for error resilience applications. Tiles are processed in raster order,
and in turn, inside a tile the LCUs are processed in a raster scan order too.

HEVC also supports slices, similar to slices in H.264/AVC, but without
Flexible Macroblock Ordering (FMO). Slices and tiles may be used together
within the same picture. To support parallel processing, each slice in HEVC
can be subdivided into smaller slices called entropy slices. Each entropy slice
can be independently entropy decoded without reference to other entropy slices.
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Therefore, each core of a Central Processing Unit (CPU) can handle an entropy-
decoding process in parallel.

Tiles and slices produce a performance reduction since prediction
dependencies are broken across boundaries and the statistics used in entropy
coding have to be initialized for every slice/tile.

1.2.3.3 Wavefront processing

To avoid the performance reduction include by the use of tiles and/or slices,
Wavefront Parallel Processing (WPP) is supported in HEVC. The basic concept
is to start processing (either encoding or decoding) a new row of LCUs with a
new thread as soon as two LCUs have been processed in the row above. Two
LCUs are required because intraprediction and motion vector prediction depend
upon data from both the LCU directly above the current one and the one above
the right.

1.2.3.4 Intraframe coding

HEVC follows the basic idea of H.264/AVC intraprediction but makes it far
more flexible. HEVC has 35 luma intraprediction modes compared with nine
in H.264/AVC. Furthermore, intraprediction can be done at different block
sizes, ranging from 4x4 to 64x64 (whatever size the PU has). The number of
supported prediction modes varies based on the PU size. HEVC also includes
a planar intraprediction mode, which is useful for predicting smooth picture
regions. In planar mode, the prediction is generated from the average of two
linear interpolations.

Mode dependent intrasmoothing (MDIS) is used for some intramodes to
improve the performance of intraprediction. MDIS involves applying a simple
low-pass finite impulse response filter to the samples being used for prediction.
This smoothing of the reference signal improves the prediction performance for
large PUs. in directional modes except horizontal and vertical modes.

1.2.3.5 Interprediction, variable PU size

Each PU has a set of motion parameters, which consists of a motion vector, a
reference picture index, and a reference list flag. CUs can use symmetric and
Asymmetric Motion Partitions (AMP)s. AMPs allow for asymmetrical splitting
of a CU into smaller PUs, which improves the coding efficiency since it allows
PUs to more accurately conform to the shape of objects.
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1.2.3.6 Motion parameter encoding and skip mode

Motion vectors (MV) can be predicted either spatially or temporally.
Furthermore, HEVC introduces a technique called motion merge.

For each PU, the encoder can choose between using explicit encoding of
motion parameters, or using motion merge mode, or using the improved skip
mode.

Motion merge mode involves creating a list of previously coded
neighboring PUs (called candidates) for the PU being encoded. The
candidates are either spatially or temporally close to the current PU. The
motion information of the selected candidate is used and so, only the index of
a candidate in the motion merge list is encoded.

In the new skip mode in HEVC, the encoder also encodes the index of
a motion merge candidate, and the motion parameters for the current PU are
copied from the selected candidate. This allows areas of the picture that change
very little between frames or have constant motion to be encoded using very
few bits.

1.2.3.7 Transform and quantization

HEVC applies a DCT-like integer transform on the prediction residual. HEVC
includes transforms that can be applied to blocks of sizes ranging from 4x4
to 32x32 pixels. HEVC also supports transforms on rectangular blocks. The
integer transforms used in HEVC are better approximations of the DCT than
the transforms used in H.264/AVC. The basis vectors of the HEVC transforms
have equal energy, so there is no need to compensate for the different norms, as
in H.264/AVC. HEVC also incorporates a 4 x4 discrete sine transform (DST),
which is used for blocks coded with some directional intraprediction modes.
When using intraprediction, the pixels close to the ones used for prediction
will be predicted more accurately than the pixels further away. Therefore, the
residuals will be larger for pixels away from the predicted one. DST is better at
encoding these kinds of residuals.

1.2.4 Wavelet based video encoders

The first attempts to use Subband Coding, and in particular Wavelet
Transform (WT), in video coding date back to late 80s [69]. It is quite easy to
extend the WT to three-dimensional signals: it suffices to perform a further
wavelet filtering along the time dimension. However, in this direction, the
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video signal is characterized by abrupt changes in luminance, often due to
objects and camera motion, which would prevent an efficient de-correlation,
reducing the effectiveness of subsequent encoding. In order to avoid this
problem, MC is needed. Anyway, it was soon recognized that one of the main
problems of WT video coding was how to perform MC in this framework,
without falling again into the problem of closed loop predictive schemes,
which would prevent exploiting the inherent scalability of WT.

Actually, in such schemes as [69, 70, 37] three-dimensional WT is applied
without MC: this results in unpleasant ghosting artifact when a sequence with
some motion is considered. The quality objective is just as well unsatisfactory.
The idea behind Motion Compensated WT is that the low frequency subband
should represent a coarse version of the original video sequence; motion data
should inform about object and global displacements; and higher frequency
subbands should give all the details not present in the low frequency subband
and not caught by the chosen motion model as, for example, luminance changes
in a (moving) object.

A first solution was due to Taubman and Zakhor [44], who proposed to
apply an invertible warping (or deformation) operator to each frame in order
to align objects. Then, they perform a three-dimensional WT on the warped
frames, achieving temporal filtering which is able to operate along the motion
trajectory defined by the warping operator. Unluckily, this motion model is able
to effectively catch only a very limited set of object and camera movements. It
has been also proposed to violate the invertibility in order to make it possible
to use a more complex motion model [71]. However, preventing invertibility
makes high quality reconstruction of the original sequence impossible.

A new approach was proposed by Ohm in [72, 73], and later improved by
Choi and Woods [74] and commonly used in the literature [75]. They adopt a
block-based method in order to perform temporal filtering. This method can
be considered as a generalization of the warping method, obtained by treating
each spatial block as an independent video sequence. In the regions where
motion is uniform, this approach gives the same results as the frame-warping
technique, as corresponding regions are aligned and then undergo temporal
filtering. On the contrary, if neighboring blocks have different motion vectors,
we are no longer able to correctly align pixels belonging to different frames,
since ”unconnected” and ”multiple connected” pixels will appear. These
pixels need special processing, which does not correspond anymore to the
subband temporal filtering along motion trajectories. Another limitation of
this method is that motion model is restricted to integer-valued vectors, while
it has long been recognized that sub-pixel motion vectors precision is
remarkably beneficial.
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A different approach was proposed by Secker and Taubman
[76, 77, 78, 79] and, independently by Pesquet-Popescu and Bottreau [80].
This approach is intended to resolve the problems mentioned above, by using
Motion Compensated Lifting Schemes (Motion Compensated Lifting
Schemes (MC-ed LS)). As a matter of fact, this approach proved to be
equivalent to applying the subband filters along motion trajectories
corresponding to the considered motion model, without the limiting
restrictions that characterize previous methods. The MC-ed LS approach
proved to have significatively better performances than previous WT-based
video compression methods, thus opening the doors to highly scalable and
performance-competitive WT video coding.
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2.1 Introduction

In past years, the development of novel image and video coding technologies
has spurred interest in developing digital video communications. The
definition of evaluation mechanisms to assess video quality plays a major role
in the overall design of video communication systems.

As [81] explains, the image quality measurement is very important for most
image processing applications. An image quality metric has mainly three kinds
of applications:

1. It can be used to monitor image quality like, for example, in an image and
video acquisition system that can use the quality metric to monitor and
automatically adjust the system to obtain the best quality. Or, a network
video server can also use it to examine the quality of the digital video
transmitted and control the video streaming.

2. It can be also employed to benchmark image processing systems,
algorithms, and encoder proposals.

3. And it can be embedded into an image processing system to optimize
the algorithms and the parameter settings. For instance, in a visual
communication system, a quality metric can help optimal design of the
prefiltering and bit assignment algorithms at the encoder and the
postprocessing algorithms at the decoder.

The most reliable way of assess the quality of a video or image is
subjective evaluation, because human beings are the ultimate receivers in most
applications. But this way of assess image quality is not appropriate for the
mentioned applications.

The Mean Opinion Score (MOS), which is a subjective quality metric
obtained from a number of human observers, has been regarded for many
years as the most reliable form of quality measurement. However, in order to
achieve statistically relevant results, the MOS method has to evaluate a huge
test population, so it is too cumbersome, time consuming, not suited for
real-time, and is expensive for most applications.

The MOS is generated by averaging the results of a set of subjective tests,
where a number of viewers rate the image or video quality of the presented
images or sequences by way of one of the standardized methodologies proposed
in the following international recommendations:
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(a) (b)

Figure 2.1: Presentation sequence and rating scale for (a) DSCQS (b) DSIS,
methods.

• International Telecommunication Union Recommendation (ITU-R)
BT.500-11 (2002) & ITU-R BT.500-12 (09/2009) [82, 83] Methodology for
the subjective assessment of the quality of television pictures: This
recommendation provides methodologies for the assessment of picture
quality including general methods of test, the grading scales and the
viewing conditions. It recommends the Double-Stimulus Impairment
Scale (DSIS) method and the Double-Stimulus Continuous
Quality-Scale (DSCQS) method, as well as alternative assessment methods
such as Single-Stimulus (SS) methods, stimulus-comparison methods,
Single Stimulus Continuous Quality Evaluation (SSCQE), and
Simultaneous Double Stimulus for the Simultaneous Double Stimulus for
Continuous Evaluation (SDSCE) method.

• ITU-T P.910 (04/2008) [84] Subjective video quality assessment methods
for multimedia applications: These describes non-interactive subjective
assessment methods for evaluating the one-way overall video quality for
multimedia applications such as videoconferencing, storage and retrieval
applications, tele-medical applications, etc.

The three classes of subjective assessment methodologies: single stimulus
methods, comparison methods, and double stimulus methods, recommended in
these standards, are briefly summarized below.

• Double Stimulus Continuous Quality Scale (DSCQS): The reference and
the distorted image (or sequence) are presented twice to the viewer,
alternating between reference and distorted versions, see Figure 2.1(a). The
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viewers should rank the perceived quality in a continuous scale of 0-100
(being 0 bad and 100 excellent). Multiple pairs of reference and distorted
images (or sequences) are shown to the viewers, but they are not told which
one is the reference or the distorted one. Analysis is based on the difference
in rating for each pair, which is often calculated from an equivalent
numerical scale from 0 to 100. In the case of DSCQS, the Difference Mean
Opinion Score (DMOS) could be used instead of MOS. It consists of the
mean of differential subjective scores. For each viewer and image (or
sequence), the raw scores are first converted to difference scores; that is, the
difference between the given score to the reference and distorted version.
These scores are further normalized as explained in [85] to obtain Zscores
[86] that are finally rescaled to the 0-100 range to obtain the DMOS score
for that image or sequence, where 0 represents the best quality value (no
difference between reference and distorted image).

• Double Stimulus Impairment Scale (DSIS): Unlike DSCQS, the viewers
know which one is the reference image (or sequence), that is presented first,
followed by the distorted one. In DSIS variant II, this presentation is
repeated once. The viewers rate the images/sequences in the five-level scale
presented in Figure 2.1. This method is named as Degradation Category
Rating (DCR) in the ITU-T P.910.

• Single Stimulus Continuous Quality Evaluation (SSCQE): Here, the viewers
are only shown the distorted image/sequence, but for a longer duration than
in the previous methods, typically 20-30 minutes, and rate simultaneously
while watching the sequence the perceived quality using a slider on the same
scale as DSCQS.

• Absolute Category Rating (ACR): Like SSCQE, this is a single stimulus with
only the distorted version shown to the viewers. They provide a single quality
rate for the overall sequence using the five-level scale from Figure 2.1(a).

• Pair Comparison (PC): This method pairs the references and distorted
versions in any possible combination of compression degree and/or used
encoder. The pair is shown twice in rapid succession and at the end the
viewer should choose which version of the pair has better quality.

These methods generally have different applications. DSCQS is is the
preferred method when the quality of test and reference sequence are similar,
because it is quite sensitive to small differences in quality. The DSIS method
is better suited for evaluating visible impairments clearly, such as artifacts
caused by transmission errors, for example. As for all subjective tasks,
different results can be achieved depending on how the video or image content
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is presented to the viewers and which method is used. Additionally, for the
same content, the way, and the order in which it is presented to the viewers can
bias the results in a desired direction.

In [87, 88, 89] authors review and compare some of these standardized
testing methodologies, emphasizing the benefits and problems of each method.
They analyzed the results of SSCQE and DSCQS methods, concluding that
high correlated results between these methods can be achieved if the SSCQE
duration of the sequences is reduced to 9 to 15 seconds. Their experiments
conclude that the participating viewers considered at most the last 9 to 15
seconds of video when forming their quality estimate. This is not to say that
long sequences are completely without other merits. Nonetheless, when long
video sequences are used in SSCQE tests, test designers should not necessarily
expect a panel of viewers to rate the video inherently differently than if shorter
sequences are used. The advantages of using SSCQE as a substitute of
DSCQS for video comparisons, would include faster testing (or more clips
rated for the same amount of viewing time spent) and less viewer fatigue.

Another comparison of the DSCQS and DSIS II scales can be found in
[90, 89], where authors study the effects of context in the different methods.
One type of contextual effects is created when there are fluctuations in the
subjective rating of sequences based on the types and amount of impairments
presented in the preceding sequence in the test. For example, a sequence with
moderate impairment that follows a set of sequences with weak impairment
may be judged lower in quality than if it follows sequences with strong
impairment. A common method used to try and counterbalance this type of
contextual effect is the randomization of the test trial presentation order. Using
it, they finally conclude that the DSCQS method has reduced contextual
effects, being the best method to use in order to minimize contextual effects
for subjective picture quality assessment.

These aforementioned studies reveal that the selection of the proper
method for presenting the references and the distorted versions of our images
or sequences could result in varying results. Besides, we have to take into
account the time needed to prepare the test images, the distorted versions, the
ordering of the test sequences, the viewing conditions, and to be able to enroll
sufficient viewers to have statistically representative results.

Traditionally, in order to avoid the need to perform such time consuming
subjective tests, the scientific community has mostly used the Mean Square
Error (MSE) and the Peak to Noise Ratio (PSNR) to assess quality and
compare the performance of different and competing encoding proposals. This
is because MSE and consequently PSNR have many attractive features [1],
they are simple to calculate and parameter free, mathematically easy to deal



2.1. Introduction 53

for optimization purposes, are the natural way to define the energy of the error
signal, and finally is the most commonly used metric. Technically, MSE
measures image difference, whereas PSNR measures image fidelity, i.e., how
closely an image resembles a reference image, usually the uncorrupted
original. Due to the popularity of these metrics, most of the results from
previous comparison works are expressed with them, because using them
saves time and effort while comparing, and as a side effect, they further
propagates the use of MSE and PSNR.

In relation with human perception, MSE and PSNR are widely criticized
[91, 89, 92, 93]. PSNR does not always agree with the evaluations of the
Human Visual System (HVS); therefore when it is used to predict, or correlate
results, with human perception of fidelity and quality, it seems not to be the
best choice. The human eye, for example, does not observe small changes of
intensity between individual pixels, but is sensitive to the changes in the
average value and contrast in larger regions. Another deficiency of these
distortion functions is that they measure only local, pixel-by-pixel differences,
and do not consider global artifacts, such as blockiness, blurring, jaggedness
of the edges, ringing, or any other type of structural degradation of the image.

The visibility of distortions depends on the image background, a property
known as masking (see section 2.3.8). Distortions are often much more
disturbing in relatively smooth areas of an image than in texture regions with a
lot of activity, an effect not taken into account by pixel based metrics.
Therefore, the perceived quality of images with the same PSNR can actually
be very different. An illustrative example is shown in Figure 2.2 where an
original is altered by different types of distortions. Note that the PSNR values,
relative to the original image 2.2(a) of several distorted images are nearly
identical, even though the images present dramatically and obvious different
visual quality. In [1], the problem with MSE is deeply studied.

But they are still the most widely used metrics in comparisons of encoder
performance. This, as we will see later, can produce erroneous conclusions
about the goodness of a specific encoding proposal. Nevertheless, some authors
[94] argue that in scenarios with fixed content distorted by typical compression
and channel artifacts, PSNR predicts the perceived subjective quality nearly as
well as more complex quality models representing the state-of-the-art.

The aim of research in the field of image and video objective quality
assessment is to design quality metrics that can automatically predict and rank
the quality of an image or video sequence giving a quality value that is highly
correlated to the subjective MOS or DMOS value given by human observers.
These metrics are valuable because they provide image and video encoder
designers, and standards organizations with the means for making meaningful
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(a) Original

(b) PSNR=26.55 (c) PSNR=26.55

(d) PSNR=26.60 (e) PSNR=26.55

Figure 2.2: Einstein original image (a) and different distorted versions of it;
The same PSNR but different perceptual quality; b) Mean Shifted Image; c)
Contrast Stretched Image; d) Blurred Image; e) JPEG Compressed Image
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quality evaluations without convening viewer panels, and provides big savings
in time, effort, and costs.

So, one of the objective in this work is to find, among the most important
image objective quality assessment metrics, one that exhibits good behavior
for a large set of image (or intra-mode encoded video) distortions providing
measures as close to the ones perceived by human observers and fast enough
for their practical use.

In the literature, there is a consensus in a primer classification of objective
quality metrics [95, 96, 89] attending to the availability of original non-distorted
info (the reference) to measure the quality degradation of an available distorted
version:

• Full Reference (FR) metrics perform the distortion measure with a full access
to the original version, which is taken as a perfect reference.

• No Reference (NR) metrics have no access to reference. So, they have to
perform the distortion estimation only from the distorted version. In general,
they have lower complexity but are less accurate than FR metrics and are
designed for a limited set of distortions.

• Reduced Reference (RR) metrics work with some information about the
reference (similar to a perceptual hash algorithm). A RR metric defines
what information has to be extracted form the reference, so it can be
compared with the same information extracted from the distorted version.
This reference side information is the only information available to the
metric to perform the quality assessment.

The most widely used FR objective video quality metrics by the scientific
community, as mentioned before, are MSE and PSNR. In recent years, new
objective image and video quality metrics have been proposed, mostly for
FR/RR quality assessment. They emulate human perception of image/video
quality since they produce results that are very similar to those obtained from
subjective methods.

Most of these proposals were tested in the different phases carried out by the
Video Quality Experts Group (VQEG), which was formed to develop, validate,
and standardize new objective measurement methods for video quality. The
models provided by VQEG forum result in International Telecommunication
Union (ITU) recommendations and standards for objective quality models for
both television and multimedia applications [97].
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Figure 2.3: Artifacts: Blockiness

Figure 2.4: Artifacts: Blur

2.2 Principal coding artifacts and visual distortions

Most of the image or video compression algorithms used in coding standards
rely on the use of the DCT or the wavelet transform. In such coding schemes,
the quality of the reconstructed version of the scene is deteriorated by the loss of
information and by the introduction of coding artifacts. The loss of information
is produced in the quantization step of the coding chain, while other artifacts
can be introduced in other steps of the chain.

Evaluation and classification of image coding artifacts [98] and video
coding artifacts [99] are important in order to evaluate the performance of
coding software and hardware products proliferating in the
telecommunications, entertainment, multimedia, and consumer electronics
markets. A comprehensive classification will also assist in the design of more
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Figure 2.5: Artifacts: DCT basis image.

effective adaptive quantization algorithms and coding mechanisms in order to
improve image and video codec performance. But, due to the complexity of
the HVS, the perceived distortion is not directly proportional to the absolute
quantization error [99].

In addition, our perceptual response to visual distortion varies depending
not only where quantization errors occur, but also how they coincide with
structural image elements [100]. So, it is not possible to predict the
quantization level or the bit rate at which a specific artifact appears. And due
to the different varieties of bit allocation techniques that have been proposed,
which may, or may not, exploit the masking effects of the HVS, this prediction
is even more complicated.

Nevertheless, many efforts have been made to perform adaptive
quantization to reduce artifacts produced by encoders that use specific
transforms, like DCT [101, 102, 103, 104] and DWT [105, 106, 107]. In
addition, some specific artifacts produced by the DCT transform, like
blocking, are eliminated by the use of DWT techinques [108].

The classification of coding artifacts is important too in the design of filter-
ing and for the search of objective psychovisual-based quality metrics.

Noise and artifact are terms used to describe speckles, spikes, missing data,
and other marks, impairments, defects, and abnormalities in image data created
during the acquisition, transmission, and processing of image data.

The following summarizes the most common noise and artifacts produced
mainly in the processing of image data, describing only how they manifest and
their possible causes and relationships. Some of these effects arise only in
block-based DCT schemes, others only in DWT schemes where the transform
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Figure 2.6: Artifacts: Ringing on DWT.

is applied to the whole image/frame, and finally some of them arise in block-
based DWT schemes like JPEG2000. For example, the transform in the LTW
encoder [109] is applied to the entire image, therefore none of the block-related
artifacts occur. Instead, blurring and ringing are the most prominent distortions
in this type of encoders. Figures 2.3 to 2.8 show some of these artifacts.

• The blocking effect or blockiness (figure 2.3) refers to the appearance of a
block pattern in the reconstructed sequence. This is due to the independent
quantization of individual blocks (usually of 8x8, 16x16, etc. pixels in size)
in block-based DCT coding schemes. It is more visible in low-detail regions
when coarse quantization is applied to adjacent blocks, producing
discontinuities at the boundaries of those blocks. The blocking effect is
often the most prominent visual distortion in a compressed sequence due to
the regularity and extent of the pattern. The false edges of the blocking
effect are perceived as abnormal high frequency components in the
spectrum of the image.
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• Blurring manifests itself as a loss of spatial detail and a reduction of edge
sharpness in regions with moderate and high detail (figure 2.4). Different
types of blurring may occur, as motion blur due to the relative motion
between elements in the scene, or out focus blur due to defocused camera or
lens aberrations. Blur can be also introduced when compressing the image
due to filtering and the suppression of the high-frequency coefficients by
coarse quantization i.e. an image appears blurred when its high spatial
frequency in the spectrum is attenuated. Blurring means that the received
image is smoother than the original.

• Color bleeding is the smearing of the color between areas of strongly differ-
ing chrominance, typically near edges over flat backgrounds. It results from
the suppression of high-frequency coefficients of the chroma components.

• Each of the DCT basis images has a distinctive regular horizontally or
vertically oriented pattern which makes them visually conspicuous (Figure
2.5). The DCT basis image effect is prominent when a single DCT
coefficient is dominant in a block. The effect is caused by coarse
quantization of the AC DCT coefficients in areas of high spatial activity
within a frame, resulting in the nullification of the low-magnitude DCT
coefficients which are within the quantization dead-zone.

• Slanted lines often exhibit the staircase effect. This is due to the fact that
DCT basis images are best suited to the representation of horizontal and
vertical lines, whereas lines with other orientations require higher-frequency
DCT coefficients for accurate reconstruction. The typically strong
quantization of these coefficients causes slanted lines to appear jagged.

• Ringing artifacts manifest themselves in the form of ripples or oscillations
around high-contrast edges in compressed images. They can range from
imperceptible to very annoying, depending on the data source, target bit
rate, or underlying compression scheme (Figure 2.6). Ringing is
fundamentally associated with Gibbs’ phenomenon and is thus most evident
along high-contrast edges in otherwise smooth areas. It is a direct result of
improper quantization of high-frequency, leading to irregularities in the
reconstruction. Ringing occurs with both luminance and chroma
components. Since the high frequency components play a significant role in
the representation of an edge, coarse quantization in this frequency range
(i.e., truncation of the high frequency transform coefficients) consequently
results in apparent irregularities around edges in the spatial domain, which
are usually referred to as ringing artifacts.

• False edges are a consequence of the transfer of block-boundary
discontinuities due to the blocking effect from reference frames into the
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predicted frame by motion compensation.

• Jagged motion can be due to poor performance of the motion estimation.
Block-based motion estimation works best when the movement of all pixels
in a macroblock is identical. When the residual error of motion prediction is
large, it is coarsely quantized.

• Motion estimation is often conducted with the luminance component only,
yet the same motion vector is used for the chroma components. This can
result in chrominance mismatch for a macroblock.

• Mosquito noise is a temporal artifact seen mainly in smoothly textured
regions as luminance/chrominance fluctuations around high-contrast edges
or moving objects. It is a consequence of the varied coding of the same area
of a scene in consecutive frames of a sequence.

• Flickering appears when a scene has high texture content. Texture blocks are
compressed with varying quantization factors over time, which results in a
visible flickering effect while watching the sequence.

• Aliasing can be noticed when the content of the scene is above the Nyquist
rate, either spatially or temporally.

• Masking is the reduction in the visibility of one component (the target) due
to the presence of another (the masker). There are two kinds of masking
effects, luminance masking (light adaptation) and texture masking, which
occur when the masker and target have similar frequencies and orientations.

• Jitter distortion occurs in video sequences due to abrupt variations resulting
from asynchronous acquisition of video frames

• Jerkiness refers to the perception of still images in a video sequence resulting
from frame rates that are too low.

• Frame-loss is the loss of entire frames; normally, frame-loss is produced in
bursts of different duration, i.e., number of frames. When frame-loss occurs,
the video codec usually repeats the last correctly received frame
(frame-freeze effect) or sets a black frame. Frame-freeze is considered to be
detected when its duration exceeds a certain threshold.

Another type of distortions are due to transmission errors of the bitstream
over a noisy channel. When compressed video is transmitted over a
packet-switched network, wired or wireless, some transport protocol like
Asynchronous Transfer Mode (ATM) or the Transfer Control Protocol/Internet
Protocol (TCP/IP) ensures the delivery of the bitstream. Normally, the
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Figure 2.7: Artifacts: Two types of reconstructed frames after packet losses

bitstream is packetized, i.e., splitted in packets, whose headers contain
sequencing and timing information. When the final application requires the
bitstream in real-time for decoding and displaying the multimedia content,
some common network conditions can produce the loss of some packets,
which finally result in visual artifacts in the reconstructed sequence (figure
2.7).

In addition to the loss of packets, bit errors can occur inside packets that
are not lost, producing several types of noise effects in the reconstructed image
or frame (Figure 2.8) that are different depending on the codec being use and
many other factors like bit allocation in the bitstream, amount of bits (burst
error), importance of the bits for the coding scheme, etc.

Packets can be lost or delayed so that they are not received in time to be
decoded when requested. To the decoder, both alternatives have the same
effect, the packet is lost and the bitstream can not be completely decoded. If
some packets need dependent information contained in the lost packets, for
example, information that is differentially predicted, then the loss of a single
packet corrupts the rest of the packets until the reception of the first
non-dependent packet.

For example, an MPEG macroblock that is damaged through the loss of
packets corrupts all following macroblocks until an end of slice is encountered,
where the decoder can resynchronize. In this example, two types of errors
are produced by the loss of packets: a spatial loss propagation and a temporal
loss propagation. The spatial loss propagation is due to the fact that the DC
coefficient of a macroblock is differentially predicted between macroblocks.
The temporal loss propagation arises when the lost information is needed by
motion estimation.

The visual effect of such loss depends on the ability of the decoder to deal
with corrupted bitstreams. Some decoders include clever concealment
techniques such as early synchronization and spatial or temporal interpolation
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Figure 2.8: Artifacts: Bit Errors on DWT

in order to minimize these effects.

2.3 Brief overview of HVS

Some brief introduction to the Human Visual System (HVS) must be done in
order to understand how the objective quality assessment metrics are built.
Only the most important characteristics of the HVS that are implemented in
these metrics are briefly reviewed here [95, 110, 111, 96, 89].

2.3.1 The visual pathway

The first contact of light with the eye is at the cornea, the main refractive surface
of the eye; see Figure 2.9 from [96]. Light then enters the eye through the
pupil in the center of the iris. The pupil diameter varies from 3 to 7 mm, and
changes its size up to a factor of 5, based on the prevailing light level and other
influences of the nervous system.

The light goes through the lens, which changes its shape with accommoda-
tion to focus the image on the back of the eye, projecting an inverted image of
the visual field. After the lens, light passes through the gelatinous vitreous hu-
mor in the main body of the eye.

At the back of the eye is the retina, an extension of the central nervous
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Figure 2.9: Schematic diagram of the human visual system.

system, where light sensitive photoreceptors transduce the electromagnetic
energy of light into the electro-chemical signals used by the nervous system. It
consists of five main neural cell types organized into cellular layers and
synaptic layers.

The photoreceptors, which initiate the neural response to light, are located
on the outer part of the retina. There are two classes of photoreceptors, rods
and cones. The rods are responsible for vision at very low light levels
(scotopic) and do not normally contribute to color vision. The cones, which
operate at higher light levels (photopic), mediate color vision and the seeing of
fine spatial detail, so they are responsible for vision under normal light
conditions. There are three different types of cones, corresponding to three
different light wavelengths. The L-cones, M-cones, and S-cones
(corresponding to the long, medium and short wavelengths) split the image
projected onto the retina into three visual streams. These visual streams can be
thought of as the red, green and blue color components of the visual stimulus,
though the approximation is crude.

The photoreceptors are non uniformly distributed over the retina. The point
on the retina that lies on the visual axis is called the fovea and it has the highest
density of cone cells. This density falls off rapidly with distance from the fovea.
The distribution of the ganglion cells, the neurons that carry the electrical signal
from the eye to the brain through the optic nerve, is also highly non-uniform,
and drops off even faster than the density of the cone receptors. The net effect
is that the HVS cannot perceive the entire visual stimulus at uniform resolution.

The signals from the photoreceptors are processed via retinal connections
and exit the eye by way of the optic nerve. The axons of the ganglion cells, in
the inner cellular layer of the retina, are gathered together and exit the eye at
the optic disc, forming the optic nerve that projects to the Lateral Geniculate
Nucleus (LGN), a part of the thalamus in the midbrain. These synaptic
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Figure 2.10: Point spread function of the human eye as function of visual angle

connections project the signal to the primary visual cortex, which contains
neurons tuned to various aspects of the incoming streams, such as spatial and
temporal frequencies, orientations and directions of motion. These areas in the
visual cortex respond to visual stimuli and processes of various modes of
vision such as form, location, motion, color, etc.

The neurons in the cortex have receptive fields that are modeled as
two-dimensional Gabor functions, which are linear filters that typically are
used for edge detection. The whole set of these neurons is modeled as an
octave-band Gabor filter bank [112] where the spatial frequency spectrum (in
polar representation) is sampled at octave intervals in the radial frequency
dimension and uniform intervals in the orientation dimension. The output of
these neurons saturates as the input contrast increases. The tasks of these
neurons in the cortex are typically emulated in some quality assessment
metrics and perceptually driven encoders, with the inclusion of models of
spatial frequency and orientation selectivity.

2.3.2 Foveal and peripheral vision

As stated before, the retinal image is a distorted version of the input visual
field. A natural noticeable distortion is blurring, produced by imperfections of
the optics of the eye and natural variations of light produced at each step in the
visual pathway.

To quantify and model the amount of blurring of a HVS, a Point Spread
Function (PSF) or a Line Spread Function (LSF) is used. Its Fourier transform
is the Modulation Transfer Function (MTF) of the eye for this stimulus. The
amount of spreading or blurring of a stimulus is a measure of the quality of an
optic system. The amount of blurring depends on the pupil size, being higher
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as the pupil increases its size due to lower ambient light intensities.

This variation is modeled by a a simple formula (Equation 2.1 [95]) to
approximate the foveal point spread function of the human eye with good
focus and a pupil diameter of 3 mm. [113], being α minutes of arc. This PSF,
presented in Figure 2.10, also changes with wavelength. By accommodation,
the eye can place any wavelength into good focus, but it is impossible to focus
all wavelengths simultaneously.

PS F(α) = 0.952e−2.59|α|1.36
+ 0.048e−2.43|α|1.74

(2.1)

As commented in section 2.3.1, the densities of the cone cells and the
ganglion cells in the retina are not uniform. The number of photoreceptors
peak at the fovea and decreases with distance from it. Cones are concentrated
in the fovea, the region of highest visual acuity, which covers approximately
two degrees of visual angle on the retina. When a human observer fixates at a
point of the visual scene, this point is located at the fovea being sampled with
the highest spatial resolution. The surrounding points of the scene are
progressively processed with lower spatial resolutions. The high-resolution
vision due to fixation by the observer onto a region is called foveal vision,
while the progressively lower resolution vision is called peripheral vision.

Regarding the visual spatial acuity of the fovea, the photoreceptors are
packed tightly in triangular arrangement with a mean center-to-center spacing
of 32 arc min. [114] This corresponds to a sampling rate of approximately 120
samples per optical degree or a Nyquist frequency of around 60 cpd (cycles
per optical degree). Visual spatial acuity is therefore considered to be
approximately 60 cpd, although under special conditions, for example,
peripheral vision and large pupil sizes, higher spatial frequencies can also be
directly resolved.

Image quality assessment models [115, 116, 117] can include foveal vision
in their implementation. These models also introduce vision modeling, taking
into account the non-uniform distribution off cones in the retina, modeling the
image with less resolution as the distance from the region of interest (foveated
part of the image) increases. Foveal vision models can resample the image
with the same density of the receptors in the fovea in order to provide a better
approximation of the HVS.

Most models neglect eccentricity and off-axis effects and concentrate their
modeling efforts on the properties of the fovea. This is usually justified by
the fact that when the eyes bring part of the image into the fovea, this part
is sampled at highest resolution, being any part of the image processed in the
same way. As the optical and retinal properties are relatively uniform across the
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fovea, using the same properties for the whole image significantly simplifies
modeling.

2.3.3 Contrast sensitivity

As commented in section 2.3.5, the HVS can perceive small differences in
luminance. However, the minimal difference that still can be perceived
depends on the background luminance. The dependence to the background
luminance that the HVS has while detecting differences in the luminance is
called contrast sensitivity. That is, sensitivity to intensity differences, is
dependent on the local luminance in regions of the image [118]. A basic
model for this dependence is the Weber-Fechner law. It states that, sensitivity
to luminance differences in a stimulus is proportional to the mean luminance
of the stimulus. Mathematically, Weber contrast can be expressed as Equation
2.2

CW =
ΔL
L

(2.2)

The Weber-Fechner law is not fulfilled for all background luminance levels.
It holds for luminance levels above approximately 10 cd/m2 [119]; below this
level the contrast threshold increases as luminance decreases, i.e., there is less
sensitivity to contrast below this level. Evidently, the Weber-Fechner law is
only an approximation of the actual sensory perception, but contrast measures
based on this concept are widely used in vision science.

Contrast is the difference in the luminance level of adjacent parts of an
image or visual field. That is, contrast is the difference in luminance or color
that makes an object distinguishable. HVS is more sensitive to luminance
changes (contrast) than to absolute luminance, so we can perceive objects
regardless of the changes in illumination (above 10 cd/m2 as Weber-Fechner
law states) as long as the contrast is high enough.

If the contrast is too low we can not distinguish an object from the
background. In this situation, some objects in the scene turn into invisible
objects. These objects are said to be below the contrast threshold.

The sensitivity is the inverse of the contrast threshold, i.e., S ensitivity =
1/threshold. Therefore, the smaller the contrast we need to perceive an object
in the scene is, the higher is our sensitivity. And the opposite, for low sensitivity
we need higher contrast to perceive differences. Under optimal conditions, the
contrast threshold can be less than 1%.

Suppose a scene where the contrast of an object with its background is
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Figure 2.11: Three sine wave gratings with the same spatial frequency but with
descending contrast from left to right

descending; then at just the point where the object becomes invisible we could
record the value of the difference in luminance between the object and the
background, this value is our contrast threshold. Its inverse is our contrast
sensitivity. For example, if the contrast threshold is 0.1 then sensitivity is
1/0.1 = 10; if the threshold is 0.01, then sensitivity is 100, and so on.

In Figure 2.11 we can see three gratings, which are called sinusoidal
gratings or sine wave gratings because they change gradually in luminance
over space (horizontal axis). At the bottom of each grating, a sine wave
represents the luminance variability in the horizontal axis.

The contrast of periodic (often sinusoidal) stimuli with varying frequencies
is defined by the Michelson contrast. The Michelson definition of contrast is
in fact (LMAX − LMIN)/(LMAX + LMIN), where LMAX and LMIN stands
for Max Luminance and Min Luminance, respectively. If the sine wave of the
rightmost grating in Figure 2.11 were just a horizontal line, there would be no
contrast at all. Then, the so-called grating would just be a homogeneous gray,
LMAX would be the same as LMIN, and the contrast would be zero because
(LMAX−LMIN) would be zero. If, on the other hand, the black bars were very
black and the white bars were very white, (LMAX − LMIN)/(LMAX + LMIN)
might be (1000 − 1)/(1000 + 1), so the maximum contrast you can ever have is
1.0.

But, if in the previous scene there is more than one object and these objects
are quite different in size, shape, and texture, then the point in which each object
becomes invisible is different. This is due to the fact that the human perception
of contrast not only depends on the difference of luminance but also on the
spatial frequency. So, the contrast threshold varies with the spatial frequency.

In [120], we can find a very clear explanation of contrast sensitivity. To
illustrate this, we can see figure 2.12 from [120] where three gratings are
presented. Most people would rank them in the order shown, with the leftmost
grating being the one with lower contrast. But this is wrong because all three
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Figure 2.12: Which of these three gratings appears highest in contrast and
which appears lowest in contrast?

Figure 2.13: Two transfer functions for a lens. How contrast in the image
formed by the lens is related to contrast in the object.

gratings have precisely the same physical contrast.

Suppose we use a lens to cast an image of a target grating on a white
paper. This target grating has a specific physical contrast that we call target
contrast. Then, using a photometer we determine the intensity of the light and
dark portions in the image and, hence, the contrast of the image of the grating
produced by the lens, the image measured contrast. We repeat these
measurements for different spatial frequencies always with gratings of the
same target contrast.

If we graph the results, whith the horizontal axis the spatial frequency of the
grating and the vertical axis the image measured contrast as percentage of the
target contrast, then we get the transfer function of how contrast is transferred
through the lens, see Figure 2.13. In this figure two curves appear, one for a
clean lens and another corresponding to a buttered lens, i.e., smeared with a
buttery finger.

For the clean lens curve, the contrast in the image is identical to that of
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the target up to a specific spatial frequency, but for higher frequencies the lens
reproduces the target less faithfully. The frequency at which the contrast falls
to zero is called the cutoff frequency; when the frequency exceeds this value,
the image and the target (if a perfect lens) will no longer contain any contrast.

The curve for the buttered lens has a lower cutoff frequency, degrading
the contrast of the target more rapidly than the clean lens. But at very low
frequencies the smear makes little difference in the performance of the lens.
This means that a high quality lens reproduces fine and coarse spatial detail
better whereas a low-quality lens only reproduces low frequencies well. Think
about when you are wearing smeared glasses.

Natural scenes are not as simple as gratings and that images are composed
of many different spatial frequencies, sine waves in any orientation. We can
treat the scene as a sum of a series of simple sinusoidal components by using
Fourier analysis, we can evaluate how the lens reproduces each of those
components. So we can first determine the transfer function of the lens
(suppose the buttered one) and second analyze the visual scene into its spatial
frequency components. Finally, with this information, we can conclude which
spatial frequency components will be preserved by the lens in the image and
which will not.

Suppose now that the lens is our Human Visual System: which frequencies
will we perceive? The problem here is that determining the transfer function of
our HVS is not as easy as with the lens.

2.3.4 The contrast sensitivity function (CSF)

With the HVS, we can not reproduce the procedure employed with the lens in
order to measure the frequency components of the gratings that are preserved
in the image because the image is formed inside the eye. Moreover, this image
would provide information of only a part of the complete transfer function of
the HVS, because other neural and cognitive components of the HVS process
that image further.

As we are interested in visual perception, we must be concerned with the
perceptual transfer function that depends on the optical transfer function and
the neural and cognitive transfer functions. By measuring contrast thresholds
for different spatial frequency gratings, we can derive a curve that describes the
entire visual system’s sensitivity to contrast. We call this curve the Contrast
Sensitivity Function (CSF) to distinguish it from the transfer function of a lens.

Figure 2.14 shows the CSF for a human adult. The horizontal axis
specifies the spatial frequency plotted as the number of cycles within a degree
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Figure 2.14: Contrast sensitivity function shape.

Figure 2.15: Campbell-Robson contrast sensitivity chart

of visual angle. The vertical axes plot the minimum contrast required to see
the grating where the left axis show units of contrast and the right axis the
inverse of this contrast value (defined as sensitivity). This curve defines the
window of visibility; that is, the area underneath the curve represents
combinations of contrast and spatial frequency that can be seen, while the area
above represents combinations that can not be seen.

The CSF curve in Figure 2.14 differs from the lens transfer functions of
Figure 2.13 at low frequencies because the HVS is less sensitive to very low
spatial frequencies than it is to intermediate ones. Objects of a visual scene
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Figure 2.16: Multiple filters CSF model.

that have most of their spatial frequency information around the optimum point
on the CSF will be clearly visible even when they are in low contrast. But
if these objects have very low spatial frequencies (very large objects), or only
very high spatial frequencies (very small objects or very fine details of them),
they will be less visible and their contrast should be higher in order to be seen.
This explains why the gratings in figure 2.12 appear different in contrast: their
apparent contrast varies with our sensitivity to different spatial frequencies.

Figure 2.15, the so-called Campbell-Robson chart [121] demonstrates the
shape of the spatial CSF for sinusoidal stimuli in a very intuitive manner. The
luminance of pixels is modulated sinusoidally along the horizontal dimension.
The frequency of modulation increases exponentially from left to right, while
the contrast decreases exponentially from 100% to about 0.5% from the bottom
to the top. The minimum and maximum luminance remain constant along a
given horizontal line through the image. The location of its peak depends on
the viewing distance.

Campbell [122], suggested that the CSF does not reflect the sensitivity of a
single mechanism, but rather the combined activity of sets of neurons, each
capable of responding to targets over only a restricted range of spatial
frequencies. These independent mechanisms, called filters, detectors, or
channels are responsive for detecting luminance variations that occur at a
particular spatial scale (frequency). Some respond to the coarse variations and
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Figure 2.17: Contrast ratio: Weber fraction

others to finer details. So, the CSF reflects the envelope of sensitivities of
multiple filters, see Figure 2.16. Consequently, the HVS uses the spatial
frequency filters to perform a type of Fourier analysis of the retinal image.

2.3.5 CSF and light conditions

The HVS operates over a wide range of light intensity values. The scotopic
and photopic vision actually cover 12 orders of magnitude, varying from the
detection of a single photon to extremely bright day light conditions. To reach
this dynamic range, more than a single adaptation process is involved. The
first adaptation mechanism is located in the pupil, whose resizing mechanism
controls the amount of light entering the eye. Then, a more powerful regulatory
process of light adaptation is held in the photoreceptors and other retinal cells
adjusting the gain of post-receptor neurons in the retina. The retina encodes
the contrast of the visual stimulus instead of coding absolute light intensities.
There are two different adaptation processes:

• Light adaptation. This adaptation happens very quickly. Sensitivity changes
from dark light to bright light conditions. A decrease of the chemical
concentration in the photoreceptors is the cause.

• Dark adaptation. Adaptation from bright light into darkness. In this case,
the chemical concentration increases, but this process is very slow in
comparison with light adaptation; it can take up to an hour until the
chemical concentrations reaches its final state.

The response of the eye to changes in the intensity of illumination is
nonlinear. If we consider a patch of light intensity surrounded by a
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Figure 2.18: CSF under different luminance conditions

background intensity I, we can define as Just Noticeable Difference (JND) the
smallest increment ΔI in luminance perceived by our HVS; [123] states that
the sensitivity of human eyes to discriminate these increments depends not
only on the difference itself but also on the level of intensity. Over a wide
range of intensities, the Weber fraction ΔI

I is nearly constant at a value of
about 0.02, but this result does not hold for very low or very high light
intensities as shown in Figure 2.17 where I+ΔI

I represents the contrast ratio.
So, the Contrast Sensitivity is also affected by the luminance level.

Figure 2.18 depicts how the CSF varies with light conditions, showing three
CSF curves: the photopic curve (datytime), the mesopic curve (twilight), and
scotopic curve (dim light). As the level of light decreases from daylight to
twilight, visual sensitivity drops primarily at high spatial frequencies; this is
why it is difficult to read small letters (small details) in twilight, while lower
frequencies are hardly affected. When light drops further, sensitivity decreases
even at low frequencies.

2.3.6 Chromatic CSF

Contrast sensitivity to chromatic spatial variations has also been studied [124]
using harmonic stimuli, measuring red-green and blue-yellow gratings. Figure
2.19 from [89] shows the chromatic CSF curves in addition to the luminance
CSF curve. The color CSFs are characterized as a low-pass filter with high
frequencies cut-offs at much lower frequencies than the cut-off for the
luminance curve. Those studies reveal that the acuity of the blue-yellow
channel is limited by the distribution of the S-cones in the retina, but the
red-green channel is limited by subsequent neural processing.
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Figure 2.19: CSF for chromatic and luminance components

The sharpness of an image is judged based on the sharpness of the
luminance information since the visual system is not able to solve
high-frequency chromatic information. This fact has been used in the
compression and transmission of color images since high frequency chromatic
information can be removed without a loss in perceived image quality
[124, 89]. The full range of colors is perceived only at low frequencies [125].

2.3.7 Temporal CSF

Human contrast sensitivity depends on the color, the spatial and also on the
temporal frequency of the stimuli. As the spatial CSF, the temporal CSF has
also a low-pass behavior. The interaction between spatial and temporal
frequencies are commonly used in vision models for video [126].

Spatio-temporal CSF approximations [125] are shown in Figure 2.20.
Achromatic spatio-temporal contrast sensitivity is higher than chromatic
sensitivity, especially for medium-high spatio-temporal frequencies. In the
achromatic chart of Figure 2.20, we can see that for low spatio-temporal
frequencies, our sensitivity decreases whereas chromatic sensitivity does not.
As stated before, the full range of colors is perceived at low frequencies,
spatial, and temporal frequencies as shown in the chromatic chart of figure
2.20. At higher frequencies, sensitivity to blue-yellow frequencies declines
first, and, at even higher frequencies, sensitivity to red-green stimuli declines
too and perception becomes achromatic [125].

The space-time separability of the spatio-temporal CSF has been somewhat
controversial in the literature. From a modeling and usability point of view,
separability is a very interesting property in order to process video in such a
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Figure 2.20: Approximations of the achromatic CSF (left) and the chromatic
CSF (right)

way that takes into account the temporal dimension of the HVS sensitivity to
contrast.

Early studies conclude that the spatio-temporal CSF is not space-time
separable at lower frequencies [127, 128]. Further studies [129, 130] conclude
that spatio-temporal CSF can be approximated by combinations of separable
components in space and time. And again, later studies confirm the
inseparability of space-time dimensions in the spatio-temporal CSF [131].

2.3.8 Masking

Masking is an important phenomenon in vision as it reflects the relationships
and interactions between different stimuli. It occurs when a stimuli, that is
visible by itself, becomes invisible in the presence of another stimuli .

There is a relationship between both stimuli, the masker, and the original
stimuli. Some similar characteristics in both stimuli cause the invisibility of the
original stimuli when the masker is present; normally, this interaction occurs
gradually as these related properties change. These properties are the spatial
frequency, the orientation, and the phase of the masker relative to the original
stimuli; i.e., the masking effect is maximum when the stimulus and masker are
closely coupled in terms of orientation, spatial and temporal frequency, and
decreases rapidly as the distance between the signals increase in the spectral
domain.

Sometimes the opposite effect, facilitation, occurs when a stimuli cause the
perception of another stimuli that was not perceived before.

When talking about quality assessment, normally it is helpful to think that
the distortions produced by compression, transmission, coding noise, or what-
ever other artifacts (original stimuli) are masked or facilitated by the image or
sequence being compressed, transmitted, or coded, which acts as background.
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Figure 2.21: The background image is acting as masker of a noise pattern. The
original image is on the left. In the right image the noise pattern is applied to the
top and bottom of the image. The texture in water and rocks makes detecting
the noise pattern difficult.

Spatial masking is strongest when the interacting stimuli have similar
characteristics, i.e., similar frequencies, orientations, colors, etc. But it also
occurs between stimuli of different orientation and between stimuli of different
spatial frequency.

For example, in some regions of the image some noise or compression
artifacts are more visible than in other parts. In that cases the background
image is acting as masker for the artifacts, see Figure 2.21 from [125] as an
example. The noise pattern in the top part of the right image is also present in
the bottom part of the same image, but the image content in this area, rocks
and see, masks the noise.

So, it is important to understand which are the properties of both parts, the
image in those regions, and the noise or artifact itself, because this knowledge
can lead to adaptive techniques to code, compress, or transmit images in differ-
ent ways in different regions.
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Temporal masking accounts for the elevation of the visibility threshold due
to temporal discontinuities in intensity. For example, in transitions from dark to
bright the threshold elevation may last up to a few hundred milliseconds after
transition.

Pattern adaptation is another type of masking that affects the contrast
sensitivity due to an adjustment of the visual system sensitivity in response to
a prevalent stimulation pattern [125]. Adaptation of a certain spatial frequency
can lead to noticeable decrease of contrast sensitivity around that frequency.

2.3.9 Suprathreshold contrast sensitivity

Up to now, discussion was centered on at-threshold sensitivity, i.e., our
sensitivity at-threshold level. Our sensitivity at-threshold is very dependent on
spatial frequencies, as shown in previous sections, i.e. it depends on the spatial
frequency, and thus the contrast threshold varies, having a maximum
sensitivity (lower contrast threshold) in the range from 2 to 6 cpd, and as said
in section 2.3.5, this varies with luminance conditions too.

When we talk about suprathreshold sensitivity, we are focusing on the
visible area of the CSF (see Figure 2.14), which is the area of our regular
visual conditions. There, the contrast level is above the threshold level; in
other words, contrast is above the minimum level required for detecting the
target over the background.

The relationship between the perception of contrast and spatial frequency
at levels above threshold is slightly different than at-threshold. The effects
perceived at-threshold are qualitatively different from those at suprathreshold
levels, so, models of detection and discrimination levels may not be applicable
because a contrast constancy effect (the apparent contrast matches physical
contrast by an intra-channel response-gain control mechanism of the spatial
frequency channels), is produced in the range from 1 to 10 cpd of spatial
frequency [132, 133, 89].

The contrast constancy property [132] suggests that at suprathreshold
levels, the contrast ratios specified by the CSF would fail to indicate veridical
measures of perceived contrast; rather, the perceived contrast can be predicted
based primarily on physical contrast.

The contrast constancy property and the effect that natural images, as
masker, produce in the perception of suprathreshold targets was studied in
[134] where experiments conclude that contrast constancy occurs only after an
adaptation process and that natural images decrease the perceived contrast
only of lower-frequency distortions.
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In the context of lossy image compression, this contrast constancy
property suggests that the contrasts of the distortions could be theoretically
proportioned equally across the frequency spectrum (e.g., by assigning all
frequency subbands equal weights) without affecting the total perceived
contrast.

Because compression induced distortions are presented against natural
image maskers, then, under contrast constancy assumption and with the
support of results [134] of author’s experiments, it is reasonable to assume that
the post-adaptation might also affect the perceived contrast of suprathreshold
distortions in a similar fashion, and as natural images decrease the perceived
contrast only of lower-frequency distortions, more contrast would be allocated
to these lower-frequency distortions, e.g., by assigning the corresponding
subbands smaller weights (indicating less visual importance). Experiments in
the context of lossy image compression using the wavelet transform [135]
confirm too that when distortions are suprathreshold, physical contrast is a
better indicator of perceived contrast than predictions based on the CSF.

The authors in [135] also detected that although contrast constancy is
observed too for wavelet subband quantization distortions at suprathreshold
levels in their unmasked experiments (without natural-images as masker),
when using natural-images as masker, selective effects on the perceived
contrast of low-frequency distortions are observed. The authors conclude that
proportioning the contrast of the distortions according to the perceived
contrast ratios, produce lower visual image quality than the one obtained by
proportioning the contrast using CSF derived ratios. The authors also provide
an explanation for this fact based on the global precedence mechanism, which
sanctions the allocation of less contrast to lower-frequency distortion in order
to preserve the visual integration of image features across scale-space.

Also in Part I of the DWT based compression standard, JPEG 2000, the
contrast constancy property is not applied, and by the way of a visual
progressive weighting factor, greater contrast allocation is given to
higher-frequency distortions.

2.4 Objective quality assessment metrics

An objective quality assessment metric for images or video sequences
measures the perceived distortion without human intervention in such a way
that results are highly correlated to the human quality ratings for the image or
sequence. It can be used as part of a quality of service monitoring application
to identify changes of quality over time or as part of a rate-distortion
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framework that seeks to optimize the quality of compressed images by
minimizing the perceived distortion.

When comparing the performance of different coding approaches,
improvements of theses approaches or completely new codec designs, the
most common way of doing the comparison between proposals is in terms of
the Rate/Distortion (R/D) behavior of the compared approaches. When using
R/D comparisons, usually the distortion is measured in terms of Peak
Signal-to-Noise Ratio (PSNR) values, while rates are often measured in bpp
(bits per pixel) when comparing images or Kilobits per second (Kb/s) when
comparing video sequences. However, it is well known that the PSNR metric
not always captures the distortion perceived by the human being (see section
2.1).

So, a lot of efforts were performed to define objective image and video
quality metrics that are able to measure quality distortion closer to the one
perceived by the destination user. In this section, we perform a study of
different available objective image quality metrics in order to evaluate their
behavior, taking as reference the classical PSNR metric. Our purpose is to find
an image quality metric that is able to substitute PSNR for image quality
assessment and video quality assessment in intra mode, and substitute the
PSNR as distortion metric in the R/D comparisons with that metric, thus
obtaining a perceptually more accurate R/D comparison when designing and
evaluating coding proposals.

The main objectives of using Quality Assessment Metrics (QAM) is to
avoid the need to run a MOS test and getting the most accurate perceptual
quality value of images or video sequences. An objective QAM is told to have
better behavior than others if its output quality values are best correlated with
the quality values given by human observers, i.e., as close as possible to the
quality perceived by humans, when a MOS test is performed. Metrics for
assessing how good this correlation is will be reviewed later in this section.
So, QAM refers to the metrics and models for predicting this subjective visual
quality scores, MOS or DMOS.

As summarized in section 2.2, many different types of distortions arise
when processing, transmitting, encoding and compressing images or videos.
An ideal QAM should exhibit a good behavior regardless of what kind of
distortions are affecting the image. Also, it would be desirable that the time
required for providing the quality measure is short enough for a practical use.

In the past years, a big effort has been made in the field of QAM. A large
number or metrics can be found in the literature. Some of them have been
designed for a specific kind of distortion, while others are more generalist and
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try to perform regardless of the distortion type. Besides, each metric design is
different. We provide a classification of image QAM. Objective evaluation of
picture quality in line with human perception is still difficult
[118, 91, 136, 137, 81, 138, 139] due to the complex, multidisciplinary nature
of the problem, including aspects related to physiology, psychology, vision
research, and computer science. Nevertheless, with proper modeling of major
underlying physiological and psychological phenomena, obtaining results
from psychophysical tests and experiments, it is possible to develop better
visual quality metrics to replace non-perceptual criteria like PSNR or MSE.

As mentioned in section 2.1, there is a consensus in a primer classification
of objective quality metrics as Full Reference, No Reference, and Reduced
Reference. Most of the recently proposed image and video QAMs are Full
Reference. They emulate and try to substitute the way that human perception
of image and video quality is used to score the perceived quality, in the sense
that they produce results that are very similar to those obtained from subjective
methods. Most of the FR metrics can also provide a spatial distortion or error
map for each frame or, for video sequences where they provide a time series of
frame level distortion scores.

The time needed to access in FR mode both sequences is affordable for
compression frameworks or applications that are not executed in real time, but
not for real-time quality monitoring applications. In theses cases, NR or RR
metrics are used instead. They detect classes of artifacts or error patterns in
images or sequences, as blocking or blurring, but distortions for which these
metrics have not been designed for remain invisible. Therefore, although most
RR metrics extract features from the original image that will be compared to
the same features extracted from the distorted version, there are also some RR
metric that works like a FR metric but with reduced version of the original
sequence. This is the case of the metric in [140, 141] that uses a low-bandwidth
version of the reference for comparing with the low-bandwidth version of the
distorted sequence.

The VQEG provide a forum where algorithm developers and industry users
meet to plan and execute validation tests of objective perceptual quality metrics.
VQEG testing includes several subjective databases whose results are to be
predicted by the objective video quality models under examination. The format
of the source content, the nature of the degradations, the statistical techniques
and almost every aspect related to how to prepare the visual content and how
to measure the results are parametrized and proposed by the VQEG. As the
design of each metric provides different output quality scales, the VQEG also
proposes the method to compare those heterogeneous metrics by translating
the results in their own scores into a common scale to make them comparable.
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Once a validation test has been completed, VQEG submits a final report to the
ITU, which is ultimately responsible for preparing new standards for objective
perceptual quality measurement.

VQEG has completed three validation tests. The first two tests, called
Full-Reference Television (FRTV-I) [136] and Phase II (FRTV-II), covered
quality measurement of standard definition television services using Full
Reference models. The first test, FRTV-I , was completed in 2000. None of
the models tested outperformed the PSNR. Accordingly, the initial standard,
published by ITU-T Study Group 9 as Recommendation J.144 , included only
informative appendices detailing objective models. The second test, FRTV-II,
was completed in 2003 [137]. At the end of this validation effort, the ITU-T
published an updated version of Recommendation J.144 [142] in which four
objective models were included as standardized objective perceptual quality
measurement methods. The third and most recent validation effort was aimed
at evaluating objective perceptual quality models suitable for digital video
quality measurement in multimedia applications. This project, VQEG
Multimedia Phase I (MM-I), was completed in 2008 [143], and ITU-T Study
Group 9 has subsequently published two new standards based on that report:
ITU-T Recommendation J.247 [144] defines four new full-reference objective
quality methods for multimedia, and ITU-T Recommendation J.246 [145]
defines one new reduced-reference objective quality measurement method for
multimedia.

2.5 QAM Frameworks

QAM can be classified by many factors, such as the metric architecture (number
and type of blocks, stages or algorithms used in the metric design), the primary
domain (space or frequency) where they work, the inclusion or not of HVS
characteristics or HVS models in their design, and so on.

We have found different QAM reviews and different classifications [110,
125, 89, 146, 147, 93, 148, 149] in the literature , but without finding a common
consensus on how to fully classify them. Some of these reviews explain with
great detail most of the metrics cited here, so only the main characteristics or
most relevant aspects of the metrics will be exposed here.

We grouped QAM into three different frameworks depending on the way
they are designed and if their design is driven or not by any of the available
HVS models.

• HVS Model Based Framework



82 Chapter 2. Objective Quality Assessment Metrics

• HVS Properties Framework

• Statistics of Natural Images Framework

If the design of one metric is not clearly based on any specific HVS model,
then we move this metric out of the group of HVS modeled metrics. However,
that metric can still use, somehow, one or more of the previously described
HVS characteristics. The third framework is related to the statistic analysis and
properties of the natural scenes.

So, in this section we will briefly describe the main ideas behind the
different frameworks and the most relevant and cited QAM of each one.
Normally, those main ideas are translated to functional steps or computational
phases that conform the metric architecture. For each of the frameworks, we
will explain briefly these phases or steps.

2.5.1 HVS model based framework

A basic idea of any metric based on an HVS model is that subjective
differences between two images can not be extracted from the given images
(original and distorted one), but from their perceived version. As it is known,
the HVS produces several visual scene information reductions, carried out in
different steps. The way in which this information reduction process of our
HVS is modeled is the key to obtain a good subjective fidelity metric.

This framework includes the metrics that are clearly based on an HVS
model, i.e., their design follows the stages of any of the available HVS
models. We include here the Error Sensitivity Framework (ESF) [81], and also
some other RR and NR metrics that are based on HVS models.

The Error Sensitivity Framework includes mainly FR metrics based on
HVS models, being a common stage in all of them the quantification of the
strength of the errors between the reference and the distorted signals in a
perceptually meaningful way, i.e., using the HVS model. Therefore,
practically all the metrics in this framework (Error Sensitivity) are FR.

Generally, the emulation of HVS is a bottom-up approach that follows the
first retina processing stages to continue with different models about the visual
cortex behavior, modeled as consecutive processing stages. Also, some metrics
deal with cognitive issues about the human visual processing modeling that
issues as additional stages.

The main difference between the FR metrics of this framework is related
with the way they perform the subband decomposition inspired in the complex
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Figure 2.22: Common block diagram of the error sensitivity framework

HVS models [150, 151, 152], low cost decompositions in DCT [153, 154] or
Wavelet [141] domains, and with other HVS related issues like in [155] where
foveal vision is also taken into account and in [156] where focus of attention
is considered. It is worth noting that a big percentage of proposed FR quality
assessment models share the common error sensitivity based philosophy, see
figure 2.22, which is motivated from psychophysical vision science research
[96].

After some pre-processing in the space domain, the HVS usually models
first decompose the input signal into spatio-temporal subbands in both the
reference and distorted signal. As mentioned, this frequency decomposition is
one of the biggest differences between models, and hence between metrics.
Then, an error normalization, weighting process, and masking process is
carried out in order to give the estimated degradation measure.

2.5.1.0.1 Pre-Processing

In this stage, some pre-processing operations are done in order to adequate
some characteristic of the reference and the distorted input versions. These
operations commonly include pixel alignment, image cropping, color space
transformations, device calibrations, PSF filtering, light adaptation, and other
operations. Not all the metrics perform all these operations; each metric adjust
the inputs in a different way.

A point to point misalignment can occur due to different reasons in the
compression, processing, and/or transmission of the reference image, so some
metrics perform a point to point correspondence first that helps in upcoming
stages to minimize assessment errors due to this fact.

Image crop is used by some authors [154, 152, 4, 157] in order to center
processing in a region of interest or to avoid problems that arise in filtering
stages with image boundaries. Some authors also perform some segmentation
process, in order to narrow the application scope of the metric to focus in these
areas. In [4], a segmentation process is done in order to determine which the
dominant blocking areas are based on the evidence that blocking artifacts are
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not noticeable likewise in all regions of the image.

Some metrics decide to convert the color signal to a space color that is
better correlated to HVS. The author in [157] present a FR metric for color
video sequences, based on a contrast gain control model of the HVS. He
performs a conversion from the Y’Cb’Cr’ space color defined in the ITU-R
Recommendation 601 to an opponent color space (B-W: Black-White, R-G:
Red-Green, and B-Y: Blue-Yellow) based on HVS cone sensibility to each
color component. They take the behavior of conventional CRT (Cathode Ray
Tube) displays into account in their color space transformations.

In [154, 152], the authors convert the reference and the distorted image
into the YOZ color space, where Y is the luminance expressed in candela/m2,
O is an opponent color channel calculated with a specific conversion matrix,
and the Z channel is the blue channel given by the International Commission
on Illumination (CIE) Z coordinate. This transform also includes gamma
transformation and a linear color transform.

Nevertheless, some other authors do not perform any color conversions or
transformation, they in fact retain only the luminance information in order to
reduce the computational cost of their proposed metrics. The authors in [4]
introduce a Perceptual Blocking Distortion Metric based on the model
proposed in [150]. They also perform the most important steps from the ESF,
as frequency decomposition, contrast sensitivity filtering, contrast gain
control, error detection, and pooling. Regarding the color conversions authors
argue that only if the metric precision is a critical issue then a color conversion
as in [157] is worthwhile, as it has been shown [158] that it is possible for the
vision model to work on the luminance (Y) component only, without a
dramatic degradation in prediction accuracy. They also propose that the
contrast sensitivity band-pass filtering can be applied only to the luminance
channel based on the fact that color contrast sensitivity is rather low for higher
frequencies, reducing therefore computational costs.

Another type of pre-processing step is the need to convert the digital pixels
(stored in the computer memory) into luminance values of pixels on the
display device, through point-wise non linear transforms. Different gray-level
transformations or corrections are applied as a pre-processing step in order to
account for contrast adaptation to luminance conditions.

Finally, the reference and the distorted images or videos need to be
converted into corresponding contrast stimuli to simulate light adaptation.
There is no universally accepted definition of contrast for natural scenes.
Many models work with band-limited contrast for complex natural scenes
[159], which is tied with the channel decomposition. In this case, the contrast
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Figure 2.23: Daly frequency decomposition model.

calculation is implemented later, during, or after the channel decomposition
process.

2.5.1.0.2 CSF

The CSF can be implemented in the channel decomposition step by the use of
linear filters that approximate the frequency responses to the CSF like in [160]
that is based on a local contrast definition and where a spatio-temporal three
dimensional filter bank is applied to the image, decomposing it in different
frequency perceptually channels. The filter bank design takes into account
subjective psycophysical experiments in order to fix the contrast sensitivity for
each frequency range and orientation, and so the frequency channel
decomposition includes the contrast sensitivity function.

But most of the metrics choose to implement the CSF as weighting factors
that are applied to the channels after the channel decomposition, providing a
different perceptual sensitivity for each channel. In chapter 3 we will discuss
how to introduce the CSF after the decomposition step but in the image
encoding scope.

2.5.1.0.3 Decomposition

Transformations from the image spatial domain into the frequency domain has
been extensively used in the literature in image and video coding algorithms.
The most widely used frequency transforms are the Discrete Cosine
Transform (DCT) and the Wavelet transform. These simple transforms have
been reported due to their suitability for the codification process and certain
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Figure 2.24: Lubin frequency decomposition model

Figure 2.25: Simoncelli et al. frequency decomposition model, Steerable Pyra-
mid.

Figure 2.26: Wavelet frequency decomposition model.
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Figure 2.27: DCT frequency decomposition model.

applications, rather than their accuracy in modeling the cortical neurons; their
models are not close enough to the channel decomposition as our HVS does
while process the incoming signal from our eyes. Nevertheless, some metrics
use a DCT [153] or wavelt [141] frequency decomposition with good
correlation with MOS values.

Quality metrics that try to emulate, as accurately as possible, the way that
our HVS assesses the quality of the viewed scene use more complex models of
this HVS frequency channel decomposition, but taking into account the
constraints of application and computation. Depending also on the metric type
and the type of distortions it handles, metrics use different different channel
decomposition models.

Cortical receptive fields are normally represented by 2D Gabor functions,
but the Gabor decomposition is difficult to compute and is not suitable for
good computational light implementation and for some operations such as
invertibility, reconstruction by addition, etc.

Normally, frequency decomposition is produced by a filter bank whose
design must incorporated spatial location, spatial frequency and orientation in
order to resemble the HVS frequency and orientation channels. This filter
bank design differs between authors. From a practical and implementation
point of view, several authors have implemented pyramidal filter structures. In
[161], Watson modeled frequency and orientation decomposition with similar
profiles as the 2D Gabor functions but computationally more efficient. Other
authors, like Lubin [115], Daly [162], Teo and Heeger [150], and Simoncelli
et al. [163], provided different models trying to approximate as close as
possible to the HVS channel decomposition avoiding prohibitive
implementation issues. In [163], Simoncelly proposed the steerable pyramid,
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Figure 2.28: Typical implementation of masking in quality metrics.

which is a frequency multi-scale and multi-orientation image decomposition
that is invariant to translations and rotations of the stimuli, without aliasing
effect and invertible. In figures 2.23 to 2.27, some of these channel
decomposition models are shown.

There are also some models that cover temporal frequency decompositions
in order to account for the characteristics of the temporal mechanisms in the
HVS [157, 160]. The design of temporal filter banks is normally implemented
using Infinite Impulse Response filters (IIR) that give a delay only of a few
frames; other authors use Finite Response Filters that, although having a bigger
delay, are simpler to implement.

Although the use of sophisticated channel decomposition models is
commonly used in QAMs, normally simpler transforms like DCT or Wavelet
are still employed in the design of image or video codecs due mainly to its
reduced computational cost.

2.5.1.0.4 Error Normalization and Masking

As explained in 2.3.8, masking occurs when a stimulus that is visible by itself
cannot be detected due to the presence of another stimulus. Some times
facilitation occurs, that is when a non visible stimulus becomes visible due to
the presence of another.

Most of the HVS models in this framework implement error normalization
and masking in the form of a gain-control mechanism using contrast visibility
thresholds in order to weight the error signal for each channel, see figure 2.28.
Some metrics [151], normally due to complexity and performance reasons, use
only intra-channel masking, i.e., masking occurs only in each region of the
decomposed (frequency and orientation) spectral domain, while other models
[150] include inter-channel masking as there is evidence that channels are not
totally independent in the HVS.

The visibility threshold adjustment at a point is calculated based on the
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energy of the reference signal (or both the reference and the distorted signals)
in the neighborhood of that point, as well as HVS sensitivity for that channel
in the absence of masking effects (also known as the base-sensitivity). For
every channel, the base error threshold (the minimum visible contrast of the
error) is elevated to account for the presence of the masking signal, and for
this masking elevation several masking models are typically used. The
elevated visibility threshold is then used to normalize the error signal. This
normalization typically converts the error into units of Just Noticeable
Difference (JND), where a JND of 1.0 denotes that the distortion at that point
in that channel is just at the threshold of visibility.

Some authors [164] also include in this stage the luminance masking, also
called light adaptation. Detection threshold for a luminance pattern depends
upon the mean luminance of the local image region. So, the brighter the
background, the higher the luminance threshold. Up to a variation of 0.5 log
units in the luminance threshold might be expected to occur within an image
due to the mean luminance of the block for which it is calculated (assuming a
block basis image encoder). Watson proposes a power function to approximate
the luminance threshold for a DCT block. In [154], a local contrast calculation
is included for every DCT block, converting each DCT coefficient into a value
in the range from -1 to 1 that expresses the amplitude of the corresponding
basis function to the average luminance in that block.

In [111, 165], we can find comparisons of different masking models and
some considerations about how to include them into an image encoder. In
[166], the authors propose a contrast gain-control model of the HVS that also
incorporates a contrast sensitivity function for multiple oriented bandpass
channels.

2.5.1.0.5 Error Pooling

Error pooling is the last step in the process, which is the process of combining
the error signals in different channels into a single distortion/quality
interpretation giving different importance to errors depending on the channels.
For most quality assessment methods, a Lp norm or Minkowski norm is used
for error pooling expressed as in Equation 2.3, where el,k is the normalized
error of coefficient k at frequency level l and β is a constant value lying
between 1 and 4. Importance weights can also be given based on the visual
importance of different regions in the image.

E
({el,k}) =

⎛⎜⎜⎜⎜⎜⎜⎝∑
l

∑
k

∣∣∣el,k

∣∣∣β
⎞⎟⎟⎟⎟⎟⎟⎠
β

(2.3)



90 Chapter 2. Objective Quality Assessment Metrics

Most of the previously cited metrics are FR metrics and follow the
functional stages of the Error Sensitivity Framework although with variations.
This schema, specifically the summation or pooling stage, allows the metrics
to produce spatial error maps, frame-level distortion scores, and
sequence-level distortion scores. In this sense, an image quality assessment
metric can be used directly to rank video sequences. For the time domain
some metrics use temporal HVS models or information to accurately
reproduce human scores while others simply provide their sequence quality
value as a frame-quality average.

2.5.1.1 Metrics

Now we will summarize the most relevant and cited metrics of this framework.

• In the [150] model, Teo and Heeger include basically all steps from EFS
and it is one of the first reference metrics of this framework. Its model is
based on the analysis of the responses of single neurons in the visual cortex
of the cat, where a contrast gain control mechanism keeps neural responses
within the permissible dynamic range while at the same time retains global
pattern information. They perform a Quadrature Mirror Filter (QMF)
frequency decomposition. The gain control mechanism is realized by an
excitatory nonlinearity that is divided by a pool of responses from other
neurons. The distortion measure is then computed from the resulting
normalized responses by a simple squared-error norm as explained before.

• The Moving Picture Quality Metric (MPQM) [160, 151] is a FR metric that
pre-processes the sequences in blocks, making a coarse segmentation of
regions, uniform, pattern, and borders, in order to fix the base masking
threshold for each image block. Frequency decomposition is based on a
local contrast definition and Gabor-related filters for the spatial
decomposition, it uses an isotropic filter for low frequencies regardless the
orientation and for the frequency bands of 2,4,8 and 16 cpd and another
filter for each orientation (0, π/4, π/2, and 3π/4). The 17 filtered spatial
decomposition are followed also by two temporal mechanisms, as well as a
spatio-temporal CSF and a simple intra-channel model of contrast masking.
The masking mechanisms consist of dividing the filtered error signal
(original filtered minus distorted filtered) by the detection threshold
obtaining data this way in units above threshold. Data from each channel is
gathered together in a pooling step. The data provide results for a global
metric and for more detailed metrics for each of the basic image
components: uniform areas, contours, and textures. The global metric also
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takes into account the focus of attention, computing the sequence in
three-dimensional blocks, accounting for persistence of the images on the
retina. Pooling this three-dimensional blocks the global distortion measure
is given. The final distortion measures (global and components) can be
obtained in Visual Decibels, expressed in the commonly used decibels
decibel (dB)s or in a quality rating on a 1 to 5 scale resembling the MOS
scale.

• Base on self developed non-linear and supra-threshold contrast perception
model, the authors in [153] propose the use of a FR metric, working in the
DCT domain that deals with a wider range of distortions than other
model-based metrics. Their model is based on experimental perception
results, so it models as a whole the HVS, including the effects from
photoreceptors to the post-transform suprathreshold non-linearities. They
argue that such a model works better than models that are based on a
stage-after-stage sequential model based on disconnected characteristics of
the HVS. Based on the fact that the HVS maps continuous contrast range
into a finite set of discrete perceptions, they model the bit allocation
properties of the HVS as a redundancy removal process analogous to vector
quantization. Their experimentally parametrized Information Allocation
Function (IAF) model is based on the idea that if the HVS allocated more
information in one area (frequency and orientation), more visual importance
is then given to that area. Their IAF value that includes not only
sub-threshold or at-threshold behavior of HVS, but also the reactions to
supra-threshold impairments, is used to weigh the DCT coefficients, and by
measuring the differences between the perceived images (original and
distorted are processed with the IAF) a subjective difference between both
images is given.

• Following the ESF framework stages, in [164] Watson introduced the
DCTune metric, a FR metric for monochrome images tested with the JPEG
image compression standard, which was extended in [167] for color images
and in [154] for color video sequences with the name of Digital Video
Qualtiy (DVQ). The method treats each DCT coefficient as an
approximation to the local response of a visual channel. For a given DCT
quantization matrix, the DCT quantization errors are adjusted through each
one of the ESF stages (contrast sensitivity, light adaptation, and contrast
masking) and pooled non-linearly over the blocks of the image. This
process results in a 8x8 perceptual error matrix, which is further pooled
again for each block to give the final total perceptual error. In [164], the
author argue in favor of an image dependent quantization matrix giving
arguments against an image independent quantization matrix. He propose a
method that, following each of the ESF stages, obtains a visually optimum
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(at-threshold) quantization matrix for a specific image and bit rate. In [154],
the author include the results of measurements of visual thresholds for
temporally varying samples of DCT quantization noise in order to extend
his previous metric to the time domain. In [152], the authors extended their
previous work, providing also results from subjective tests.

• Although not following all the stages of the ESF, the authors in [87] propose a
FR measuring tool for MPEG-2 video sequences. Their proposal is different
as they include a Cognitive Emulator stage after the Distortion Weighting
stage. This cognitive modeling of quality assessment is seldom included in
quality assessment metrics, and therefore this proposal is interesting because
it not only includes a low-level model of HVS, but also tries to model high-
level cognitive decision stages.

In the Distortion Weighting stage, the authors apply a low-pass filter to the
original and distorted sequence with similar response to the CSF. Then,
with the aid of an edge detection step that runs on the original image, a
simplified masking model is applied. The masking is applied in the space
domain by modifying the luminance values of the neighborhood ( ±5
pixels) of the edges, with a maximum at the sharp luminance transition. The
masking function is applied for vertical and horizontal edges and is
composed as a combination of local masking functions for the pixels in the
aforementioned neighborhood. Prior to the Cognitive Emulator, the authors
obtain what they call the Instrumental Picture Quality (IPQ) . IPQ is a
normalization and mapping of the PSNR to the visual rating. As subjective
rating of quality saturates above and below certain quality values, they
simply apply this saturation effect to the calculated PSNR of the distorted
image, obtaining their IPQ this way. Their saturation limits were fixed at 20
and 50 dB. The Cognitive stage is a predictor of the subjective results from
SSCQE subjective evaluation tests on video sequences. The authors propose
a model to reproduce the decision making tasks involved in a SSCQE test.
Their Cognitive model tries to mathematically include the biased judgment
that could be expected as a result of the rapid picture quality variation in the
video sequence and the need to rapidly decide the perceived quality. Based
on short-term human memory behavior, the influence of strong stimuli that
appears in a frame, persists during several frames. When another strong
stimulus occur within an interval shorter than the memory interval this two
stimuli may merge and normally mask the quality of frames inside the two
distorted frames. Due to the presence of the distorted frames, the quality of
the frames inside is judged to be worse than it would be in the absence of
the distorted frames. This fact is modeled by the authors as a smoothing
stage that modifies the IPQ value of frames between frames with a lower
IPQ value. The perceptual saturation is also included in their model by
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normalizing the IPQ values within the range of 0.0 to 1.0. After the
Smoothing and the Perceptual Saturation stages, an asymmetric tracking
stage is performed. This stage takes into account the fact that observers
respond decisively and quickly to degradation in picture quality, but hesitate
and slow in the case of picture improvement. They model the subjective
gain and losses response by asymmetrically modifying the value of the IPQ
values to account for this fact. The final stage is to delay in time the point
where the modified quality value is applied in the sequence due to the
human response time that was previously estimated (averaged) as 1 second.
All these cognitive stages try to synchronize the video distortion with the
SSCQE data.

• The author in [157] propose the Perceptual Distortion Metric (PDM), a FR
metric for color video sequences, based on a contrast gain control model of
the HVS. He perform a conversion from the Y’Cb’Cr’ space color to an
opponent color space as pre-processing stage. This metric proposes a
separated temporal and spatial frequency decomposition. In the research of
the temporal mechanisms in HVS, there is a consensus of the existence of at
least two filtering stages, a low-pass and a band-pass referred as sustained
and transient channels. Winkler uses two Infinite Impulse Response (IIR)
filters to model these stages, applying the low-pass filter to all three color
channels while the band-pass filter is applied only to the luminance channel
to reduce complexity. The spatial decomposition is implemented with the
steerable pyramid transform proposed by [163], which has the advantage of
being rotation-invariant, self-invertible, and because it minimizes the
amount of aliasing in subbands, but requires higher computational load.
CSF is implemented as a weighting process after subband decomposition.
Masking is implemented as an extension of the Watson [164] masking
model to color images and to video sequences. In [158], the author tested
the PDM metric with different color models. Using the CIE L*a*b* and
CIE L*u*v* models with the metric has better correlation with human
scores. He also concluded that using a luminance only model produced
slightly lower correlations but the slight increases in accuracy of the color
versions may not justify the double computational load imposed by the
full-color PDM.

• Encoding images giving more bits (information) to the correct Regions Of
Interest (ROI) and discarding less important information from peripheral
regions can be perceptually improved by maximizing the quality value
given by a foveated quality metric. Therefore, some metrics use models of
the HVS that include foveation (see 2.3.2) in their design. In [155, 117], the
Foveated Foveated Wavelet Image Quality Index (FWQI) is presented.
FWQI is a FR metric working in the wavelet domain and based on the fact
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Figure 2.29: Block diagram of the PBDM [4]

that the HVS is highly non-uniform in sampling, coding, and processing.
The HVS spatial resolution is higher around the fovea and decreases rapidly
with increasing eccentricity. The reason of using a wavelet decomposition
for this metric is because wavelet analysis delivers a convenient way to
simultaneously examine frequency and spatial information. The design of
this metric includes information about the space variance of the CSF, spatial
variance of the cutoff frequency, and information about the variation of the
human visual sensitivity in different wavelet subbands. The distance to the
image and the display resolution also plays an important role. The
perceptual importance of each wavelet subband is taken from the model in
[106], which fixed the error sensitivity for each subband based on
experimental results. The authors combine this model with a model of the
distance of each wavelet coefficient to the foveation point in spatial domain,
obtaining their FWQI after pooling.

• In [4], the authors propose a blocking impairment metric, the Objective
Blocking Rating (OBR) and the Perceptual Blocking Distortion Metric
(PBDM) based on the OBR. PDMB is a FR metric based on the [150] HVS
model with the modifications made in [160] that include temporal filters and
CSF, and also with the color extensions made by [157]. This extended
model was finally modified to change the gain control stage to the one
proposed by [166]. All the stages in the model clearly explained and
slightly simplified to reduce computational effort. After some
parametrization, the authors get the same correlation with MOS values as
the PDM metric, but with lower computational cost.

The main steps of [4] can be shown in 2.29. The Steerable Pyramid is used
to perform the frequency decomposition, but only to a central region of the
image in order to avoid boundary effects. The CSF is then implemented as a
weight factor that multiplies each subband in the wavelet domain. The CSF
weighted coefficients are then passed to the gain control mechanisms that
square and normalize the coefficients. As is known, the LL subband holds
the low-pass band. It is important to notice that the authors pre-process the
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frames in order to be able to pass the gain-control stage to this subband by
substracting the mean value to each pixel in the frame (in the spatial
domain) before the frequency decomposition. This pre-processing step is
needed therefore in order to prevent the accumulation of energy into the
low-pass band, which could produce that the magnitude of those coefficients
fall out of the the dynamic range of the gain-control stage. A final pooling
stage simulates the integration process of the HVS finally obtaining the
perceptual distortion map with the same size as the original frame,
assigning the perceptual distortion at that spatial location to each pixel.

As shown in Figure 2.29, the authors propose and introduce an additional
blocking stage so that their algorithm produces a blocking region map.
They also provide a method to calculate the ringing artifacts produced after
the frequency decomposition, but as ringing is produced due to edge
reconstruction errors, they should not be considered as blocking artifacts so
that ringing areas are excluded from the blocking region map. Both
algorithms rely on experimentally adjusted thresholds. The authors
averaged the summed blocking distortion by the number of frames and
experimentally adjusted the dynamic range of the metric in a scale of 1 to 5.
Blocking distortion is calculated in the previously segmented blocking
dominant region.

As the viewers attention is located mainly on faces and moving objects, the
authors in [156], although not proposing a novel metric, combine the use of
two quality assessment metrics in order to achieve the global quality rating
of a video sequences. When the focus of attention is located on a particular
area of the scene, the background or the rest of objects in the scene are
coarsely processed. They combine the previously commented FR PDM
metric, which is based on a HVS model and NR [168] metric, to measure
the influence of blockiness, blur, and jerkiness artifacts. The combined
metric is guided from a semantic segmentation of images. The semantic
segmentation is produced mainly for people’s faces. When the focus of
attention is placed on moving objects, then background objects or those
with different velocities are also processed less accurately. In [126], a
spatio-temporal CSF model that accounts for this is presented.

• The authors in [141], made an interesting proposal of two metrics, a FR,
and a RR one for video sequences, based on the same HVS model. Their
model follow all the aforementioned stages such as, color space conversion,
temporal filtering, spatial filtering, contrast computation masking, and
summation. As they point out, the use of a RR or a NR metric that is
specifically designed for catching some impairments, like blocking or
blurring, has the disadvantage of not being able to determine if one potential
artifact is part of the sequence or the result of the compression process of a
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new generation of codecs or algorithms. Therefore, they based their RR on
the same HVS model than the FR one, but working with a reduced
bandwidth version of the reference sequence. This reduction can be scaled
up to FR, adapting to the available bandwidth. Although their model is
based on previous HVS models, the parametrization that authors perform on
the model is guided by the responses to natural video frames rather than by
the responses to simple visual stimuli such as sinusoidal gratings. In
addition, they propose a method to perform a perceptually driven rate
control based on a previous work [169] and using the new RR metric as a
distortion measure in the rate control algorithm.

2.5.2 HVS properties framework

In this framework, we include other types of metrics that although not based
on a specific HVS model, are still inspired on the HVS in the sense that their
design takes some of the aforementioned HVS properties into account. We
also include here, those metrics that are built to detect specific impairments
produced by any of the processing stages of images and videos, like
quantization, encoding, transmission etc., by analyzing different image
properties.

2.5.2.1 Metrics

• The Institute for Telecommunication Sciences (ITS), proposed an objective
video quality assessment system that was based on human perception in
[170]. Instead of following one of the HVS models stage by stage, they
extract several features from the original and degraded video sequences.
Those features were forward statistically analyzed in comparison with the
corresponding human rating extracted form subjective tests. This analysis
provides the parameters that adjust the objective measures for these
features, and after being combined in a simple linear model, they provide
the final predicted scores. Some of the extracted features require the
presence of the original sequence while others are extracted in a no
reference mode. The proposed metric exploits spatial and temporal
information. The processing includes Soebel filtering, Laplace filtering, fast
Fourier transforms, first-order differencing, color distortion measures, and
moment calculation.

• Based on previous works, the ITS in [140] proposed a RR metric for
in-service quality monitoring system. Their metric is built on a set of
spatio-temporal distortion metrics that can be used for monitoring in-service
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of any digital video system. Authors show that a digital video quality
metric, in order to be widely applicable must accurately emulate subjective
responses, must work over the full range of quality (from very low bit rate
to very high), must be computationally efficient, and should work for
end-to-end in-service quality monitoring. The metrics presented in their
work are based on extracted features from the video sequence as in [170],
and in order to satisfy the last condition (to be able to work in in-service
monitoring systems), these features, extracted from spatio-temporal regions,
are sent, compressed following the ITU-R Recomendation BT.601 through
an ancillary data channel so that it can be continuously transmitted. In the
paper, the authors describe these spatio-temporal distortion metrics in detail
so that they can be implemented by researchers.

• Later, through the National Telecommunications and Information
Administration (NTIA), the same authors proposed the General Model of
the Video Quality Measurements Techniques (VQM) metric for estimating
video quality and its associated calibration techniques. This metric was
submitted to be independently evaluated on MPEG-2 and H.263 video
systems by the Video Quality Experts Group (VQEG) in their Phase II Full
Reference Television (FR-TV) test. The VQM, which is based on the same
algorithms used in their previous works [170, 140] was standardized by the
VQEG, and a technical report [171] was supplied with a full description of
the metric and all its operation modes. This metric was later summarized in
[172]. As mentioned before, the VQM uses RR parameters that are
extracted from optimally-sized spatio-temporal regions of the video
sequence. The ancillary channel and the calibration techniques require at
least a 14% of the uncompressed sequence bandwidth. Information is sent
through that channel. Although being conceptually a RR metric, it was
submitted to the VQEG FR-TV test because the ancillary channel can be
used to receive more detailed and complete references from the original
frames, even the original frames themselves. The VQM with its associated
calibration techniques comprise a complete automated objective video
quality measurement system. The calibration techniques include spatial
alignment, valid region estimation, gain and level offset calculation, and
temporal alignment. Finally, in [173], the authors reduce the requirements
of some of the features extracted in the NTIA General Model in order to
achieve a monitoring system that uses less than 10 kbits/s of reference
information.

• In [174], the authors propose a NR metric for blocking artifacts in images.
Previous NR blocking metrics measured the amount of blocking by using a
weighted mean-squared difference along block boundaries [175]. This
method can produce situations in that even the original image can be
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evaluated as blocky. The authors propose to treat the distorted image as a
pure non-blocking image that is interfered with a pure blocky signal, and
the key of the metric is to measure the power of that blocky signal. They
define an ideal 1-D blocky signal that is suppose to interfere the original
image for each row and column. For measuring the amount of blocking,
they use a power spectrum estimator of the image in the Fourier domain,
i.e., after applying the Fast Fourier Transoform (FFT). A final weighting
and summing stage that processes row and column information produces
the final blocking measure.

• The authors in [176] propose another NR metric for blocking artifacts; this
work was extended in [177]. Their metrics work in the DCT domain. They
first define a 2-D step function for modeling an overlapping block that is
made of the bottom and upper part of vertically adjacent blocks, or left/right
for horizontal adjacent blocks. Once they have modeled the 2-D step function
of that overlaping block and are able to measure the amount of edge activity
(blocking) in the DCT domain, they include the luminance masking and the
texture masking in the process. Although more accurate models have been
proposed in the literature, they propose a simple model of texture masking
artifacts to facilitate real-time operations using the amplitude of the 2-D step
function, and the amount of blocking measured for the horizontal and vertical
edge activity. For luminance masking, they adopt the model proposed in
[178]. Finally, they produce a map of artifact visibility for the whole image
so that block artifacts reducing algorithms can adaptively work according to
local visibility. They also provide a combined numerical value as a global
blocking artifacts measure in the image.

• A NR metric for blocking and blurring and specifically designed for JPEG
compressed images is presented in [179] with low computational cost. The
authors provide a Matlab implementation of the metric and the value for
their model parameters obtained so that the results can be reproduced. The
metric measures blocking and blurring, combining both together to get the
final image score. First they calculate for each row a new row that holds the
differences with the previous row. This differences image is used to calculate
next values. The blockiness measure is estimated as the average differences
across block boundaries and the blurring is calculated using the activity of
the image signal. The activity is calculated using the average for in-block
differences and the zero-crossing rate for each block. Zero-crossing occurs
when for a differences row the difference value for a specific column crosses
zero, i.e., previous column has a positive value and next column negative or
vice versa. Finally, the blockiness and the two activity measures are modeled
in an equation whose parameters are obtained by fitting the MOS values of
various test image sets.
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• A NR perceptual blur metric is presented in [180] that is based on the analysis
of the spread of the edges in an image. They argue, based on a correlation
with MOS values, that measuring the spread of vertical edge is sufficient to
model the perception of blur, avoiding repeating the measures for horizontal
edges or in the direction of the gradient of those edges. They use a Sobel
filter to detect vertical edges and measure the local blur for each row as the
width of the edge. Averaging this local blur for all the edge locations on
the whole image, they get the final blur measure. To detect the width of
each edge detected with the Sobel filter, the beginning and end pixels are
determined by searching around the edge location the local maximums and
minimums for each row. Their proposal has low computational complexity
and its performance is independent of the image content.

In [181], the same authors extended their work to include the
aforementioned NR blur metric with a FR Blur metric and a FR Ringing
metric. The proposed metrics are defined in the spatial domain with very
low complexity and are based on the analysis of the edges in an image. The
blur metrics measure the spread of the edges and the ringing metric
measures oscillations around edges. In the FR version, the edges used for
their algorithm are those from the original image while in the NR version,
the edges are obtained directly form the processed or compressed image.
The ringing metric is based on the FR blur metric. From the wavelet
decomposition filters, they obtain a fixed ring-width. The edge width
measured by the blur metric is substracted from that ring-width. The
resulting width is the distance around the edge (left and right) where
differences (oscillations) with the original image are locally measured for
each edge position. The difference between the maximum and minimum
difference in the ring-width (left and right) is multiplied by the ring-width
itself, giving the amount of ringing for each edge position. Averaging for all
edge positions in the image they obtain a global ringing measure. They
finally combine both metrics (blur and ringing) to a FR quality metric.

• The Reduced Reference metric called Hybrid Image Qualitiy
Metric (HIQM) proposed in [182] is a weighted sum of different image
artifact measures (smoothness, blocking, ringing, masking, and lost
block/pixel). The blocking measurement is based on the algorithm proposed
by Wang et al. [174, 179]. The blur measurement algorithm is based on
previous work in [180]. They use the metric proposed in [183] to detect
ringing and lost blocks by measuring the edge activity and the gradient
activity that is higher in the distorted image due to the apparition of false
edges. Finally, masking detection is based on the global contrast measure of
the image that is in turn based on the standard deviation of the first-order
image histogram that is used to measure the average brightness of the
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image. A weight is given for each distortion and an averaged weighted sum
produces the final quality value of the metric. The weights are empirically
obtained in order to achieve good correlation with PSNR.

• The proposal of [184] includes another way to assess the quality of images.
In this case, images to be judged are improved versions of the original ones,
i.e., they try to predict the quality of enhanced images. The authors argue
that the Error Sensitivity approach or the use of RR or NR metrics that are
based on properties of the distorted image are not suitable for this task
because those methods are designed to assess the quality of degraded
images. So they propose to use a neural network that has been trained to
predict the final quality of the enhanced images as it would be judged by
human assessors. The inputs to the neural network are numerical values
corresponding to several objective properties of the enhanced image. These
values are determined at the signal level, i.e., are based on pixel values that
are extracted block by block (block size, 32x32 pixels). These features
describe the image content in terms of luminance distribution, spatial
orientation, frequency energy distribution, etc.

• As in other proposals, the authors in [185] propose the use of a RR metric to
assess the quality of a video sequence. They use image properties or
indicators to measure differences between the original and distorted image
that are encoded and transmitted with the video sequence. So at the decoder
side, the same properties are obtained from the distorted image and
compared with the original ones. The authors use this RR metric in
combination with another NR metric to assess quality of video streaming
over IP networks. The RR metric accounts for image quality while the NR
metric accounts for transmission quality. The basic indicators for the RR
metric include the Estimated Additive Gaussian Noise power level (based
on Wiener filtering), the Impulsive Noise power level estimation (based on
median filtering), Blocking and Blurring artifacts (based on [174, 179]) and
finally, statistics of Ringing Artifacts (based on a Perona-Malik filter).
These properties are embedded in the coded bitstream. The NR component
mainly refers to the impact of temporal resolution reduction, packet losses,
latency, and delay jitter. Although packet loss and out of sequence ratios
can be derived by gathering the communication channel output, authors use
only the decoded information to detect these effects.

• Other metrics that take advantage of the contrast masking effect of the HVS
are included in this framework. So, we can find metrics based on
watermarking techniques that analyze the quality degradation of the
embedded image [186]. Also, in the metric presented in [187] based on a
new concept named Quality-aware image, authors extract some features of
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the original image that are embedded into the image as invisible hidden
messages. When the distorted image is received, the loss of parts of that
hidden features yields to an objective measure of the quality of the received
image.

• In [188], a Weighted MSE (WMSE) measure is proposed, where local
luminance, contrast sensitivity, and masking are taken into account in the
proposed quality index. They use a variation of the filter bank
decomposition proposed by Simoncelli et al. in [163]. As a result of the
filter operation on the image they get three channels, luminance Yi j(x, y),
red-green RGi j(x, y), and yellow-blue JBi j(x, y), where i indexes the radial
frequency band and j indexes the orientation with center frequency of jπ/4.
The decomposition in the frequency domain resembles the Simoncelli
decomposition and is shown in Figure 2.30. After the filtering stage, the
luminance and chrominance channels are converted into a measure of local
contrast for each band and orientation by normalizing each channel with the
global average luminance of the image. To include the contrast sensitivity,
they calculate a sensitivity function for each channel but using different
CSF models for luminance and chrominance channels. For the luminance
channels, they use the Barten CSF function [189], and for chrominance they
use the Martin, Ahumada and Larimer CSF function [190]. To obtain a
Weighting factor for each channel, they apply each of the CSF models to the
channel functions for the central frequency in each band. And finally, they
apply a threshold elevation function to account for contrast masking. They
provide a final WMSE that is the weighted sum of all MSE’s in all
frequency bands, orientations, and luminance and chrominance
components.

2.5.3 Statistics of natural images framework

Some drawbacks of the Model Based HVS framework are reviewed in
[81, 191]. Some of these drawbacks are, for example, that the HVS models
work appropriately for simple spatial patterns, like pure sine waves; however,
when working with natural images, where several patterns coincide in the
same image area, then their performance degrades significantly. Another
drawback is related to the Minkowsky error pooling, as it is not a good choice
for image quality measurement. As the authors show, different error patterns
can lead to the same final Minkowsky error. Also, the HVS Model based
framework is designed to estimate the threshold at which a stimulus is just
barely visible. These subjectively measured threshold values are then used to
define error sensitivity measures as the CSF and various masking effects. But
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Figure 2.30: Decomposition in the frequency domain used in the WMSE pro-
posal.

most of the impairments produced while processing images are above these
thresholds, i.e., are clearly visible, so it is not clear that the near-threshold
models can accurately assess suprathreshold distortions. Some studies try to
include suprathreshold psychophysics for analyzing image distortions
[192, 193, 194].

Therefore, several authors argue that the approach to the problem of
perceptual quality measurement must be a top-down approach, analyzing the
HVS to emulate it at a higher abstraction level. The authors supporting this
approach propose to use the statistics of the natural images. In [195], a review
of recent Natural Scenes Statistics (NSS) models is presented.

Some of them propose the use of image statistics to define the structural
information of an image. When this structural information is degraded, then
the perceptual quality is also degraded. In this sense, a measurement of the
structural distortion should be a good approximation to the perceived image
distortion. These metrics are able to distinguish distortions that change the
image structure from distortions that do not change it, like changes in
luminance and contrast.
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2.5.3.1 Metrics

• In [81, 196], the authors define a Universal Quality Index (UQI) that is able
to determine the structural information of the scene. This index models any
distortion as a combination of three different factors: a) the loss of correlation
between the original signal and the distorted one; b) the mean distortion that
measures how close the mean of the original and distorted version are; and c)
the variance distortion that measures how similar the variances of the signals
are. The dynamic range of the Quality Index i [-1,1], being 1 the best value,
when the signals are identical. They apply this index in a 8x8 window for an
image obtaining a quality map of the image. The overall index is the average
of the quality map.

• The authors in [191] further improve their previous quality index proposing
the Structural SIMilarity (SSIM) (Structural SIMilarity) quality index. This
metrics, based on the Universal Quality Index [81, 196] works in the spatial
domain. They expose that the index gets better results if it is applied locally
and then averaged rather than applying it over the whole image. Applying
the SSIM locally reduces the foveation effect, because at typical viewing
distances only a part of the image is perceived with high resolution, and can
provide a spatially varying quality map of the image. Instead of applying it in
a 8x8 block basis as in their previous work, which produces a blocking effect,
they use a 11x11 circular-symmetric Gaussian weighting function. They use
the Mean SSIM (MSSIM) index to evaluate the overall image quality. Due
to the existence of the quality map, the quality of Regions Of Interest (ROI)
can be easily computed by averaging the quality in those regions. Several
weighting functions can also be applied to the local quality index in order to
adapt to any application; however, they use a uniform weighting. This work
was later fully explained as a book chapter in [197].

• The authors in [198, 199] proposed a video quality metric following a frame
by frame basis. They apply the SSIM index locally in 8x8 blocks randomly
selected to reduce computational costs. They apply the SSIM index to the
Y, Cb and Cr color components independently and obtaining the global
color SSIM index using a weighted summation. Using statistical features
like mean and variance, they classify the blocks as smooth region, edge
region, or texture region. The results of all the selected areas are averaged to
give the frame quality value. This value is further adjusted based on the
overall blockiness of the image and the motion factor. The blockiness and
blurring are evaluated globally for each frame using the NR metric
proposed in [174]. Instead of using a uniform weighting factor while
averaging the randomly selected blocks, they assign different weights based
on the local luminance; for example, as dark areas attract hardly the



104 Chapter 2. Objective Quality Assessment Metrics

attention of the viewer these areas get a lower weight. The authors also
perform a second adjustment based on how the blur distortion is considered
depending on the motion in the scene. The motion information is obtained
by a simple block-based motion estimation algorithm with full pixel
resolution. The final video sequence quality index is the average of the
frames quality values. In a still or low motion frame, severe blurring
artifacts are very annoying, but in a large motion frame the same amount of
blur is perceived as less important because motion blur occurs at the same
time. They give different weights according to the type of the frame motion.

• In [200], extended their SSIM to a new Multi-Scale Structural
SIMilarity (M-SSIM) model. The new proposed multi-scale analysis runs a
low-pass filter to the images (original and distorted versions) and a
downsampling process to the filtered images iteratively. Then, at each of the
resulting scales, the SSIM index is applied. After M-1 iterations, the Scale
M is obtained being the original resolution the Scale 1. At each scale, the
contrast comparison and the structure comparison of the SSIM is applied
whereas the luminance comparison is applied only at Scale M. The final
multi-scale SSIM index is obtained by a weighted combination of the
comparison operators. Different weights can be applied to each scale, in the
same sense as the CSF applies different weights to each frequency subband,
they uniformly weight each scale. They perform a subjective test in order to
detect the perceptual importance distortions (in increasing grade) applied at
each scale. The results of this subjective test provided the perceptually
adjusted weights for each scale. The reason why the authors did not use the
CSF for this task is because it is typically measured at visibility thresholds
levels and using only simplified stimuli (sinusoids) and the purpose of the
new M-SSIM is to compare the quality of complex structured images with
distortions above threshold.

• As stated in [201], the main drawback of the spatial domain SSIM
algorithm is that it is highly sensitive to translation, scaling, and rotation of
the image. So, in this work [201], the authors presented the Complex
Wavelet SSIM (CW-SSIM) which extend the SSIM method to the complex
wavelet transform domain and make it insensitive to non-structural
distortions like zoom, rotations, and translations produced by movements of
the acquisition devices. This insensitivity works only if these movements or
zooms are smaller than the wavelet filters used.

• In [202], the authors propose a general adaptive linear system framework
that is able to decompose the distortion between two images into linear
combinations of the constituent distortions. One linear combination
corresponds to non-structural distortions like luminance and contrast
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changes, gamma distortions and horizontal and vertical translations. It is
obtained in a pre-procesing step where the weights for each type of
distortion are also computed. The other combination corresponds to
structural distortions. A frequency decomposition method, based on the
DCT transform matrix, is applied to obtain the structural distortions. With
the weighted combination of the two types of combination, a QAM is
proposed.

Other authors use also statistics of the scene in a different way. They state
that the statistical patterns of natural scenes have modulated the biological
system, adapting the different HVS processing layers to these statistics. First,
a general model of the natural images statistics is proposed. The modeled
statistics are those captured with high quality devices working in the visual
spectrum (natural scenes). So, text images, computer generated graphics,
animations, drawings, random noise or images and videos captured with non
visual stimuli devices like Radar, Sonar, X-ray, etc. are out of the scope of this
approach. Then, for a specific image, the perceptual quality is measured
taking into account how far its own statistics are from the modeled ones.

• In [203], a statistical model of a wavelet coefficient decomposition is
proposed; later, in [204] a RR Image Quality Assesment (RRIQA) is
presented. The authors use a model of the statistics of natural images in the
wavelet transform domain. They work with the steerable pyramid wavelet
transform from [163] and use the Kullback-Leiber Distance (KLD) to
measure how different the marginal probability distributions of wavelet
coefficients in the reference image and distorted images are. This is used as
measure of distortion. They find that several well known types of image
distortions produce significant changes in the wavelet coefficient histograms
that are detected by the metric. They do not assume any distortion model, so
the proposed method is potentially useful for a wide range of distortion
types. The marginal probability distribution from the distorted image is
obtained directly from the decoded wavelet coefficients, but the marginal
distribution from the reference must be transmitted to the receiver as RR
data. If the histogram bin size is small then the bandwidth required to
transmit the RR features is very demanding, but if the histogram bin size is
large then the accuracy of the KLD is reduced. But they send only three
parameters as RR data. The cue is that the marginal distribution of the
coefficient in an individual wavelet subband can be modeled as a
two-parameter Generalized Gaussian Density (GGD) model as they refer.
The third parameter is the prediction error between the original distribution
and the GGD distribution. So, in the receiver side using the GGD
parameters and the error prediction, the marginal distribution of the
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reference image can be reconstructed. These parameters are computed and
sent for each wavelet frequency subband.

• In [205], the authors propose a NR metric (NRJPEG200) that uses a
statistics of natural images model in the wavelet domain [206, 207] in
conjunction with information of the distortion model of the JPEG2000
encoder. With both information, they build a simplified model that
characterizes images compressed by JPEG2000 as well as uncompressed
natural images. The statistical model predicts the wavelet coefficient’s
magnitude conditioned on a linear prediction of the coefficient. The linear
prediction is calculated based on two image dependent estimated thresholds
and the relationship of the coefficient with its parent, grandparent, and its
neighbors. The quantization of wavelet coefficients produces a reduction of
the significant coefficients altering these relationships that are used to
predict the quality with no reference of the original image.

• Some metrics defined under this approach take the objective quality
assessment as an information loss problem, using techniques related to
information theory [204, 85]. In [85], the authors propose to approach the
quality assessment problem as an information fidelity problem, where a
natural image source communicates with a receiver through a channel. The
channel imposes limits on how much information can flow from the source
(natural image), through the channel (distortion process) to the receiver
(human observer). So they model the input and the output of the channel.
The natural image is modeled using Gaussian Scale Mixtures (GSM) that
have been reported as very appropriate to model the marginal density
functions of the wavelet coefficients and the highly space-variant local
statistics of a wavelet transformed natural image [208]. The distortion
model is a simple attenuation and additive Gaussian noise model in each
subband. Given the source and the distortion the Information Information
Fidelity Criterion (IFC) is the mutual information between the source and
the distorted image, i.e., the statistical information that is shared. An
important feature of the IFC is that it does not involve any parameters
associated to display devices, data from psychophysical experiments,
viewing configuration, or any stabilizing constants. The IFC is not a
distortion metric, but a fidelity criterion, i.e., in ranges from zero (no
fidelity) to infinite (perfect fidelity).
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2.6 QAM comparison

As previously mentioned, each QAM gets the quality of the image/video using
their own and specific scale that depends on its design. Therefore, these raw
quality scores cannot be compared directly, even though the range of the
values (the scale) is the same. In order to compare fairly the behavior of
various metrics for a set of images or sequences, the objective quality index
obtained from each metric has to be converted into a common scale.

When reviewing the performance comparisons that the authors made in
their QAM proposals, few details are provided about the comparison
procedure itself, so it is difficult to replicate these results. In addition, different
tests, with the same image set and even with the same subjects, can provide
slightly varying results for a set of metrics, but as explained in [209], the
results should be in line when tests are correctly done.

In VQEG, subjective tests were repeated by several laboratories and the
Pearson correlations between results by different laboratories range from
0.924 to 0.986, with mean of 0.97, confirming that even the best test
methodologies cannot fully compensate for the uncertainty related to human
factors such as test subjects and the consistency and interpretation of
instructions. These results suggest also that slightly less consistent MOS
scores are obtained in subjective tests carried out with image databases
containing several different types of distortions than that obtained when the
database has only a specific type of artifacts.

The authors in [209] reviewed the sources of inaccuracy in each step of
the QAM comparing processes, shown at Figure 2.31. Test video sequences or
images from a database with known subjective scores (MOS or DMOS) are the
input to the QAM. The QAM provides its quality indexes or raw scores. Then,
regression analysis is used to find a function that maps the obtained raw scores
into subjective quality scores. Finally, a correlation analysis is performed to
estimate how accurately the subjective scores are predicted from the objective
quality indexes. The set of sequences or images in the database are called the
metric training set because they are used to fix the regression function.

The sources of inaccuracy in this process may be related to many factors
such as the reliability of the subjective reference data, the types and degree of
the distortions in the images or videos, the selection of the content that made
up the training and testing sets, and even the use and interpretation of the
correlation indicators. These sources of inaccuracy can lead to quantitative
differences when the same QAM is tested by different authors, even when the
tests are correctly done.



108 Chapter 2. Objective Quality Assessment Metrics

Figure 2.31: Block diagram of the QAM evaluation process

The method in Figure 2.31 is the one proposed by the VQEG [137] with
some refinements proposed in other relevant comparison tests [210], where the
target scale used is the DMOS scale (Differences Mean Opinion Score). From
a a subjective test, for example a Double Stimulus Continuous Quality Scale
(DSCQS) method as suggested in [137], the Mean Opinion Score (MOS) can
be calculated for the source and distorted versions of each image or sequence
in this set. The scale used by the viewers goes from 0 to 100. These scores are
converted into difference scores and processed further as explained in [85] to
get the DMOS also in the 0-100 range.

The DMOS is the difference between the MOS value obtained for the orig-
inal image/sequence and the MOS value obtained for the distorted one. So, for
a particular image or sequence, its DMOS value provides the mean subjective
value of the difference between the original and the distorted versions. A value
of 0 means no subjective difference found between the images by all the view-
ers. Due to the nature of the subjective test, this value is very unlikely.

Performing a subjective test following the recommendations of the VQEG
is not an easy and quick task, because a lot of technical requirements must
be taken into account and some statistical analysis must be done to the raw
subjective data in order to follow VQEG recommendations [136]. So, as shown
in Figure 2.31, the source of the subjective scores for such comparison test, is
usually an image or video database with the associated MOS or DMOS values.

In [149], the authors review a set of perceptually scored image databases,
LIVE [211], CSIQ [212], IVC [213], Toyama [214], A57 [215], TID [216],
and WIQ [217]. In addition, some video databases like CSIQ [218], TUM
[219], LIVE[93], VQEG-FR-PhaseI [220], and VQEG-HDTV-PhaseI [221]
also include subjective values. For the majority of the databases analyzed in
[149], the results are in accordance with the results of our tests, which are
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shown below.

2.6.1 Metric comparison results

The issues summarized in [209] encouraged and guided us to perform our own
comparison test with a set of the most relevant QAM, whose source code or
test software has been made available by their authors. The results of our tests,
as expected, were slightly different from other comparison tests but remain in
line with their results as [209] predicts. The metrics used in our study are
summarized herewith.

• The DMOSp-PSNR metric. We translate the traditional PSNR to the
DMOS space applying a scale-conversion process. We call the resulting
metric DMOSp-PSNR.

• The Mean Structural SIMilarity index [191] (MSSIM) from the Structural
Distortion/Similarity Framework. In the reference paper, this FR metric was
tested against JPEG and JPEG2000 distortion types. We test its
performance with the new distortion types available in the second release of
Live Database, Live2 Database, since it is considered a generalist metric.

• The Visual Information Fidelity (VIF) metric [222] from the Statistics of
Natural Images Framework. A FR metric that quantifies the information
available in the reference image, and determines how much of this reference
information can be extracted from the distorted image.

• The No-Reference JPEG2000 Quality Assessment (NRJPEG2000) [198]
from the Statistics of Natural Images Framework. A NR metric that uses
Natural Scene Statistical models in the wavelet domain and uses the
Kullback-Leibler distance between the marginal probability distributions of
wavelet coefficients of the reference and distorted images as a measure of
image distortion.

• Reduced-Reference Image Quality Assessment (RRIQA) [204] from the
Statistics of Natural Images Framework. The only RR metric under study. It
is based on a Natural Image Statistical model in the wavelet transform
domain.

• The No-Reference JPEG Quality Score (NRJPEGQS) [179] from the HVS
Properties Framework. A NR metric designed specifically for JPEG
compressed images
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• The Video Quality Metric[172] (VQM General Model) from the HVS
Properties Framework. The VQM uses RR parameters sent through an
ancillary channel that requires at least 14% of the uncompressed sequence
bandwidth. Although being conceptually a RR metric, it was submitted to
the VQEG FR-TV test because the ancillary channel can be used to receive
more detailed and complete references from the original frames, even the
original frames themselves.

As exposed, the first step in the comparison method is to perform a
subjective test to obtain the DMOS values. We have not done such a subjective
test. Instead, we have used directly the DMOS values published in the Live
Database Release 2 [211] and in the VQEG Phase I Database [220] following
the method shown in Figure 2.31. Image metrics were applied to each frame
of the sequences and the mean raw value for all the frames was translated to
the Predicted DMOS (DMOSp) scale.

As suggested in [209, 223], the performance evaluation of the metrics
(Correlation Analysis step) should be computed after a non-linear curve fitting
process. A linear mapping function cannot be used because quality scores are
rarely scaled uniformly in the DMOS scale because different subjects may
interpret vocabulary and intervals of the rating scale differently, depending on
the language, viewing instructions, and individual psychological
characteristics. Therefore, a linear mapping function would give too
pessimistic a view of the metric performance. Several mapping functions
could be selected for this purpose, such as cubic, logistic, exponential and
power functions, being monotonicity the main property that the function must
comply with, at least in the relevant range of values.

The non-linear mapping function between the objective and subjective
scores used in our tests was the one suggested by the VQEG and other relevant
authors [136, 137, 210], and is shown in Equation 2.4. It is a parametric
function that converts the metric raw score into a value in a Predicted DMOS
(DMOSp) scale. In this DMOSp scale, the quality score given by a metric for
a specific image/sequence is directly comparable with the one given by the
other metrics for the same image/sequence.

Quality(x) = β1logistic(β2, (x − β3)) + β4x + β5 (2.4)

logistic(τ, x) =
1
2
− 1

1 + exp(τx)
(2.5)
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Equation 2.4 has five parameters, from β1 to β5, that are fixed by the curve
fitting process. We have not found in the literature any mapping function
jointly with the parameter values for any image/video database. So, we have
calculated these parameters based on sets of images and sequences that
conforms our training set.

In figures 2.32(a) to 2.32(g), the dispersion plots used in our fitting process
for all the selected metrics are shown. Each point of the scatter-plots
corresponds to an image in the training set and represents the DMOS value
obtained from the scores given by a set of viewers.

The x-axis of the plots correspond to the raw values given by each of the
metrics. On the y-axis we have the corresponding DMOS values from the
database. The curve fitting process gives us the parameters for Equation 2.4,
which is represented by the solid curves. Depending on the metric, increasing
x-axis values can have different interpretations, for example, in Figure 2.32(a)
for the VIF metric, 0 corresponds to the highest quality reported by the metric
and decreasing values mean lower quality, whereas in Figure 2.32(b) for the
MSSIM metric, a value of 0 on the x-axis corresponds to lowest quality value
being 1 the corresponding value to best reported quality.

The quality of the images in the subjective test is variable, covering a large
range of distortion types and intensities for each distortion. Image distortions
go from very highly distorted to practically undistorted ones. The viewers gave
their scores for each image in the set, obtaining the average DMOS value. As
shown in Figure 2.32(a), the dynamic range of the average DMOS values does
not reach the limits of the DMOS scale (0 and 100) for any distortion type;
therefore, the fitted curve predicts DMOSp values inside the same dynamic
range. This is the reason why for a raw score of 0 (the best possible quality
for the metric in this case), the predicted DMOSp value is not 0, i.e., there was
no image scored with a DMOS value of 0; instead of that, the best DMOSp
value obtained is around the value of 20. So, in the case of the VIF metric,
its dynamic DMOSp range varies from 20 to 80. The rest of the metrics have
slightly different dynamic DMOSp ranges because the set of images used in
each case is different, as we explain below.

Once the beta parameters have been obtained for each metric (see Table
2.1), the raw scores can be translated to the DMOSp scale shared by all metrics
and hence, we can compare the results given by different metrics while scoring
the same image.

The fidelity to subjective scores of a metric is considered high if the
Pearson Correlation Coefficient (PCC) and the Spearman Rank Order
Correlation Coefficient (SROCC) are close to 1 and the Outlier Ratio (OR) is
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(a) VIF (b) MSSIM

(c) RRIQA (d) PSNR

(e) NRJPEGQS (f) NRJPEG2000

(g) VQM

Figure 2.32: Dispersion plots of the evaluated metrics including the curve fit
for Eq. 2.4
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Table 2.1: Equation parameters of metrics under study

β1 β2 β3 β4 β5

MSSIM -39.5158 14.9435 0.8684 -10.8913 46.4555
VIF -3607.3040 -0.5197 -1.6034 -476.0144 -693.3585

NRJPEGQS 37.6531 -0.9171 6.6930 -0.2354 40.7253
NRJPEG2000 37.3923 0.8190 0.6011 -0.8882 74.5031

RRIQA -18.9995 1.5041 3.0368 6.4301 5.0446
PSNR-DMOSp 23.2897 -0.4282 28.7096 -0.6657 61.5160

VQM-GM -163.6308 6.3746 -7.6192 114.4685 76.6525

low [148]. In Table 2.2, the performance parameters of our fittings are shown.
These performance parameters show the degree of correlation between the
DMOSp values and the subjective DMOS values provided by the viewers.
Performance validation parameters are the PCC, the Root Mean Squared
Error (RMSE), the SROCC, and the OR. In Table 2.3 we include also the
Mean, Max, and Standard Deviation (SD) of error. In order to interpret
correctly the meaning of error is worth to remember that the resulting
DMOSp values for each metric correspond to values located on the fitted
curve plotted in red in figures 2.32(a) to 2.32(g). So the error for each DMOS
point (blue points) is the distance (absolute value) to the fitted curve. Outliers
have not been removed from the sets for obtaining these error parameters that
provide an idea of how far or close the cloud of points is to the fitted curve in
each case.

• The PCC is the linear correlation coefficient between the Prredicted DMOS
(DMOSp) and the subjective DMOS. It measures the prediction accuracy of
a metric, i.e., the ability to predict the subjective quality ratings with little
error.

• The SROCC is the correlation coefficient between the DMOSp and the
subjective DMOS. It measures the prediction monotonicity of a metric, i.e.,
the degree to which the predictions of a metric agree with the relative
magnitudes of the subjective quality ratings.

• OR is defined as the percentage of the number of predictions outside the
range of 1.5 times the standard deviation of the subjective results. It measures
the prediction consistency, i.e., the degree to which the metric maintains the
prediction accuracy.

• Mean Error is the mean of the errors produced when obtaining each DMOSp
value in relation to their original DMOS value (for all images in the used
training set).
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Table 2.2: Statistical parameters of the goodness of fit

PCC RMSE SROCC OR
MSSIM 0.8625 8.1809 0.8510 0.0359

VIF 0.9502 5.0187 0.9528 0.0282
NRJPEGQS 0.9360 5.7006 0.9020 0.0455

NRJPEG2000 0.9099 6.7306 0.9021 0.0059
RRIQA 0.9175 6.5393 0.9194 0.0353

PSNR-DMOSp 0.8257 9.0852 0.8197 0.0064
VQM-GM 0.8957 7.6435 0.9021 0.0000

Table 2.3: Error related parameters of the goodness of fit

Mean Err Max Err Std Err
MSSIM 6.2130 24.3351 8.1792

VIF 3.8676 25.4201 5.0219
NRJPEGQS 3.9946 21.9940 5.6562

NRJPEG2000 5.4029 18.4913 6.7506
RRIQA 4.8190 19.2447 6.4961

PSNR-DMOSp 7.2712 24.7603 9.0911
VQM-GM 6.3009 16.4353 7.6897

• Max Error is the highest error produced when obtaining the DMOSp values.

• Std Error is the Standard Deviation of errors

Another key point to consider while comparing QAM [209] is the correct
selection of the image or video sequence sets used as training set. The training
set is used to perform the curve fitting process. This set should be chosen with
special care and must be excluded from validation tests. So for each metric,
the fitting process must be done using images or sequences with impairments
that the metric is designed to handle. See [209] for details of how an incorrect
selection of the image training set can influence the final interpretation of the
statistics used in the correlation analysis.

So, the MSSIM, VIF, RRIQA, and DMOSp-PSNR metrics were trained
with the whole Live2 database because they are intended to be generalist
metrics. The NRJPEGQS was trained only with the JPEG distorted images of
the Live2 database as this metric is designed only to handle these type of
distortions. And for the same reason the NRJPEG2000 was trained only with
the JPEG2000 (JP2K) distorted images of the Live2 database and the
VQM-GM was trained with a subset of 8 video sequences and its 9
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corresponding Hypothetical Reference Circuit (HRC) of the VQEG Phase I
database in a bit rate range of 1 to 4Mb/s.

It is important to mention that each of these training sets have different
dynamic ranges in the DMOS scale as the degree of distortions applied to the
images is different in each set.

We define as homogeneous metrics those which were trained with the same
sets and therefore sharing the same DMOS dynamic range. So, metrics are
called to be heterogeneous metrics when they were trained with different sets.

In our study, all the metrics have been trained only with the luminance
information and as suggested, only appropriate impairments are used while
conforming the testing setsfor each metric. .

From the performance results we can conclude than with the images and
sequences that comprise our training sets the QAM that best performance gives,
i.e. a higher correlation with subjective results, is the VIF metric.

2.6.2 Analyzing metrics behavior

In the next subsections, we are interested in analyzing the metrics behavior
when measuring image and video distortions produced in 1) compression
scenarios at different bit rates, and 2) distortions produced by packet losses in
mobile ad-hoc network scenarios with variable degrees of network congestion
and node mobility.

2.6.2.1 In compression environments

In this section, we will study the behavior of the QAM under evaluation when
assessing the quality of compressed images and sequences with different
encoders. As exposed before, in the development of a new encoder or when
performing modifications to existing ones, the performance of the proposals
must be evaluated in terms of perceived quality by means of the R/D behavior
of each encoder. The distortion metric commonly used in the R/D
comparisons is PSNR.

So, in this test environment, we will work with the selected metrics as
candidates to replace the PSNR as the quality metric in a R/D comparison of
different video codecs. In this case, we will use a set of video encoders and
video sequences in order to create distorted sequences Hypothetical Reference
Circuit (HRC) at different bit rates, and analyze the results of the different
QAM under study. Also, we will consider the metric complexity in order to
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Figure 2.33: PSNR vs. DMOSp-PSNR for the evaluated codecs (mobile se-
quence)

determine their scope of application. For the tests we have used an Intel
Pentium 4 CPU Dual Core 3.00 GHz with 1 Gbyte RAM. The programming
environment used is Matlab 6.5 Rel.13. The fitting between objective metric
values and subjective DMOS scores was done using the Matlab curve fitting
toolbox looking for the best fit in each case. The codecs under test are:

• H.264/AVC [224]

• Motion-JPEG2000 [225]

• Motion-LTW [226]

A R/D plot of the different video codecs under test, using the traditional
PSNR as a distortion measure, is shown in the upper panel of Figure 2.33. It is
usual to evaluate performance of video codecs in a PSNR range varying from
25-27 dB to 38-40 dB because determining which one is better for PSNR values
above 40 dB is difficult.
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We convert the traditional PSNR to a metric that we call DMOSp-PSNR
by applying the scale-conversion process explained in Section 2.6. We can
consider the DMOSp-PSNR metric to be the subjective counterpart of the
traditional PSNR. It is the same metric, though expressed in a different scale.
The DMOSp scale denotes distortion, thereby quality increases as the DMOSp
value decreases. The main difference between PSNR and its counterpart, the
DMOSp-PSNR, is that the saturation effect is fixed, as we can see in the lower
panel in Figure 2.33. As the only modification that has been done to the PSNR
metric is the mapping process with the DMOS data, the raw values of the
PSNR do not change; therefore, the DMOSp-PSNR metric does not fix the
known drawbacks shown in Figure 2.2.

This saturation effect at high qualities is not captured by the traditional
PSNR that increases steadily as the bit rate rises, as shown in the upper panel
of Figure 2.33. The subjective saturation effect is noticeable above a specific
quality value (saturation threshold) where the DMOSp values practically do not
change. In our tests the saturation threshold was located at a bit rate of 11.58
Mbps. This behavior is repeated for all the evaluated codecs and video formats,
confirming that there is no noticeable subjective difference when watching the
sequences at the two highest evaluated bit rates (11.58 and 20.65 Mbps).

For each bit rate value below the saturation threshold, the DMOSp-PSNR
metric arranges the codecs (by quality) in the same order as the PSNR does,
as expected, because in fact it is the same metric. This quality sorting, below
the saturation threshold, agrees also with the results of the subjective tests that
we performed (see below), and this behavior is repeated for all the evaluated
sequences and bit rates.

Since PSNR, and therefore DMOSp-PSNR, are known to be inaccurate
perceptual metrics for image or video quality assessment, we analyze the
remaining metrics under study for all codecs and bit rates. From Section 2.6,
we know that the expected behavior of a QAM when scoring an image or
sequence at different bit rates shoud be:

• For bit rate values below the saturation point, it should provide a decreasing
quality value as the bit rate decreases.

• For bit rate values above the saturation point, the perceptual quality value
should be almost the same.

So, we ran all the metrics for each HRC (sequence and codec) and analyzed
the resulting data between consecutive bit rates, obtaining the quality scores in
the DMOSp space. Then, a simple subjective DSCQS test was performed with
23 viewers in order to detect if there were perceptual differences at high bit rates
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or not, i.e., above the saturation threshold, for the tested sequences. For each
sequence and encoder, the three HRCs with higher bit rates were presented to
the viewers, each time in a different order, so that the viewers did not know the
rate for each sequence. These HRCs were: the first one located below saturation
point (6.4 Mbps) and the two located in the saturation region. For example, in
Figure 2.33 these three points are located at 6.4 Mbps (below threshold) and
the two rightmost points at 11.58 and 20.65 Mbps. The test shows that:

• All the viewers detected some perceptual differences below the threshold.

• No perceptual differences were detected above the saturation threshold.

• Above the saturation threshold, the DMOSp differences for the tested HRCs
vary from 0.37 to 6.73 DMOSp points depending on the metric, sequence
and encoder. See the whole set of values in tables 2.6 to 2.7 at the end of this
chapter.

So, from the results of our subjective test, we can initially conclude that
above the saturation differences up to 6.73 DMOSp, values are perceptually
indistinguishable.

In Figure 2.34, we can see examples of the R/D plots used for comparing
the metrics. Each of these figures show the resulting DMOSp R/D curves for all
the metrics when applied to the same sequence and encoder at different bit rates.
More figures are shown at the end of this chapter in Section 2.8. As shown, in
both examples of Figure 2.34, the perceptual saturation effect is captured by all
the QAM at high bit rates (high quality) regardless of the encoder. The same
holds for all the sequences and encoders.

Some metrics are missing in each of the example plots in Figure 2.34. In the
upper plot, the HRCs were encoded with the H.264/AVC codec, and therefore
the NRJPEG2000 metric is omitted because it is not designed to handle DCT
transform distortions. In the same way, in the bottom plot, where HRCs were
encoded with M-JPEG2000, the NRJPEGQS metric is omitted because it is not
designed to handle the distortions related to the Wavelet transform.

As mentioned in Section 2.6, monotonicity is expected in the mapping
function. So, the expected behavior of the metrics should also be monotonic,
i.e. metrics should indicate lower quality values as the bit rates decreases.
However, if we look at the lower plot of Figure 2.34, and focus this time on
the two lowest bit rates, the quality score given by both, the RRIQA and
NRJPEG2000 metrics, increases as the bit rate value decreases. This behavior
is contrary to the expected one for a QAM. Remember that lower values of
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Figure 2.34: QAM comparison using the same sequence with different codecs
(a) H264/AVC Intra; (b) M-JPEG2000
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Figure 2.35: First frame of Foreman QCIF encoded at 70 Kbps (left) and 135
Kbps (right)

DMOSp represent better perceptual quality. More figures with the same
behavior can be found in Section 2.8 at the end of this chapter.

To illustrate this behavior, in Figure 2.35 we show the first frame of the
Foreman sequence at these bit rates (for the QCIF frame size). The left image
is encoded at 70 Kbps, and the right image at 135 Kbps. After a visual
comparison, the right image receives a better subjective score than the left one
though the mentioned metrics state just the opposite in this particular case.

Our results for the compression environment stated that:

• NRJPEG2000 offers wrong quality scores between the two highest
compression ratios with the M-JPEG2000 codec for QCIF and CIF
sequences.

• RRIQA also failed with this NRJPEG2000 at high compression ratios, but
only with the QCIF Foreman sequence.

• All the other metrics exhibit monotonic behavior for all bit rates regardless
of the encoder and sequence being tested.

Figure 2.34 will also help us illustrate what was exposed in Section 2.6,
heterogeneous metrics should not be compared directly, because the dynamic
range of the subjective quality scores in each training set is different.

Looking at the upper plot in Figure 2.34 and focusing this time on the lowest
bit rate, the DMOSp rating differences between metrics arrive surprisingly up to
30.79 DMOSp units. As the test sequence at this rate is the same for all metrics,
this difference seems to be too high and leads us to think that something must
be wrong here. In addition, there are three different behaviors or trends in the
R/D curves. So, let us analyze that phenomena.

The three different trends in Figure 2.34 correspond to the use of three
different training sets. As exposed, VQM-GM was trained with VQEG
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Figure 2.36: QAM comparison plot with homogeneous metrics

sequences, NRJPEGQS was trained only with the JPEG distorted images, and
the rest of the metrics trained with the whole set of distorted images in the
Live2 database. Each trend is the result of a curve fitting process with different
betas (parameters) and these betas are directly dependent on the used training
set (the set of distorted images presented to the viewers). This is the reason
why the trends and slopes of the metrics below the saturation threshold are
different and as shown are grouped together in both examples shown in
Figure 2.34.

So, when including curves from different metrics in the same R/D plot, it
would be preferable that they are homogeneous, and if not, this fact must be
told in order to avoid misleading conclusions about the compared performance
between heterogeneous metrics. R/D plots with heterogeneous metrics should
not be used to determine which metric is the best, not even R/D plots with only
homogeneous metrics. These types of plots are useful, however, to analyze
the behavior of the metrics for each encoder and/or sequence, to compare and
measure differences in quality among metrics while coding at the same rates,
and to detect some anomalous behaviors like the ones presented above.

In Figure 2.36, only homogeneous metrics are shown. The trend of all
the R/D curves is the same. The best metric can not be concluded only by
inspecting the curves and comparing the QAM behavior in the bit rate range. Is
it the one with better DMOSp for all the bit rate range? What if this metric is
wrongly overrating the quality given by the observers?

Determining how good a metric works at a specific rate or for a bit rate
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Table 2.4: Sequences included in the test set.

Sequence Frame F. Num. F. Rate

Foreman
QCIF: 176 x 144

300
30 fps.

Container

Foreman
CIF: 352 x 288

Container

Mobile 640 x 512 40

range depends on how good the metric predicts the subjective scores given by
human viewers, i.e., the best metric is the one that best mimics the human rates.
This information is obtained from parameters like those of tables 2.2 and 2.3.

Our metric performance validation tests results tells that the VIF metric
is the one which best fits the subjective DMOS values among the metrics in
the same training set. So in plots, such as those from Figure 2.34, the best
performing metric can act as reference. Then, we can compare how far from the
reference the rest of the metrics are, for each sequence and encoder. Remember
that not all the metrics can be used to score all the encoders, they should be
able to handle the encoder specific produced distortions.

Once we have compared and analyzed the metrics behavior, and chosen
the best correlated one to human perception, we proceed with the encoder
comparison. For this comparison, our test set comprises different standard
video sequences commonly used in video coding evaluation as shown in
Table 2.4, using only the luminance component. We perform this test for each
evaluated QAM.

Figure 2.37 represents an example of one of the R/D plots used for
comparing the performance of the encoders being tested. In this case, the plot
shows how the VIF metric evaluates the performance of the encoders. In
figures 2.62 to 2.96 the rest of the metrics plots are shown.

For metrics trained with the same set, the ranking order of the encoders
at a specific bit rate should agree among metrics and also with the subjective
ranking given by the viewers. To check this, we performed a simple subjective
test with 23 viewers in order to evaluate if we can trust the codec ranking order
given by each metric, i.e., at a specific bit rate the metric ranks the encoders by
quality in the same perceptual order that subjective one.

For each rate and sequence, the reconstructed sequence of each encoder
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Figure 2.37: R/D performance evaluation of the three video codecs using Mo-
bile ITU video sequence by means of the VIF metric.

was presented simultaneously to the subjects. The ordering of the three
sequences varies for each HRC so that the subjects did not know which
encoder correspond to each sequence. The subjects ranked the sequences by
perceptual quality, and if no differences were detected between pairs of
sequences, they annotated this fact. After analyzing the viewer’s scores and
removing the outliers, the test confirms that the ranking order was consistent
among homogeneous metrics, agreeing also with the subjective ranking.

In cases where viewers scored no subjective difference between two
sequences, the metrics still gave slightly different values between encoders,
and these differences fell in a range lower than 2.9 DMOSp units. When these
differences between metric values were higher, for example 3.11 DMOSp
units at 2.1 Mb/s between H264/AVC and M-JPEG2000 in Figure 2.37, most
of the viewers could see some perceptual differences between the sequences,
since they ranked H264/AVC to have better perceptual quality than
M-JPEG2000 and Motion LTW (M-LTW).

In order to determine how much difference, expressed in the DMOSp scale,
is perceptually detectable, deeper subjective tests and research must be done,
because from our studies, we have already detected that the perceptual meaning
of these DMOSp differences depend on the point on the DMOSp scale we are
working on. For example, for high quality (as stated before), DMOSp value
differences up to 6.73 DMOSp points were imperceptible; however, at lower
quality levels, smaller differences (3.11 DMOSp points) were perceived.

Finally, Table 2.5 shows, grouped by frame sizes, the mean frame
evaluation time and the evaluation time for the whole sequence that each
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Table 2.5: QAM Average scoring times (seconds) at frame and sequence level.

QCIF CIF 640 x 512
Frame Seq Frame Seq Frame Seq

MSSIM 0.028 8.4 0.147 44.1 0.764 30.5
VIF 0.347 104.1 1.522 456.5 6.198 247.9

NRJPEGQS 0.01 3 0.049 14.6 0.201 8.1
NRJPEG2000 0.163 48.9 0.486 145.9 1.595 63.8

RRIQA(f.e.) 4.779 1433.7 6.95 2084.9 10.111 404.5
RRIQA(eval.) 0.201 60.2 0.635 190.6 2.535 101.4

DMOSp-PSNR 0.001 0.3 0.006 1.7 0.02 0.8
VQM-GM 0.023 6.975 0.093 27.900 0.300 12.024

metric spent to assess its raw quality value.

In the test, we have disaggregated the time spent on performing the quality
comparison from other times spent on performing other steps, for some metrics.
This way we can compare times jointly or separately. For example, times spent
on the two steps of RRIQA, features extraction (f.e.) and quality evaluation
(eval.), have been measured separately.

So, for example if we do not take into account calibration and color
conversion times when comparing against the VQM-GM, for CIF sequences
the VQM-GM is faster than the other metrics, except NRJPEGQS and
DMOSp-PSNR.

DMOSp-PSNR is the least computationally expensive metric for all frame
sizes. On the other hand, RRIQA and VIF are the slowest metrics (as they run
the Steerable-pyramid; a linear multi-scale, multi-orientation image decompo-
sition).

2.6.2.2 In MANET environments

Our objective in this section is to analyze the behavior of the candidate metrics
in the presence of packet losses under different Mobile Ad Hoc
Networks (MANET) scenarios. In order to model the packet losses in these
error prone scenarios, we use a three-state Hidden Markov Model (HMM) and
the methodology presented in [227]. HMMs are well known for their
effectiveness in modeling bursty behavior, relatively easy configuration, quick
execution times, and general applicability. So, we consider that they fit our
purpose of accelerating the evaluation process of QAM for video delivery
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applications on MANET scenarios while offering results similar to the ones
obtained by means of simulation or real-life testbeds. Basically, by the use of
the HMM, we define a packet loss model for MANET that accurately
reproduces the packet losses occurring during a video delivery session.

The modeled MANET scenario is composed of 50 nodes moving in an
870x870 square meter area. Node mobility is based on the random way-point
model, and speed is fixed at a constant value between 1 to 4 m/s. The routing
protocol used is the acDSR protocol Ėvery node is equipped with an Institute
of Electrical and Electronics Engineers (IEEE) 802.11g/e enabled interface,
transmitting at the maximum rate of 54 Mbit/s up to a range of 250 meters.
Notice that a QoS differentiated service is provided by IEEE 802.11e [228].
Concerning traffic, we have six sources of background traffic transmitting File
Transfer Protocol (FTP)/Transmission Control Protocol (TCP) traffic in the
Best Effort MAC! (MAC!) Access Category. The foreground traffic is
composed by real traces of an H.264 video encoded (using the Foreman CIF
video test sequence) at a target rate of 1 Mbit/s. The video source is mapped to
the Video MAC Access Category.

We apply the HMM described above to extract packet arrival/loss patterns
for the simulation traces, and later replicate these patterns for testing. We
describe two environments: (a) a congestion related environment, and (b) a
mobility related environment.

The congestion environment is composed of 6 scenarios with increasing
levels of congestion, from 1 to 6 video sources. The mobility environment
is composed of 3 scenarios with only one video source, but with increasing
degrees of node mobility (from 1 to 4 m/s).

For each of these scenarios, we get different packet loss patterns provided
by the HMM that represents each scenario.

After an analysis of the packet losses, different patterns are defined:

• Isolated small bursts represent less than 7 consecutive lost packets. As each
frame is split in 7 packets at the source, isolated bursts will affect 1 or 2
frames, but none of them will be completely lost. This error pattern is mainly
due to network congestion scenarios where some packets are discarded due
to transitory high occupancy in the wireless channel or buffers at relaying
nodes.

• Large packet loss bursts. Large Bursts cause the loss of one or more
consecutive frames. Large packet error bursts are typically a consequence
of high mobility scenarios where the route to the destination node is lost
and a new route discovery process should be started. This will keep the
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network link in down state during several seconds, losing a large number of
consecutive packets.

We have used the H.264/AVC codec, adjusting the error resilience
parameters to the values proposed in [229] so that the decoder is able to
reconstruct sequences even when large packet loss bursts occurs. H.264/AVC
is configured to produce one I frame every 29 P frames, with no B frames, and
to split each frame in 7 slices, so we put each slice into a separate packet and
encapsulate its output in Real-time Transport Protocol (RTP) packets. As
suggested in [229], we also force 1/3 of the macroblocks of each frame to be
randomly encoded in intra mode.

We have used the Foreman CIF seq. (300 frames at 30 fps) to build an
extended video sequence by repeating the original one up to the desired video
length. After running the encoder for each extended video sequence, we get
RTP packet streams. We will apply a packet erasure process to them, removing
those packets declared lost by the HMM model. This process simulates packet
losses in the MANET scenarios, so a distorted bitstream will be delivered to
the decoder. The decoder behavior depends on the packet loss burst type as
follows:

• When isolated small bursts appear, the decoder is able to apply error
concealment mechanisms to repair the affected frames. The video quality
decreases, and just after the burst, the reconstructed video quality recovers
the quality by means of the random intra-coded macroblock updating.
When the next I frame arrives, it completely stops error propagation.

• When the decoder faces large bursts, it stops decoding and waits until new
packets arrive. This produces a sequence in the decoder that is shorter than
the original one. Therefore, both sequences are not directly comparable with
the QAM and so we freeze the last completely decoded frame until the burst
ends.

Once we have comparable video sequences (original and decoded video
sequences with the same length), we are able to run the QAM. Each metric
produces an objective quality value for each frame in its own scale. Then, we
perform the scale conversion to the DMOSp scale (see Section 2.6).

Figure 2.38 shows the objective quality value in the traditional PSNR scale
at three different compression levels (Low compression, Medium compression
and High compression) during a large packet loss burst. We observe the
evolution of quality during the burst period. What the observer sees during
this large burst is a frozen frame with more or less quality, depending on the
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Figure 2.38: PSNR frame values during a long packet loss burst (from frame
2327 to 2525) at different bit rates.

compression level. The PSNR metric reports that quality drops drastically
with the first frame affected by the burst, and decreases even more as the
difference between the frozen frame and the current frame increases. An
additional drop of quality can be observed nearly at the middle of the burst. It
corresponds to a scene change (with the beginning of a new cycle of the
foreman video sequence). At this point, the drastic scene change makes the
differences between sequences even higher, and the PSNR metric scores with
even worse values, reaching values as low as 10-12 dBs.

On the other hand, the perceived quality changes at these levels is quite
difficult to evaluate. So, a better perceptually designed QAM should not score
such a quality drop in this situation because quality saturates. When the burst
ends, quality rapidly increases because of the arrival of packets belonging to
the same frame number than the current one in the original sequence (frame
2525 in Figure 2.38).

If during such a burst a QAM takes into account only the quality of the
frozen frame, disregarding the differences with the original one (which changes
over time), the effect of the burst would remain unnoticed for that metric, i.e.,
quality remains constant.

Figure 2.39 shows the evolution of the candidate QAM during a large
burst (similar to Figure 2.38 but in this case in the DMOSp space). There is a
panel for each compression level: the upper panel corresponds to high
compression, the central panel to medium compression and the bottom panel
to low compression. We observe some interesting behavior that we proceed to
analyze.

From a perceptual point of view, quality must drop to a minimum when one
or more frames are lost completely and should remain that way until the data



128 Chapter 2. Objective Quality Assessment Metrics

Figure 2.39: Metric comparison in the DMOSp space during a very large burst
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(a) (b) (c) (d)

Figure 2.40: Frame reconstruction after a large burst: (a) Original frame, (b)
Last frozen frame, (c) and (d) First and second reconstructed frames after the
burst.
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Figure 2.41: End of the large burst for the low compression panel. FR and NR
metrics show the opposite behavior.

flow is recovered. It should not matter if a scene change takes place inside the
large burst. VIF and MSSIM behave this way. At the point of the burst where
the scene change takes place, both the VIF and MSSIM metrics have almost
reached their ’bad quality’ threshold regardless of the compression level and
therefore there is no substantial change in the reported quality. The drop in
quality to the minimum at the beginning of the burst provides evidence of the
lost of whole frames.

NR metrics do not detect the presence of a frozen frame (by dropping the
quality score) as expected because the quality given by these metrics remain at
the level scored for the frozen frame during the burst duration. So, NR metrics
could not detect the beginning of a large burst, since lost frames will be
replaced with the last correctly decoded frame (frozen frame) and the
reference frames are not available for comparison. However, NR metrics
detect the end of such bursts. Figure 2.40 will help us to explain this behavior,
showing how reconstruction is done after a large burst. This figure shows the
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impairments produced when the large burst ends. Figure 2.40(a) is the current
frame, the one being transmitted. Figure 2.40(b) is the frozen frame that was
repeated during the burst duration. When the burst ends, the decoder
progressively reconstruct the sequence using the intra macroblocks from the
incoming video packets. So, the decoder partially updates the frozen frame
with the incoming intra macroblocks. This is shown in figures 2.40(c) and
2.40(d) where the face of the foreman appears gradually.

The gradual reconstruction of the frame with the incoming macroblocks
is interpreted in a different way by NR metrics and FR metrics. When the
macroblocks begin to arrive, what happens at frame 2522 (see figure 2.41) the
NR metrics react scoring down quality, while the FR metrics begin to increase
their quality score, just the opposite behavior. For a NR metric, without a
reference frame, Figure 2.40(c) has clearly worse quality than Figure 2.40(b).
But for a FR metric, the corresponding macroblocks between Figure 2.40(c)
and Figure 2.40(a) help to increase the scored quality.

So, NR metrics react only when the burst of lost packets affects frames
partially, i.e., isolated bursts, and at the end of a large burst. The NRJPEGQS
metric reacts harder (i.e., it shows higher quality differences) than the
NRJPEG2000 because it was designed to detect the blockiness introduced by
the discrete cosine transform. When the frame is fully reconstructed, then the
score obtained with NR and FR metrics again approaches the values achieved
before the burst, which depends on the compression rate.

The RRIQA metric shows high variability in its scores between
consecutive frames inside bursts. These variations become more evident as the
degree of compression decreases. The nature of the data sent through the
ancillary channel, 18 scalar parameters obtained form the histogram of the
wavelet subbands of the reference image, is very sensitive to loss of
synchronism between the reference frame and the frozen one. On the decoder,
the same extracted parameters are statistically compared with that received
through the ancillary channel. When this comparison is performed with two
sets of parameters obtained from different frames, unexpected results appear.

Concerning the FR metrics, MSSIM, VIF, and PSNR-DMOSp show a
similar behavior or trend. MSSIM and PSNR-DMOSp show closer quality
scores between them than the ones obtained with the VIF metric, which gives
lower quality values than the other two metrics. This behavior is the same
regardless of the compression level inside the large burst. Leaving aside the
PSNR-DMOSp, which is not really a QAM, the other two FR metrics (VIF
and MSSIM) have the same behavior when facing large bursts.

Figure 2.42 shows an isolated burst. In this case, blur and edge shifting
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Figure 2.42: Metric comparison for an isolated burst

(a) (b) (c) (d)

Figure 2.43: Packet loss affecting only one frame. (a) Original frame; (b, c, and
d) Next three decoded frames.

impairments are introduced altering only one frame. This fact is perceived only
by the FR metrics and the NRJPEG2000, which is designed to detect this type
of impairment. The error concealment mechanism of H.264/AVC needs up to 6
frames to achieve the same quality scores obtained before the burst. Figure 2.43
shows the original frame (a) and three subsequent frames (b, c, d), where the
effect of the lost packets is concealed by the H.264/AVC decoder.

As defined previously, an isolated burst can affect one or two consecutive
frames. In the latter case, the behavior of the QAM when facing the isolated
burst resembles the behavior of the metrics with a large burst. The difference
is that the concealment mechanisms and the correct reception of part of the
frames avoid a larger drop in the quality.
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(a) (b) (c)

Figure 2.46: Decoded frames between two consecutive bursts: (a) original
frame; Reconstructed frames: (b) 361 and (c) 362

Figure 2.44 shows multiple consecutive bursts (large and isolated) that
behave as exposed previously. From left to right, we see a large burst followed
by an isolated one. This pattern repeats again one more time, and at the right
most part of the figure, between frames 352 and 372, two large bursts occurs
consecutively, having a gap between them where new incoming packets arrive
for a short period of time (frames 361 and 362).

In Figure 2.45, we zoom into this area (frames 352 to 372) to analyze why
the behavior of the DMOSp-PSNR metric differs from the other FR metrics
during the gap between bursts. In the gap, the encoder is not able to reconstruct
a whole frame because the gap is too small, i.e., between the two large bursts
only a small amount of packets arrive, and this is not enough to reconstruct a
whole frame. So the involved frames (361 and 362) are partially reconstructed
(figures 2.46(b) and 2.46 (c)). Both frames exhibit perfect correspondence in
the lower half with the original one (Figure 2.46(a)). Therefore, the scored
quality must increase, at least to some extent, compared to the quality of the
previous frozen frame, as occurs at the end of a large burst. This fact is only
reflected by the VIF and MSSIM metrics. The PSNR-DMOSp metric is not
able to detect this because it is computed using information from the whole
frame. For the VIF and the MSSIM, which are perceptually driven, the lower
half of the frame increases their raw scores, in the same way as the human
scores do. After frame 362, quality decreases again since the following frame
is frozen too. So, VIF and MSSIM detect two consecutive loss bursts while
PSNR-DMOSp and the other metrics considers only a single larger one.
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2.7 Conclusions

The main goal of this work was focused on looking for a Quality Assessment
Metric that could be used instead of the PSNR when evaluating compressed
video sequences with different encoder proposals at different bit rates, and to
analyze the behavior of such metrics when compressed video is transmitted
over error prone networks such as MANETs.

We explained the procedures that we followed to compare QAM metrics
and alerted about some issues that arise when a comparison between
heterogeneous metrics is made. The metrics must be compared using a
common scale since the raw scores of the metrics are not directly comparable.
The scale conversion process involves subjective tests and the use of mapping
functions between the subjective MOS values and the metrics raw values. The
parameters for the mapping function we used are provided. The metrics were
first trained with a set of images from two open source images and video
databases with known MOS values. The metrics were tested with another set
of images and videos also taken from available databases. In order to perform
a fair comparison, the training and testing sets used with each metric must use
only impairments that the metric was designed to handle. We defined as
heterogeneous metrics those that were trained with different sets of images or
sequences. The R/D comparisons of heterogeneous metrics must be made
carefully, focusing not only on the absolute quality scores, but also on the
relative scoring between consecutive bit rates as the differences between
DMOSp values are perceptually detected (or not) depending on the quality
range. When metrics are trained with the same training set, differences in
DMOSp values have the same perceptual meaning for all the metrics, but this
may not be true between heterogeneous metrics. Normalizing the DMOSp
scale when comparing heterogeneous metrics helps to detect these differences.

We performed the comparison between metrics in two environments: a
compression environment and a packet loss environment. We performed
several subjective tests in order to confirm that the analysis and the behavior of
the metrics were consistent with human perception. Our tests included the
comparisons of three encoders by replacing the PSNR as distortion metric in
their R/D curves with each of the candidate metrics.

From our results in the compression environment, we conclude that we
can trust the quality provided by the VIF metric, which is the one that obtains
a better fit in terms of DMOS during the calibration process, and also on how
it ranks the performance of the tested encoders in the bit rate range under
consideration. In the evaluation of the M-JPEG200 encoder, the
NRJPEG2000, and RRIQA metrics break monotonicity at very high
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compression levels. For the rest of the bit rates, all the other metrics show a
monotonic behavior for the entire bit rate range and for all encoders.

In the compression environment with no packet losses, the selection of a
QAM to replace the traditional PSNR, depends on the availability of the
reference sequence:

• In applications where the reference sequence is not available, RRIQA is our
choice because behaves similarly to FR metrics.

• If the reference sequence is available, then choice depends on the weight
given to the trade-off between computational cost and accuracy.

– If time is the most important parameter, we choose DMOSp-PSNR
followed by VQM and MSSIM.

– If accuracy is more important, then the choice will be VIF and MSSIM.

In the loss-prone environment, we analyzed the metrics behavior when
measuring reconstructed video sequences encoded and delivered through error
prone wireless networks, like MANETs. In order to obtain an accurate
representation of delivery errors in MANETs, we adopted an HMM model
able to represent different MANET scenarios.

The results of our analysis are the following:

• NR metrics are not able to properly detect and measure the sharp quality
drop due to the loss of several consecutive frames.

• The RR metric has a non-deterministic behavior in the presence of packet
losses, having difficulties to identify and measure this effect at moderate to
high compression rates.

• Concerning the other metrics, MSSIM, DMOSp-PSNR and VIF show a
similar behavior in all cases. In summary, we consider that, although they
exhibit slight differences in the Packet Loss framework, we propose the use
of the MSSIM metric as a trade-off between a high quality measurement
process (resembling human visual perception) and computational cost.
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2.8 Figures and tables

Table 2.6: Variation in DMOSp values between QAM above saturation point
for the Foreman QCIF sequence

H.264/AVC M-JPEG2000 M-LTW Max Min
M-SSIM 1.36 1.82 1.79 1.82 1.36

VIF 3.65 4.26 4.13 4.26 3.65
NRJPEGQS 0.82 0.82 0.82

NRJPEG2000 0.68 1.21 1.21 0.68
RRIQA 2.12 2.93 2.31 2.93 2.12

DMOSp-PSNR 2.77 2.91 3.34 3.34 2.77
VQM 0.94 0.80 0.82 0.94 0.80

4.26 0.68

Table 2.7: Maximun and minimun variation in DMOSp values between QAM
above saturation point for all the sequences

Max Min
Foreman qcif 4.26 0.68
Foreman cif 4.91 0.37

Container qcif 5.88 0.39
Container cif 6.73 0.44

Mobile itu 4.18 0.71
6.73 0.37

Table 2.8: Variation in DMOSp values between QAM above saturation point
for the Foreman CIF sequence

H.264/AVC M-JPEG2000 M-LTW Max Min
M-SSIM 1.84 2.38 3.32 3.32 1.84

VIF 4.18 3.96 4.91 4.91 3.96
NRJPEGQS 0.87 0.87 0.87

NRJPEG2000 0.82 2.43 2.43 0.82
RRIQA 2.72 2.93 2.03 2.93 2.03

DMOSp-PSNR 2.59 2.52 3.68 3.68 2.52
VQM 0.60 0.37 0.40 0.60 0.37

4.91 0.37
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Table 2.9: Variation in DMOSp values between QAM above saturation point
for the Container QCIF sequence

H.264/AVC M-JPEG2000 M-LTW Max Min
M-SSIM 2.56 2.30 2.30 2.56 2.30

VIF 4.15 4.61 5.06 5.06 4.15
NRJPEGQS 0.90 0.90 0.90

NRJPEG2000 0.45 0.39 0.45 0.39
RRIQA 5.88 4.38 4.04 5.88 4.04

DMOSp-PSNR 2.61 2.66 3.02 3.02 2.61
VQM 1.96 1.88 0.45 1.96 0.45

5.88 0.39

Table 2.10: Variation in DMOSp values between QAM above saturation point
for the Container CIF sequence

H.264/AVC M-JPEG2000 M-LTW Max Min
M-SSIM 2.47 2.50 2.66 2.66 2.47

VIF 5.07 5.41 5.73 5.73 5.07
NRJPEGQS 0.88 0.88 0.88

NRJPEG2000 0.44 0.48 0.48 0.44
RRIQA 6.73 2.53 1.63 6.73 1.63

DMOSp-PSNR 2.67 2.49 2.90 2.90 2.49
VQM 1.06 0.69 1.14 1.14 0.69

6.73 0.44

Table 2.11: Variation in DMOSp values between QAM above saturation point
for the Moblie ITU sequence

H.264/AVC M-JPEG2000 M-LTW Max Min
M-SSIM 2.69 3.13 3.10 3.13 2.69

VIF 3.80 3.74 4.18 4.18 3.74
NRJPEGQS 1.45 1.45 1.45

NRJPEG2000 3.62 1.76 3.62 1.76
RRIQA 1.21 2.60 3.85 3.85 1.21

DMOSp-PSNR 2.66 2.84 3.28 3.28 2.66
VQM 0.71 0.81 1.20 1.20 0.71

4.18 0.71
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Figure 2.47: QAM comparison for Foreman QCIF and H264/AVC codec in
Intra mode.
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Figure 2.48: QAM comparison for Foreman CIF and H264/AVC codec in Intra
mode.
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Figure 2.49: QAM comparison for Container QCIF and H264/AVC codec in
Intra mode.
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Figure 2.50: QAM comparison for Container QCIF and H264/AVC codec in
Intra mode.
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Figure 2.51: QAM comparison for Mobile ITU and H264/AVC codec in Intra
mod.e
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Figure 2.52: QAM comparison for Foreman QCIF and JPEG2000 codec.
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Figure 2.53: QAM comparison for Foreman CIF and JPEG2000 codec.
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Figure 2.54: QAM comparison for Container QCIF and JPEG2000 codec.
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Figure 2.55: QAM comparison for Container CIF and JPEG2000 codec.



2.8. Figures and tables 141

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20 22

D
M
O
Sp

Rate Mb/s

M JPEG2000 Mobile ITU

M SSIM

VIF

NRJPEG2000

RRIQA

DMOSp PSNR

VQM

Figure 2.56: QAM comparison for Mobile ITU and JPEG2000 codec.
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Figure 2.57: QAM comparison for Foreman QCIF and M-LTW codec.
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Figure 2.58: QAM comparison for Foreman CIF and M-LTW codec.
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Figure 2.59: QAM comparison for Container QCIF and M-LTW codec.
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Figure 2.60: QAM comparison for Container CIF and M-LTW codec.
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Figure 2.61: QAM comparison for Mobile ITU and M-LTW codec.
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Figure 2.62: Encoders comparison for MSSIM - Foreman QCIF.
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Figure 2.63: Encoders comparison for MSSIM - Foreman CIF.
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Figure 2.64: Encoders comparison for MSSIM - Container QCIF.
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Figure 2.65: Encoders comparison for MSSIM - Container CIF.
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Figure 2.66: Encoders comparison for MSSIM - Mobile ITU.
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Figure 2.67: Encoders comparison for VIF - Foreman QCIF.
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Figure 2.68: Encoders comparison for VIF - Foreman CIF.
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Figure 2.69: Encoders comparison for VIF - Container QCIF.
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Figure 2.70: Encoders comparison for VIF - Container CIF.
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Figure 2.71: Encoders comparison for VIF - Mobile ITU.
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Figure 2.72: Encoders comparison for NRJPEGQS - Foreman QCIF.

20
22
24
26
28
30
32
34
36
38
40

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

DM
O
Sp

Rate Kb/s

NRJPEGQS Foreman CIF

H.264/AVC
M JPEG2000
M LTW

Figure 2.73: Encoders comparison for NRJPEGQS - Foreman CIF.
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Figure 2.74: Encoders comparison for NRJPEGQS - Container QCIF.
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Figure 2.75: Encoders comparison for NRJPEGQS - Container CIF.

20

25

30

35

40

45

50

0 3 6 9 12 15 18 21

DM
O
Sp

Rate Mb/s

NRJPEGQSMobile ITU

H.264/AVC
M JPEG2000
M LTW

Figure 2.76: Encoders comparison for NRJPEGQS - Mobile ITU.



148 Chapter 2. Objective Quality Assessment Metrics

25
30
35
40
45
50
55
60
65

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

DM
O
Sp

Rate Kb/s

NRJPEG2000 Foreman QCIF

H.264/AVC
M JPEG2000
M LTW

Figure 2.77: Encoders comparison for NRJPEG2000 - Foreman QCIF.
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Figure 2.78: Encoders comparison for NRJPEG2000 - Foreman CIF.
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Figure 2.79: Encoders comparison for NRJPEG2000 - Container QCIF.
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Figure 2.80: Encoders comparison for NRJPEG2000 - Container CIF.
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Figure 2.81: Encoders comparison for NRJPEG2000 - Mobile ITU.
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Figure 2.82: Encoders comparison for RRIQA - Foreman QCIF.



150 Chapter 2. Objective Quality Assessment Metrics

20
25
30
35
40
45
50
55
60
65

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

DM
O
Sp

Rate Kb/s

RRIQA Foreman CIF

H.264/AVC
M JPEG2000
M LTW

Figure 2.83: Encoders comparison for RRIQA - Foreman CIF.
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Figure 2.84: Encoders comparison for RRIQA - Container QCIF.
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Figure 2.85: Encoders comparison for RRIQA - Container CIF.
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Figure 2.86: Encoders comparison for RRIQA - Mobile ITU.
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Figure 2.87: Encoders comparison for DMOSp-PSNR - Foreman QCIF.
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Figure 2.88: Encoders comparison for DMOSp-PSNR - Foreman CIF.
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Figure 2.89: Encoders comparison for DMOSp-PSNR - Container QCIF.
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Figure 2.90: Encoders comparison for DMOSp-PSNR - Container CIF.
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Figure 2.91: Encoders comparison for DMOSp-PSNR - Mobile ITU.
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Figure 2.92: Encoders comparison for VQM - Foreman QCIF.

10
15
20
25
30
35
40
45

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

55
00

DM
O
Sp

Rate Kb/s

VQM Foreman CIF

H.264/AVC
M JPEG2000
M LTW

Figure 2.93: Encoders comparison for VQM - Foreman CIF.
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Figure 2.94: Encoders comparison for VQM - Container QCIF.
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Figure 2.95: Encoders comparison for VQM - Container CIF.
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Figure 2.96: Encoders comparison for VQM - Mobile ITU.
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Most of the HVS properties included in the design of perceptual based
encoders are introduced in the quantization step. So we will briefly review the
basics about quantization and then we will see, for DCT and DWT based
encoders, how different strategies of perceptual quantization are included,
mainly in the quantization step, but also in other encoder stages. As the most
widely used characteristics of the HVS are contrast sensitivity and masking,
we will take special care of them when reviewing the encoder proposals. We
will also comment how encoders include other HVS characteristics in their
designs, and how their performance results are presented or compared with
other solutions.

3.1 Quantization

Quantization is the method or procedure followed to translate or reduce
something from a continuous (infinite) set of values (such as real numbers) to
another smaller discrete set of values (such as integers). The most basic and
oldest form of quantization is rounding, where the infinite set of real numbers
between two integers is assigned to either the lowest or highest integer. Gray
and Neuhoff [230], comprehensively reviewed the most important
quantization methods, so we will only review the basics to expose the
quantization used in our proposals later. It is assumed that the sampling of the
inifite set of values is uniform and the sampling rate is above the Nyquist rate
so that there is no aliasing in the frequency domain.

Quantizers can be classified as memoryless or with memory. The former
assumes that each sample is quantized independently with no prior knowledge
of previous input samples whereas the latter takes them into account. Another
classification is uniform or nonuniform quantizers.

Basically, to compress an image (a signal) means to quantize it; this means
describing the image with less precision, and there are a lot of approximations
to achieve that. After the set of pixels of an image has been transformed into
coefficients due to the application of a frequency domain transform, the most
basic form of quantization is to apply a uniform quantizer with a given
quantization step ΔQ so that the quantized coefficient ĉ is represented by
Equation 3.1, where c is the original coefficient and �.� represents the
rounding operator.

ĉ = ΔQ

⌊
c
ΔQ

⌋
(3.1)

Any quantizer can be decomposed into two distinct stages, referred to as
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Figure 3.1: Staircase representation of uniform quantizers: a) midriser; b)
midtreader

the classification stage (or forward quantization stage) and the reconstruction
stage (or inverse quantization stage). In the example of the linear quantizer of
Equation 3.1, this two stages are shown in Equation 3.2 for the forward step,
and Equation 3.3 for the inverse step. The classification stage maps the input
value to an integer quantization index u, and the reconstruction stage maps the
index u to the reconstruction value ĉ, which is the output approximation of the
input value.

u =

⌊
c
ΔQ

⌋
(3.2)

ĉ = u · ΔQ (3.3)

Quantization is performed with a set of decision values d j and a set of
reconstruction values r j such that if a coefficient c satisfies Equation 3.4, then
the coefficient is quantized to a reconstruction value of r j.

d j ≤ c < d j+1 (3.4)

Figure 3.1 show the staircase representation of uniform midriser and
midtreader quantizers. In a midtreader quantizer, the first step, usually
centered on zero, has a reconstruction value of zero. In a midriser quantizer
the first step has a nonzero reconstruction value and the decision interval for it
begins at zero. Figure 3.2 shows the midriser and midtreader nonuniform
quantizers staircase representation.
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Figure 3.2: Staircase representation of nonuniform quantizers: a) midriser; b)
midtreader

The uniform quantizer, also called scalar quantizer, is characterized for
having all steps of equal size. So, to define a uniform quantizer we must
provide the number of quantization levels, the step size, if it is midriser or a
midtreader, and if it is symmetric or not. After frequency domain transforms,
the resulting coefficients can be either positive or negative, so, our discussion
is limited to symmetric quantizers, i.e., the input and output levels in the third
quadrant are the negatives of the corresponding levels in the first quadrant (see
the staircase representations).

The nonuniform quantizer has steps of different sizes depending on its
design. So, to define a nonuniform quantizer we have to specify the input and
output levels and these levels must be designed taking the probability density
function of the input image into account.

d1 d2 d3 d4-d4 -d3 -d2 -d1

Figure 3.3: Line-segment representation of a nonuniform midtreader quantizer

Figure 3.3 shows the line-segment representation for the nonuniform
quantizer. The reconstruction values are represented by a dot located in the
center of each quantization step, but this is not mandatory; reconstruction
values could be located at any point of the quantization step.

In spite of the type of the quantizer being used, a quantized output value
(reconstruction value) is defined on a certain interval (inside decision levels)
called quantization step, where any of the input values happens. The
reconstruction value represents any of the input values inside the quantization
step. Therefore, quantization is inherently a lossy process where the original
input value may not be recovered.

Normally, in transform coding of natural images, a big distribution of
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coefficients near zero are obtained. These near-zero coefficients corresponds to
smooth areas in the image where less energy or variance is present. But each
of these low energy coefficients should also be encoded, increasing therefore
the size of the final bitstream. However, low energy coefficients increase the
quality of the reconstructed image the least. So if we set one of them to zero,
then it should not be encoded and hence it will not be recovered at all and the
impact of this loss will hardly be noticed in the final quality of the
reconstructed image.
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Figure 3.4: Deadzone quantizers: a) Uniform; b) Nonuniform

Taking into account the properties of transformed natural images, another
type of quantizers, called deadzone quantizers, can be defined, see Figure 3.4.
The deadzone is the region around zero where all coefficients will be set to
zero so they need not be encoded and hence output value is zero. Except for the
deadzone, the step size is constant, in uniform deadzone quantizers and variable
for nonuniform deadzone quantizers. Such a nearly uniform quantizer has been
specified in different image and video standards, as for example in JPEG2000.

The deadzone size could be variable as well, depending on the image or
signal properties, so that an optimal deadzone size can be achieved for each
image as a tradeoff between reducing the bit rate size and recovering the best
quality.

The use of a nonuniform quantizer versus a scalar quantizer in encoders
could improve the reconstructed quality of an encoded image. But the most
difficult task is to design the optimal nonuniform quantizer. In [231, 232, 230],
solutions and approximations for this optimal nonuniform quantization are
presented from a R/D perspective. Other authors [233, 234] also discuss this
topic and the use of other types of quantization strategies as vector
quantization. A vector quantizer maps a set of input data (such as a block of
image samples) to a single value (codeword) and, at the decoder, each
codeword maps to an approximation to the original set of input data (a vector).
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The set of vectors are stored at the encoder and decoder in a codebook.

Another way of performing a nonuniform quantization is companding.
Due to the nonuniform characteristics of the input signal, some values are
presented with higher probabilities than others. The companding technique,
also known as logarithmic quantization, consists of the following three stages:
compressing, uniform quantization, and expanding [230]. The compressing
step applies a logarithmic compression characteristic to the input values so
that the resulting probability density function is almost uniform. Then, a
uniform quantization is applied. After quantization, the inverse transformation
is applied to the quantized values, returning to the original non uniform
probability distribution function.

The nonuniform quantization tries to minimize the MSE of the
reconstructed signal by distributing the decision levels according to the
statistics of the input random variable, in our case a natural image. When the
statistics (mean, variance, etc.) of the input image differs from the ones that
guided the construction of the nonuniform quantizer, then the performance of
the quantizer is reduced. In other words, the same nonuniform quantizer will
not have the same performance for all images or in all areas of the same
image. This also occurs with the deadzone quantizers where a specific size of
the deadzone performs better for a set of images while for another set, the best
results are achieved with a different deadzone size.

3.2 Perceptual coding

In a non adaptive coding scheme, the coefficients are quantized using a fixed
quantizer as exposed, and the quantized coefficients are usually entropy
encoded to reduce redundancy.

Most of the encoders, regardless of the transform being used, determine a
threshold value so that coefficients lower than it are set to zero. As mentioned
previously, one cue is to get the best tradeoff between the loss in quality and
the reduction of bit rate. As more coefficients are set to zero, the quality of the
reconstructed image deteriorates. However, the way in which the image quality
is affected depends not only on the number of non-zero coefficients retained but
also on which coefficients are discarded, i.e., some coefficients are perceptually
more important than others.

Another cue is to determine the appropriate quantization step size in each
case. Once the coefficients have been thresholded, the remaining non-zero
coefficients are quantized to reduce the number of bits. Over-quantization of
coefficients corresponding to different spatial frequencies affects the
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reconstructed image in different ways. For example, over-quantization of the
low-frequency DCT coefficients causes blocking, while large quantization
steps at higher frequencies lead to random noise becoming visible.
Additionally, the phenomenon of spatial masking and luminance masking can
also be taken into account in order to increase the quantization steps in
specifics areas of the image. Since the HVS cannot detect quantization noises
in highly textured as well as in smooth image regions [235, 236], appropriate
elevation of the quantization step sizes will improve the coding efficiency of
these textured regions without loss of perceptual quality.

For example, by analyzing the case of the JPEG standard (the analysis can
be extrapolated to DWT encoders), we can see the need for additional
subjective cues that guide the thresholding problem. In JPEG, images can be
individually quantized via a Quantization Matrix (QM) that the standard does
not fix. The main idea behind the QM is to be able to provide the best visual
quality for a given image at a desired rate. The optimum QM for one image or
a group of images could be not the optimum for others.

In the DCT quantization schema, each block coefficient ci jk (i, j indexes
the DCT frequency and k indexes the block) is quantized dividing it by ΔQi j

and rounding to next integer, in Equation 3.5 the forward quantization stage is
shown. Then the quantization error for each block in the DCT domain is shown
in Equation 3.6, where the maximum possible error is ΔQi j/2. In Equation
3.7, the reconstruction stage is shown. The reconstruction error Ei jk for each
coefficient in block k is shown in Equation 3.8

ui jk =

⌊(
ci jk

ΔQi j

)⌋
(3.5)

εi jk = ci jk − ui jk · ΔQi j (3.6)

ĉi jk = ΔQi j · ui jk (3.7)

Ei jk = ci jk − ĉi jk (3.8)

The total quantization error obtained depends directly on the ΔQi j values
for each frequency range. Errors will be different if we choose the same ΔQi j

for all frequencies than if we choose a specific ΔQi j for each one. So, the
idea may be to find the appropriate quantization value (ΔQ, Quantization step
(Qstep)) for each frequency range, represented by each DCT coefficient that
minimizes the total quantization error.
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Many approaches can be found in the literature to build the optimum
quantization matrix. One of the first was [237] where authors performed a set
of psychophysical tests to set for each frequency i j the threshold Ti j, i.e., the
smallest coefficient that produces a visual signal. Having such a threshold, to
ensure that each error is below threshold, i.e., invisible, the maximun
quantization error εi jk−max should be this threshold. From equations 3.5 and
3.6, due to the rounding operation, the maximum possible error is Equation
3.9 and then the quantization step for each frequency range can be set as in
Equation 3.10

εi jk−max =
ΔQi j

2
(3.9)

ΔQi j = 2Ti j (3.10)

Building a QM with Equation 3.10 assures, trusting in the subjectively
derived thresholds, that quantization errors will be unnoticed. But the
thresholds must be calculated again for each image because as we know,
image content can vary the perception of errors. So, at the end, obtaining the
optimum QM, which is image dependent, is a time consuming process where
subjective tests must be followed in order to obtain the optimum frequency
thresholds for a particular image. If we use averaged thresholds over a set of
images, then the QM is sub-optimal for these images.

Furthermore, this QM building procedure unfortunately does not take into
account several important perceptual issues such as:

• Luminance masking; where variations in the DCT thresholds should be made
to account for local mean luminance.

• Contrast masking; that modifies the threshold for particular DCT
coefficients, those with same frequency and orientation as the masker.

• Equation 3.10, assures only that each individual error is below threshold, but
does not assure that all possible errors jointly are under threshold.

• If all errors are under threshold and contrast masking is not included, a
specific bit rate is obtained, but it is possible that, taking into account
contrast masking, bit rate could be further reduced maintaining the
perceptual quality. The problem is then to find a perceptually rate-control
algorithm.



3.2. Perceptual coding 163

The quantization processes, followed with an entropy encoding stage, can
reduce most of the statistical redundancy from an image. Adaptive quantization
tries to adjust the quantization strategy to the input image statistics based on
the coefficients Probability Density Function (PDF), adapting the quantization
steps for the input image or parts of it. Reviews and explanations of several
adaptive approaches can be found in [238, 239]. These adaptive quantization
approaches, although based on statistics of the images being quantized, do not
include steps, stages or algorithms, based on the knowledge of how the HVS
processes images, that could solve the four mentioned perceptual issues.

A number of methods have already been proposed that include certain
psychovisual properties of the HVS (frequency sensitivity, luminance
dependence, and masking effects), into image coding and compression
schemes that try to solve some or all of those issues.

In the next sections we will briefly review the schemes or strategies used
to include the CSF and the Masking properties of the HVS in image and video
encoders. Then we will review some of the most relevant works that use these
strategies, focusing in 1) how the HVS properties have been included in the
encoders, 2) how the adaptive quantization is performed, 3) the frequency
transform being used (as most of the works are specifically designed for one
type of frequency transform, i.e., DCT, DWT, or other transforms) and 4) how
the different proposals present and compare their performance comparisons.

3.2.1 Contrast and CSF

The Contrast Sensitivity Function (CSF) measures the response of the HVS to
different frequencies, i.e., quantifies how well the HVS perceives a contrast at
a given spatial frequency. Another perspective of CSF is that it is the reciprocal
of the contrast necessary for a given frequency to be perceived. In this section
some of the most important CSF models are cited, an overview of how the CSF
has been used is done, and we expose which is the CSF model we use jointly
with the parameters defined in our proposals.

3.2.1.1 CSF models

CSF has been widely used in the literature to include the HVS sensitivity to
contrast into many encoder and QAM proposals. Different variations or models
for the CSF can be found. Using the assumption that HVS is isotropic, most
authors modeled the HVS with a Modulation Transfer Function (MTF), which
is given by Equation 3.11 where f is the radial frequency in cycles/degree of
the subtended visual angle, and a, b, c, and d are constants.
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H( f ) = a(b + c · f )e−(c· f )d
(3.11)

One of the first CSF proposals was made by Mannos and Sakrison [240],
after conducting a series of psychophysical experiments on human subjects. In
spite of being one of the first proposals, it is the most cited and adapted one,
and most researchers used this model jointly with the DWT transform, so it has
been adopted in Part II of the JPEG2000 standard, [241, 242, 243, 244] and is
the one used for our proposals.

Figure 3.5: Contrast Sensitivity Function

H( f ) = 2.6(0.0192 + 0.114 f )e−(0.114 f )1.1
(3.12)

Equation 3.12 shows the Mannos and Sakrison model, where spatial
frequency is usually measured in cycles per optical degree (cpd). This model
has a peak at approximately 8 cpd.

In Figure 3.5, the CSF curve obtained with Equation 3.12 is depicted. It
characterizes luminance sensitivity as a function of normalized spatial
frequency. The y axis corresponds to the contrast sensitivity
(CS F = 1/Contrast threshold), and the x axis corresponds to the normalized
spatial frequency that represents half of the spatial sampling frequency, due to
the Nyquist theorem.

As shown, CSF is a bandpass filter, which is most sensitive to normalized
spatial frequencies between 0.025 and 0.125 and less sensitive to very low and
very high frequencies. The reason why we can not distinguish patterns with
high frequencies is the limited number of photoreceptors in our eye. CSF
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curves exist for chrominance as well. However, unlike luminance stimuli,
human sensitivity to chrominance stimuli is relatively uniform across spatial
frequency.

H( f ) = (0.2 + 0.45 f )e−0.18 f (3.13)

H( f ) = (0.31 + 0.69 f )e−0.29 f (3.14)

H( f ) = 0.246(0.1 + 0.25 f )e−0.25 f (3.15)

Other CSF models have been proposed since, such as Nill’s model in [245]
that is used with the DCT transform. Nill’s model corresponds to Equation
3.13, which has a peak at 5 cpd. In [246], Ngan et al. propose the model of
Equation 3.14 with a peak at 3 cpd. These two models are adaptations of the
Mannos and Sakrison model, obtained by multiplying it by a A( f ) function that
shifts the peak and adapts the model to be used with the DCT; for more details
see [245, 246, 247]. The same approach is used in [247] where Chitprasert
et al. propose a CSF weighting matrix for the DCT coefficients. Their model
corresponds to Equation 3.15, which has a peak at 3.75 Cycles per Degree
(cpd). Also Chandler and Hemami, in [248], propose a model for obtaining the
contrast thresholds to be used as base sensitivity thresholds in DWT encoders.

Two different ways to measure a CSF [249], either by threshold detection
or by intensity/color matching experiments.

In the first case, the contrast of a Gabor patch displayed on top of a
uniform background is reduced until it can no longer be distinguished from the
background. At that point, the perception contrast threshold is reached CT ( f ).
This threshold is commonly referred to either as base sensitivity threshold, or
base threshold. Compression methods that only take into account these base
thresholds are referred as at-threshold or sub-threshold methods. The inverse
of the contrast at this threshold is defined as the sensitivity for that frequency
S ( f ). The resulting curve is normalized to a maximum of 1.0 for compression
applications as only the relative sensitivity is important.

The second method displays a striped pattern of a specific frequency and
side by side a patch of uniform intensity on top of a uniform background. The
observers have to adjust the intensity of the uniform patch until it matches it
perceived intensity of the striped patch. In this case, the contrast sensitivity
is directly proportional to the adjusted intensity. In this second experiment,
the test patterns are always clearly distinguishable from the background. That
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means the experiment operates at a supra-threshold level and must be designed
carefully [249].

The sub-threshold and supra-thresholds experiments to obtain a CSF
model result in different CSF shapes due to the nonlinear characteristics of the
HVS. This is a particularly important point in the context of image
compression. Experiments at detection threshold are used for the CSFs
because they are more stable and easier to measure, but they are valid only for
sub-threshold compression. However, it is certainly valid to measure artifact
visibility at near-visually-lossless rates [249].

3.2.1.2 Including the CSF

The base sensitivity thresholds, obtained from the different models, are used to
fully quantize, i.e., to remove the transformed coefficients that are below
threshold. These coefficients are supposed to correspond to perceptually
redundant information and can be discarded. This reduces the bit rate needed
to encode the image without loss of perceptual quality. Other authors, instead
of obtaining the thresholds directly from a previous CSF model, perform a
series of subjective tests to detect contrast Just Noticeable Differences (JND),
and based on their findings, they provide a model to obtain those thresholds or
they provide a sub-threshold weighting matrix.

These thresholds are arranged in perceptual quantization matrices, also
called CSF weights or perceptual weighting matrices, where each value in the
matrix corresponds to one frequency interval. Depending on the transform
being used, the value is applied either to a DCT block or to a DWT subband.
So, in perceptual coding and compressions schemes, these CSF weights can be
exploited mainly two ways.

• In the first method, the CSF weights are used to modify the transformed
coefficients before and after quantization.

• In the second method, the CSF weights are used to modify only the
distortion function of the rate-distortion control algorithm. This is a decoder
independent approach.

The first method is shown in Figure 3.6. In a DWT encoder, the CSF
weights are introduced in the encoder using the Invariant Scaling Factor (ISF)
weighting strategy explained also in [249]. Once the corresponding weights
for each frequency subband are obtained, they are introduced after the wavelet
filtering stage and before the quantization stage. The weighting consists on the
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Figure 3.6: CSF weights included in the encoding and decoding chain.

multiplication of the wavelet coefficients in each frequency subband by the
corresponding weight. At the decoder, the inverse of this weight is applied.
The CSF weights do not need to be explicitly transmitted to the decoder. This
stage is independent to the other encoder modules (wavelet filtering,
quantization, etc). Using this approach the HVS and Quantizer blocks of
Figure 3.6 are jointly obtained by Equation 3.16 if the quantizer is a scalar
one, being wcs f the weight that corresponds to the coefficient c.

ĉ = ΔQ

⌊
c · wcs f

ΔQ

⌋
(3.16)

The second method is used in codecs like the JPEG2000 standard Part II,
where the CSF weights are introduced as a Visual Progressive Single
Factor (VPSF) weighting, replacing the MSE by the CSF-WMSE and
optimizing system parameters to minimize WMSE for a given bit rate. This is
done in the post-compression rate-distortion optimization algorithm where the
WMSE replaces the MSE as the cost function which drives the formation of
quality layers.

Both methods are referred in [249] as non adaptive CSF implementations,
because for each DWT subband or DCT block the same invariant scaling
factor is applied to each coefficient in the subband/block. There is no
adaptivity for the different spatial frequencies that are present in the different
spatial locations of the image. In DWT approaches this can be easily done
because it captures not only frequency information but also location
information. In DCT based encoders the spatial adaptivity is performed for
each DCT block that correspond to a specific location in the image.

Regardless of the chosen approach, discarding perceptual redundant infor-
mation is the main idea behind sub-threshold coding, and it is used in most of
the HVS inspired proposals, as we will see later in section 3.2.3.
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3.2.1.3 Distance and resolution

As exposed, the frequency in equations 3.12 to 3.14 is usually expressed in
cycles per optical degree. For a visual angle of one optical degree, the size of
the viewed scene covered by this optical degree, depend on the distance to the
viewed scene. If the size increase then more cycles per degree fit in. So, we
have to talk about spatial frequency not in the world but on the back of your
eye, on the retina. Suppose a sine wave grating such as of Figure 2.15, the
thickness of bars in a grating is called spatial frequency - how frequently bars
occur across space. If lots of bars occur across a particular distance, then the
grating has very thin bars and is said to have high spatial frequency, like on the
right side of Figure 2.15. If very few bars occur across the same distance, then
the grating has thick bars and is said to have low spatial frequency, like on the
left side. The black/white colors appear less intense in the right pattern than
those on the left due to the reduced sensitivity of the HVS for high-frequencies
The amount of bars that one can perceive in such an image depends on the
distance.

Figure 3.7: Distance and visual angle

The size of an object on the retina is measured by the size of the angle it
subtends (called visual angle). Figure 3.7 shows shows that an object 1 cm tall
at a distance of 57 cm subtends a visual angle of 1◦.

f

(
cycles
degree

)
= fn

(
cycles
pixel

)
× fs

(
pixels
degree

)
(3.17)

Equation 3.11 is usually expressed in cycles/degree, and Equation 3.17
establishes the relationship between pixels and cycles. fn is the normalized
spatial frequency in the range from 0 to 0.5, the sampling frequency fs is the
number of pixels within 1◦ degree, which depends on the distance as the
number of pixels that fits in 1◦ degree of visual angle increases with distance.
So, the sampling frequency in pixels/degree, fs, is usually obtained via
Equation 3.18 where v is the viewing distance in meters and r is the resolution
in dots or pixels per inch.

fs =
v · tan (0.5◦) · r

0.0254
(3.18)



3.2. Perceptual coding 169

If the image is critically downsampled at the Nyquist rate, 0.5 cycles/pixel
are obtained. This means that the maximum frequency represented in the
signal, measured in cycles per degree, is fmax (see Equation 3.19).

fmax =
f s
2

(3.19)

Therefore, although the unit cycles/degree is independent of the visual
distance, from the previous definitions we see that in order to obtain the
contrast thresholds for a specific CSF model, we must take into account the
visual distance, i.e., the thresholds for a specific frequency depend on the
distance. This is handled with two different approaches in the literature.

The first one, the most accurate one, is to provide several weighting matri-
ces, one for each specific visual distance, or to provide a parametrized weight-
ing matrix that depends on the visual distance.

The second one, the most restrictive, and the one that we will use in our
proposals, is to assume the worst viewing conditions [249].

As known, the ability to detect some distortions in encoded images
decreases with the distance, so what we mean by worst viewing conditions are
those that use a high resolution display (or printed resolution) viewed as close
as possible, so that it is possible to detect more distortions. The rationale
behind this is that as we go far from the image, some of the distortions
introduced by the perceptual quantization matrix may disappear, and when we
approach the image they become visible again. Besides, when a viewer is told
to inspect an image in order to detect distortions in it, he subjectively
approaches the image as much as his visual accommodation allows him. How
much he approaches varies also with the display dimensions.

So, to calculate the sub-threshold quantization matrix under the worst
viewing conditions, two parameters must be fixed: the display resolution r in
pixels per inch and the visual distance v in meters. Using Equation 3.18, we
will obtain the sampling frequency for those conditions, and hence, with
Equation 3.19, we obtain the maximum frequency fmax in cycles/degree that is
used as upper bound in Equation 3.11.

The distance is supposed to be the minimum distance to perform visual
accommodation, but for most of the encoding proposals, a visual distance of 3
to 4 times the image height is used, but there is no consensus, and the visual
distance parameter used by each author is slightly different. The American
National Standards Institute (ANSI) Standard for Visual Display Terminal
Workstations (ANSI/HFS 100-1988) presented their recommendations where
the minimum desirable distance is 12 inches (30.5 cm.). Although it is



170 Chapter 3. Perceptual Coding

possible to approach farther, up to the physiological limits, to an image, users
normally use this distance. In fact, some authors, like Watson et al. [106] use
this limit. We will therefore also use 12 inches as visual distance in our
proposals.

The other parameter is the display resolution. As told in previous chapters,
the maximum spatial frequency that is able to detect the HVS is about 60 cpd.
Some studies increase this limit to 65 cpd. This spatial frequency can be
obtained two ways, as derived from Equation 3.18, by increasing the distance
or by increasing the display resolution. If we fix the distance, for example to
12.23 inches, then a display that is able to reproduce 64 cycles/degree should
have a display resolution of 600 dpi (or ppi) . This is a common resolution for
printed material, which can be even higher, but nowadays maximum display
resolutions are around 445 to 538 ppi in some high segment mobile phones
with retina display, up to 288 ppi in digital cameras, up to 265 ppi in E-ink
screens, up to 110 ppi for High Definition (HD) TV and finally up to 204 ppi
in 16:10 wide aspect for a 3840x2400 resolution desktop display. In the time
of writing this text, it is a big competition of develop the display with the
highest pixel density, a display manufacturer announced a 7-inch tablet with
600 ppi.

So for our proposals we set the parameters in 300 ppi and 12 inches what
produce 32.01 cycles/degree of maximum frequency for Equation 3.12. This
moves the peak of the CSF curve to 4 cpd.

3.2.2 Masking

Visual masking is a perceptual phenomenon, see section 2.2, where artifacts
are locally masked by the image acting as a background signal. Two general
types of visual masking are mostly used in perceptual coding and the common
terms to refer to it are luminance masking and contrast masking. There are, in
the literature, several variations of the basic procedures revised here, as we will
see in Section 3.2.3. So, in this section we will briefly overview the main ideas
and basic procedures of how these masking effects could be included into the
encoders.

Both types of masking work in an adaptive way, moving along the image
(typically block wise) and applying the masking effect for each location with
different granularity, depending on the complexity of each proposal. In DCT
encoders, this is applied for each DCT block or even for each DCT coefficient,
while in DWT encoders some authors apply it only for each DWT
decomposition level or subband, while others perform an additional block
segmentation in order to apply it on a finer scale.
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The first one, luminance masking, also called brightness adjustment or
light adaptation, is quite easy to implement and is mainly included in the
thresholding stage, modifying the base sensitivity thresholds depending on the
luminance of the scene at each spatial location.

For the second one, the common term of contrast masking can be further
divided as in [111] by two types of masking effects. Contrast masking or spatial
masking and texture masking or energy masking.

Figure 3.8: Contrast masking. The signal is masked depending on the orienta-
tion and frequency of the masker.

Contrast masking or spatial masking is used when referring to the spatial
frequency and orientation differences between the masker (the image) and the
signal (the artifact). When both signals have the same orientation, the masker
hides the signal quite well but when orientations are different then the signal is
clearly shown. See image 3.8 from [111].

Figure 3.9: Texture masking example.

Texture masking or energy masking refers to the fact that a concentrated
distortion signal is easily recognized in a smooth and homogeneous zone, while
it is somehow hidden in an active region. In image 3.9, the distortion is clearly
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visible in the smooth area while it is more difficult to detect in the textured one
(lower-left) [111].

The basic idea behind contrast masking and texture masking is to modify
the base sensitivity thresholds at the location to be applied, depending on the
frequency of the signal and masker for contrast masking and depending on the
amount of energy (texture, entropy, etc...) for the texture masking. In texture
masking, the main differences between proposals is in the way that energy or
texture is calculated. Some authors perform a block or region segmentation
based on these values, for example in texture, smooth, or edge block/regions.
Others apply it even at a finer scale for each coefficient, taking into account its
neighborhood.

3.2.2.1 Luminance masking

The terms luminance and brightness are commonly used interchangeably, but
straightly speaking, the luminance value is a physical measure, while the term
brightness is a subjective descriptor that cannot be measured. Besides, we find
the term grayscale, which refers to the luminance component of a digital
image. For instance, an 8-bit grayscale value of zero means total darkness
(black color), or the lowest luminance, while the maximum 8-bit grayscale
value of 255 means bright white, or the highest luminance. The concept of
luminance is illustrated in Figure 3.10, where the magnitude ΔL is the one at
which the perturbation is just visible.

Background 
Luminance LB

Stymulus area
LB + L

Figure 3.10: Background luminance with a ΔL visibility threshold

Experiments show that the visibility threshold ΔL is a function of the
background luminance LB and it increases almost linearly with LB. This is
known as Weber’s law (Equation 3.20), which indicates that human eyes are
less sensitive to errors in the bright areas because ΔL must have a higher value
in order to maintain the Weber fraction constant. By contrast, in dark areas,
where LB is small, a small amount of ΔL is sufficient to maintain the constant,
i.e., in dark areas, a small increment of luminance is perceptible while in



3.2. Perceptual coding 173

bright areas, the luminance increase must be higher in order to be noticed.

ΔL
LB
= constant (Weber f raction) (3.20)

Distortion 
Visibility

Background Luminance
0 127 255

Figure 3.11: Distortion visibility vs. background luminance.

Weber’s law is generally accurate over the normal range of middle-low to
high luminance values. However, in very dark areas, it has been reported that
the Weber fraction tends to increase with decreasing background luminance
values, i.e., the human eye’s sensitivity to distortion also decreases in a very
dark area, see Figure 3.11.

Detection threshold for a luminance pattern typically depends upon the
mean luminance of the local image region: the brighter the background, the
higher the luminance threshold [164]. Ahumada and Peterson and later
Watson too, [250, 251] proposed the formulas for the threshold Ti j values as a
function of the mean luminance for a DCT block where i and j index the
block, taking into account also the main luminance of the display. These
formulas can be, however, approximated by a power function as in [164].

ti jk = ti j

(
C00k/C̄00

)aT
(3.21)

This approximation corresponds to Equation 3.21 where the threshold for
each i j coefficient of block k is represented by ti jk and the exponent of the
power function is chosen with the same value (0.649), as in [251]. Note that the
luminance masking can be suppressed by setting aT = 0, which consequently
controls the degree of masking. The value ti j is the DC frequency sensitivity
of coefficient i j, C00k is the DC coefficient for block k, and ¯C00 is the average
among the DC coefficients in a picture.

al (λ, θ, i, i) =

(
vλmax,LL,i′, j′

vmean

)
(3.22)
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The luminance thresholds also have been applied in DWT encoders, like in
[252] where Equation 3.22 is used to calculate the luminance masking
adjustment, where vmean is the mean luminance constant corresponding to the
LL subband (128 in a 8-bit unsigned image). The vλmax,LL,i′, j′ value is the
value of the DWT coefficient in the LL subband, which spatially corresponds
to the coefficient i, j in the (λ, θ) subband, being λ the wavelet decomposition
level and θ the subband orientation. The correspondence between spatial
coefficients is obtained by equations 3.23 and 3.24 where �.� represents the
rounding operator and λmax is the number of decomposition levels.

i′ =
⌊ i

2λmax−λ
⌋

(3.23)

j′ =
⌊ j

2λmax−λ
⌋

(3.24)

A mean luminance of 128, half the luminance range for 8-bit
representation, is commonly used for obtaining the luminance thresholds.
Other authors perform subjective tests in order to establish the luminance
thresholds for each frequency subband. The problem of using a unique mean
value to obtain the luminance thresholds, as stated in [253], is that these
techniques are not adaptive enough. Suppose a mean grayscale value of the
image of 90, then most of the blocks the image will have DC values below
128, resulting in under-utilization of the luminance masking.
Over-quantization may be applied also if the mean luminance is 160, for
example, instead 128. Therefore, some authors like [253] use different factors
depending on the region in the scale 0 to 255 where the luminance threshold is
calculated. The same study also provides results from inspecting natural
images that provide a large range of mean image luminance values, varying
from 78 to 164.

3.2.2.2 Contrast and texture masking

Contrast masking refers to the reduction in the visibility of one image
component by the presence of another. In compression applications, the image
itself acts as background, reducing the visibility of quantization noise in those
areas of the image with same frequency and orientation or with high texture or
energy content. In smooth areas of the image, for example in a clear sky at
high compression levels, compression artifacts are more visible than in other
textured areas.

The design of a compression system that exploits visual masking effects
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Figure 3.12: Psychophysical data for the threshold vs. masking contrast.

is based on psychophysical data for the threshold vs. masking contrast [254].
Those experiments provide the typical light adaptation curve shown in Figure
3.12 [255] where two functions represent two types of masking patterns. The
upper curve corresponds to white noise with a narrow band and uncorrelated
phase, while the bottom function corresponds to a sine wave entirely correlated
in phase.

For the noise mask, the threshold initially stays constant but then the slope
increases until it reaches a constant slope near 1.0 in the log-log plot for high
noise contrast. For sine masking, there is an additional region, called the dipper
effect region, where the threshold is reduced. In this region facilitation occurs.
In this type of masking the slope of the rest of the curve is slightly lower,
typically around 0.7. Natural images actually contain maskers between these
types of masks.

As a consequence of the masking produced by the image itself, when a
compression distortion appears over an image area that is highly textured, a
threshold elevation is possible as the sensibility to the distortion is reduced in
that area. This is called threshold elevation; usually this threshold elevation is
modeled as a power function. In Figure 3.13, a simplified threshold elevation
function is presented, where CT0 is the contrast detection threshold for a target
as given by the CSF, CM is the contrast of the masker, and CT is the actual
detection threshold of the target in presence of the masker.
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Figure 3.13: Simplified threshold elevation function

CT =

⎧⎪⎪⎨⎪⎪⎩ CT0 i fCM < CT0

CT0

(
CM
CT0

)ε
otherwise

⎫⎪⎪⎬⎪⎪⎭ (3.25)

Equation 3.25 shows that when the contrast of the masker is lower than
the contrast detection threshold, then no elevation is applied, but otherwise,
an elevation proportional to the ratio CM/CT0 is applied. This dependency is
plotted in a log-log graph as a straight line with slope ε.

Masking models assume the common understanding that the HVS
perceives visual information from various frequency-orientation channels in
parallel. Models differ in the source of the combined information. If the model
considers only information from one frequency-orientation channel, it is
called the intra-channel model where inter-channel or multi-channel masking
models consider information from various frequency-orientation channels
simultaneously.

The most common forms of masking used in encoders are self-masking
and neighborhood masking. The self-masking model takes only into account
for the threshold elevation the value of the frequency transformed coefficient
as measure of the activity in that image position (DCT block or wavelet
subband), while the neighborhood masking also takes into account the value
of the surrounding coefficients.

For simplicity, most of the encoder proposals use an intra-channel contrast
masking model, that, although providing lower prediction accuracy than
models considering both intra- and inter-channel masking effects, have the
advantage of enabling parallel processing [256], because subbands are
encoded independently.

As an example of threshold elevation in DWT encoders, in the JPEG2000
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Figure 3.14: Contrast masking function

standard, a power function is applied before uniform quantization,
implementing the self-masking approach. This function, with the form of
Equation 3.25, is parametrized in the reference software with the parameter ε,
which can vary from 0.6 to 1.0. For more implementation details, see
[255, 242].

As an example of self-masking in a DCT encoder, in [164] Watson applied
this threshold elevation in order to obtain the masked threshold mi jk for each
block; see Equation 3.26, where ci jk is a coefficient of block k and wi j an
exponent that lies between 0 and 1, so for wi j = 0, no masking is applied to
that block when wi j = 1, the threshold is constant in log or percentage terms
(for ci jk > ti jk, as exposed previously a value of wi j = 0.7 is commonly used).
Figure 3.14shows the contrast masking function for ti jk = 2 and wi j = 0.7
[164].

mi jk = Max
(
ti jk,

∣∣∣ci jk

∣∣∣wi j t
1−wi j

i jk

)
(3.26)

3.2.3 Perceptual coding approaches

In this section we will review some of the most relevant works that include any
of the aforementioned perceptual techniques in their coding proposals.

• One of the first works that includes perceptually adaptive strategies to encode
natural images is [246] where authors design an optimum quantizer based on
the Laplacian PDF. The dynamic range of the coefficients, obtained from a
block (16x16) based on cosine transform, was adjusted with a multiplicative
range scale factor obtained from the rate control stage and modified by a
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masking function. The masking function is computed and applied to each
block, based on an activity index that is derived from the sum of the block
coefficients. The authors also introduce a weighting factor that multiplies the
cosine transformed coefficient. These weights are based on the CSF model
proposed by [240] that has been adapted and normalized to have a peak at 3
cpd of visual angle. As the HVS weighting factor does not affect the PDF
of the quantized coefficients, they apply a Laplacian quantizer based on the
Max quantizer algorithm [231] with a deadzone for quantized values lower
than 0.5.

Block based transforms are sensitive to coarse quantization when the
dynamic range of the coefficient of adjacent blocks is different, because of
the loss of correlation of quantized coefficients of these blocks that finally
produces the blocking effect. In [246], authors include a re-quantization
stage that tries to minimize the loss of correlation between adjacent blocks.
They supervise the distortion between adjacent blocks to preserve it below a
fixed threshold.

When the first works present their results or compare with others, they
normally use the PSNR or R/D plots where PSNR is the distortion metric. As
we will see, most of the latest works are still using PSNR in their
comparisons, and only few of them include QAMs, like MS-SSIM, SSIM, or
VQM, in spite of the advances in this field, in their performance comparisons.

• In [235], the authors proposed the Perceptual Image Codec (PIC) encoder,
where the results are presented as printed images for different compression
ratios able to distinguish the benefits of the perceptual proposal. The authors
apply a 4 level and 4 subband frequency decomposition of the image via a
Generalized Quadrature Median Filter (GQMF).

A texture masking model is also applied. The model, which defines a
perceptual quantization strategy applied to each coefficient, is based on the
results of several subjective tests, performed for each image and subband, to
obtain a contrast base sensitivity and a base brightness sensitivity. These
base values are later modified with the inclusion of a texture masking stage,
that as in [246], is based on an energy measure, but in this case on the
subbands and in the pixel domain. The aim is to preserve the most sensitive
information from the quantization step. This schema, supported with
subjective tests, will be repeated in several proposals.

A common way of adaptive thresholding used by many encoders is to
make the coefficient thresholding levels inversely proportional to the
sensitivities to the corresponding spatial frequencies given by the CSF.
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Coefficients corresponding to less insensitive frequencies will be more harshly
thresholded than those corresponding to frequencies of higher sensitivity.
Differences among encoders that use the CSF lie in the CSF model being used.

• In [257] the authors include most of the of the perceptual strategies used
in perceptual coding. Although these strategies will be further refined in
posterior works, and even reformulated, this work illustrates very well the
aim of perceptual coding. The proposed strategies are DCT based but they
can be adapted to the DWT schemas as well .

The removal of subjective redundancy is an irreversible process and
involves discarding information that is not supposed to modify the perceptual
quality noticed by a human observer.

• The removal of subjective information from the transformed DCT
coefficients is managed in [257], as two separate psychovisually guided
quantization stages, thresholding and quantization stages. For the
thresholding stage, they use the CSF model proposed by [246] which
provides a NxN matrix of sensitivities values. But they normalize it by
averaging with the power at each frequency. This averaged power is
empirically calculated from a set of images. They also include luminance
masking in the calculation of their proposed NxN sensitivity matrix, which
must be uniformly scaled to obtain the final threshold level for each
frequency. They perform a set of subjective tests for a fixed viewing
distance in order to determine the scaling parameter and the threshold
values for lower frequencies that avoids the blocking effect.

For the quantization stage, once thresholded, the quantization steps applied
to each block coefficient are uniform, but the optimum step size for each
coefficient depends on the threshold value for the frequency that this
coefficient represents. The step size for each block also depends on the
spatial activity of the image in the block region, with those blocks located in
high spatial activity areas having larger step sizes . The activity of a block is
determined by the masking function, which is also subjectively tuned so
that the finally obtained step sizes produce sub-threshold distortion. They
propose a masking function that is based on a Laplacian edge detector in the
spatial domain but transformed to operate in the frequency domain.

They compare the performance of their perceptual strategies with the
standard DCT compression results, for images and video sequences,
providing the compression results in bit per pixels and the bit rate in Mb/s.
Additionally, in the paper, some images are exposed for visual comparison,
but no quality metric has been used, not even PSNR.



180 Chapter 3. Perceptual Coding

• In [164, 258, 167], Watson proposed an important approach named DCTune
for visual optimization of DCT-based compression schemas that is clearly
exposed and covers most of the strategies followed in perceptual coding
proposals. The proposal is adapted for individual images and uses
luminance and contrast masking to generate adapted quantization matrices
that should be sent to the decoder.

Watson uses initially, the [237] measurements of threshold amplitudes for
DCT basis functions. He then modifies these thresholds with the inclusion
of Luminance masking, producing a luminance masked matrix. Each of the
luminance masked thresholds is calculated either with the formula proposed
by [250], or by an approximation with a power function. Then a contrast
masked matrix is further computed. This matrix is computed for each
coefficient following the formula given by [254, 259] but taking into
account the previously luminance masked threshold. The contrast masked
matrix has then a Masked Threshold value of Mti jk for each DCT coefficient
in each block that includes luminance and contrast masking. Then, the just
noticeable distortion is calculated for each coefficient in each block as the
value of εi jk/Mti jk, where εi jk is the quantization error as in Equation 3.6.
By pooling via a Minkowski metric through all blocks in the image, a just
noticeable map for each DCT frequency is obtained that is further used to
obtain a single perceptual quality value obtained for that image. This is used
to optimize the perceptual quality for a desired bit rate and vice versa.

The main drawbacks of [164, 167, 258, 260] are that the proposals are
defined for individual images, fixed viewing conditions, and only for gray
scaled images. It is not locally adaptive enough; all 64 transform
coefficients share one common texture correction factor. Regarding the
results, they are presented as printed images for visual comparison without
giving at least PSNR values or presenting R/D plots comparing with other
proposals, but the perceptual gain is clearly shown by inspecting those
images.

• In [251], authors extended and generalized their previous works to account
for color images, variable and parametrized viewing conditions and making
the model image independent. The authors present a model for predicting
the visibility thresholds for DCT coefficient quantization errors from which
a quantization matrix design method is proposed. The model is parametrized
based on experimentally measured visibility thresholds as in previous works.

A variety of models has been proposed for the evaluation of image quality
and image fidelity that are usually based on a set of oriented filters [162, 161,
115, 163] see images 2.23, 2.24, and 2.25.
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Figure 3.15: DCT-Cortex Filters Mapping

The main problem of the application of the oriented filter-based models to
DCT image coding is the required conversion of the model domain to the DCT
domain. Application of the filter bank HVS models would be advantageous,
because this would allow the use of the state-of-the-art HVS models for DCT
image coding. In [261], a detailed explanation of how the mapping between the
Cortex Filters and the DCT transform is made. In [188] a general method to
combine models of orientation filters with the DCT transform domain (it can be
extended to other transforms too) is proposed by calculating a local sensitivity
factor for each DCT (color) block.

• The authors in [261, 262] propose another adaptive perceptual masking
threshold model for image compression. This model can be used for the
thresholding stage, as proposed by [257], where separation of quantization
in two stages was justified: the thresholding stage, for fixing the deadzone,
and the design of quantization steps in the quantization stage. The proposed
model is in turn separated in two stages. The first one, based on [251],
provides a quantization matrix that is dependent on the viewing conditions
but image independent. In the second stage, by the inclusion of an
estimation of the texture energy, an image dependent matrix is given. This
is also an interesting approach because a mapping of the DCT coefficients
onto the Cortex filters to estimate that texture energy is done. In Figure 3.15
from [262], this mapping can be seen. They define a set of overlaping
matrices where each of the 8x8 factors of the matrix contains the
approximate energy contributed by the corresponding DCT coefficient into
the cortex band for that overlap matrix. In order to get the final threshold
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value, they first compute the energy contained in each cortex band, then
after an threshold elevation mapping function, the threshold value is
obtained. The threshold value obtained, Mti jk, with this proposal is more
accurate with the HVS but also more aggressive than in previous proposals.
For presenting their results they use printed images at different rates for
visual comparison jointly with bit rate savings graphs.

• In [188], the filter bank used is a variant of the Steerable Pyramid proposed
by Simoncelli et al. in [163]. They propose the WMSE distortion measure,
commented on in Section 2.5.2. They translate each of the basis DCT
functions into the filtered domain, obtaining a Weighted sensitivity for each
DCT coefficient. The results were presented for one unique printed image
for visual inspection with no other type of PSNR tables, R/D comparison
curves, etc.; nevertheless the quality gain is clearly appreciable.

• Quantization error produced in DWT based encoders has been studied by
Watson et al. in [263, 106], where a model for DWT noise detection
thresholds is presented. These models is a function on the level and
orientation of the wavelets subbands and also on the display resolution.
With this model, a perceptually lossless quantization matrix can be
calculated and adaptive quantization schemes could be developed. With this
matrix, all errors should be below threshold. The authors follow the
methodology and strategies used in previous works with the DCT transform
[251, 260, 264], adapting to the wavelet transform as they detail in [263].
The main problem is basically the same, to find the error visibility in each
wavelet subband instead of in each DCT coefficient (that represents a
frequency range).

In order to determine the visibility of the wavelet quantization noise of each
wavelet subband, they perform subjective tests with different stimuli located
in different levels, orientations and spatial resolutions. They provide a
mathematical model for the basis function amplitudes for each level and
orientation for a six-level Antonini 9-7 DWT. They also provide a final
expression that uses the display resolution to get the quantization matrix. To
present the performance results of the proposed method, they provide only
two images compressed with the perceptually proposed lossless DWT
quantization matrix and twice that matrix, for visual inspection. For the one
compressed with the lossless matrix quantization errors should remain
invisible at the correct viewing distance (24 inches aprox.)

As shown, quantization matrices have been also used in the DWT domain,
so each component of the matrix represents one subband of the DWT transform
that corresponds to a level and orientation. There are 4 possible orientations
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indexed as {1,2,3,4} = {LL,HL,HH,LH}, where L and H represent low-pass and
high-pass filtering, respectively. Typically, a uniform quantizer (see Section
3.1) is used for each DWT subband.

• In [265] Wu and Gersho proposed a recursive algorithm for generating
quantization matrices for the JPEG standard. Their algorithm begins with a
coarse quantization table that recursively, coefficient by coefficient, is
refined until the ratio of decrease in distortion to increase in bit rate is
approximately maximized. Based on that work, [266] simplified the
recursive algorithm and introduces the CSF function proposed by [247] to
obtain a weighted quantization matrix for the JPEG encoder. The authors
also used a CSF function [267], derived form the Campbell and Robson
CSF, obtained via sine wave gratings, so that another weighted quantization
matrix is obtained. Results from the original Wu-Gersho algorithm and the
ones obtained with both matrices and the JPEG standard were compared.
They presented the results with R/D curves, for their best CSF based
algorithm, against the original Wu and Gersho algorithm and the original
JPEG. The curves showed that when measuring distortion with the PSNR,
the Wu-Gersho algorithm and their proposal perform likewise,
outperforming the original JPEG. But when they show several pictures for
visual inspection, then the best visual quality is obtained by the algorithm
that implements the [268] CSF (the one obtained from sine wave gratings).

• In [269], the Adaptive Picture Image Coding (APIC) was presented, based
on [235] but including two major advantages, adaptivity and intra-band
masking. In [235], the quantizer levels for each subband were selected
based on the pixels having the minimum available amount of masking and
they should be transmitted to the decoder. In this proposal, the quantizer
levels were obtained taking into account the amount of masking present in
all the pixels for the current subband. They exploit the smoothness of the
amount of masking in natural images, using the amount of masking found
in the previously encoded pixels as input to a masking predictor for the rest.
So, the masking predictor uses the masking information of the
neighborhood (only already encoded pixels).

Id addition, the way they encoded the quantized coefficients, using known
maps at the decoder, avoids the need to send quantization steps as side
information. As in [235] and previous proposals, the local noise tolerance is
based on a detection threshold multiplied by a masking adjustment factor.
The detection threshold includes luminance masking that has been
subjectively obtained for each band. The masking adjustment factor
accounts for contrast masking but in this case the authors introduce the
masking produced by large image components located in the same position
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but in other subbands. Results of APIC widely outperforms the PIC ones in
rate savings and in perceived quality. They present results as printed images
with approximately the same perceptual quality but at different rates. Bit
rate savings for the same perceptual quality arise up to 40%.

One of the major questions that arise when facing this way of presenting
the results is how the perceived quality is measured.

In most of the works, no QAM was used to measure bit rate savings to the
same objectively measured perceptual quality.

As exposed previously, two stages are commonly used to introduce
perceptual quantization:

1. The first is to fix the deadzone size via the quantization threshold,
normally based on CSF that may or may not include luminance
masking.

2. After that, in a second stage, the quantization step sizes are also tuned by
using the CSF and usually an adaptive quantization is performed, tuning
the quantization steps further, to account for contrast (or texture) and
luminance masking.

Figure 3.16: Tong block coefficient clustering.

• In [253], Tong presented an interesting approximation to that second stage
for a JPEG perceptually enhanced encoder. Once the quantization matrices
have been thresholded, they use the baseline JPEG proposed matrices. Their



3.2. Perceptual coding 185

proposal is an adaptive way to modify those initial quantization values by
scaling them, for each of the k DCT blocks, with a factor m(k) composed by
two components, TexMask(k) and LumMask(k), that account for contrast
masking and luminance masking, respectively. They propose a
classification of the DCT blocks in three classes, texture, edge and plain
blocks. They clustered the block coefficients in the three regions. The sum
of the energy of each region, see Figure 3.16, is used to determine, through
an algorithm that uses empirically obtained energy thresholds, to which of
the three classes that block belongs. Based on that block classification, an
adaptive calculation of the TexMask(k) and LumMask(k) factors is
provided. Multiplying these factors, the m(k) scaling matrix is obtained.
The matrix that finally is used to quantize that block is obtained by scaling
the initial quantization values with the scaling matrix. Results are presented
as percentage of bit rate savings. So, for that mentioned second stage, the
inclusion of this adaptive scaling matrix over the baseline JPEG one is
reported to get bit rate savings from 5% up to 22% for the same perceptual
quality. In order to determine the perceptual correspondence of compared
images, the authors performed subjective tests. The model requires a
computational overhead of 10% only on the encoder side.

• In [270, 271], Taubman presented the EBCOT algorithm for embedded
bit-streams (Embedded Block Coding with Optimized Truncation of the
embedded bit-streams) that was finally adopted as compression framework
for the JPEG2000 standard. In [271], he reported PSNR results for various
images and bit rates, i.e., obtained with a MSE as distortion metric for the
Post Compression Rate-Distortion Optimization (PCRD-opt) algorithm. He
presented also a new spatially varying visual distortion metric to be used in
the PCRD-opt algorithm, that was lately tuned to be included in the
standard JPEG2000 Extensions Part II.

An important decision in [271] was to fix the visibility floor to a single small
value for all subbands. This is important because on that basis, the distortion
metric can be calculated independently of any assumptions on the viewing
distance, which is highly desirable for uncontrolled viewing conditions, i.e.,
assuming the worst case.

• As he states, in previous works [258, 164, 167, 269, 272] visual masking
effects were taken into account by explicitly modifying the quantization
parameters, therefore, scalable compression was not considered and
rate-control must be performed iteratively. His visual masking distortion
metric is closely related to the one used in [164, 269] so that the formula
parameters are set to the same values. It is adjusted by a visibility floor term
(masking JND in other works) that establishes the visual significance of the



186 Chapter 3. Perceptual Coding

visual distortion in the absence of masking and by a visual masking strength
operator that accounts for masking strength based on the masking values in
the current coefficient’s neighborhood. The neighborhoods are calculated
for each 8x8 cell in which each code-block is divided using the same
masking strength value for all samples in any given cell. The proposed
algorithm is implemented in JPEG2000 VM3 and compared to SIPHT. The
author provides data tables with PSNR values for some of the most popular
images at different bit rates, and his proposal obtains better results in PSNR.
But also for 2K images, some cropped regions are printed for visual
inspection, and comparison, at the same rate the proposed technique
provides much better perceptually quality than SPIHT, and with the
equivalent perceptual quality the proposed method is able to encode with
0.2 bpp less bit rate.

• In [273], Zeng et al. presented an important contribution that was included
in the standard JPEG2000 Extensions Part II, and it is widely explained
[255, 274, 275]. They presented an improved visual masking function that
includes the benefits of the self-masking and the neighborhood masking
strategies, avoiding some of the issues with these techniques [255]. They
proposed the application of the weights given by the formula into the post
compression rate-distortion optimization (PCRD-opt) algorithm to control
the amount of masking of each code-block. This is the same strategy used
to apply the CSF in the PCRD-opt algorithm, as exposed in [255]. The
proposed masking approach non linearly maps the wavelet coefficients to a
perceptually uniform domain prior to quantization. It is essentially a
coefficient-wise adaptive quantization. As it is included in the PCRD-opt
algorithm, it allows bit-stream scalability, as opposed to many previous
works. Some figures were presented to differentiate the effects of the three
masking procedures, and it is mentioned that for images, like woman, a bit
rate savings up to a 50% can be obtained with the point-wise strategy.

As shown so far, most of the works include values of visual contrast
thresholds in their perceptually adaptive quantization, chosen either from any
of the models of the CSF or obtained by a set of subjective and psychovisual
experiments.

Most of these works have been oriented to obtain a visually lossless or
sub-threshold compression and then compression becomes lossy by scaling
the values of the quantization steps, i.e., assuming that the relationships
between quantization values of sub-threshold matrices hold for
supra-threshold compression.

• In [276], Hemami and Ramos performed a series of psychophysical
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experiments in order to determine if a uniform scaling of quantizer steps
sizes in DWT based schemes is valid for supra-threshold compression.
After that, in [277] they propose a non uniform scaling strategy for
supra-threshold compression. The psychophysical experiment was designed
to analyze the spatial masking in natural images and how different quantizer
step sizes at different levels and orientations affect the visibility of artifacts.
They found a strong correlation between the Minimum Noticeable
Quantizer Step Size (MNDSS) that produces a minimum noticeable
distortion and the subband standard deviation, indicating the presence of
orientation-dependent spatial masking. So, the quantizer step sizes were
parametrized in terms of subband standard deviation. They also found that
the contrast sensitivity was higher at subbands with higher energy, so for
these subbands masking thresholds should be lower. And the content
(edge/detail) influenced also the value the (MNDSS). They provide the
formulas and the value of the parameters, obtained from their subjective
tests. These quantization step sizes can be directly used in non embedded
wavelet encoders, but also they propose the formulas that provide the
weights that can be used in embedded wavelet encoders.

They use a simple intra-band subband coder with run-length Huffman
coding, to compare with the Watson DWT proposal [106] where the
sub-threshold quantization matrices were simply scaled for supra-threshold
compression. They provide several images for visual inspection and also a
table with percentages of bit rate savings for six common images. Bit rate
savings were in the range from 17% to 22% when compared to [106] at 0.15
bpp, having the same perceptual quality. The authors do not mention how
this perceptual equivalence was measured. They also compare their results
against the SPIHT embedded encoder, with and without their proposed
weights. For this comparison, they only present two images at 0.2 bpp for
visual inspection, using a 4 level DWT.

These formulas, which link for each subband the minimum quantization step
sizes and the standard deviation of the subband coefficients, are interesting
because only with this statistical information can a better perceptual supra-
threshold compression be achieved.

As the quantization step sizes, obtained this way, are specifically designed
for supra-threshold visually noticeable distortions, for a sub-threshold
compression any of the previous approaches can be used and then, when
further compression is needed, his proposal can be employed. One minor
problem then is to identify the at-threshold compression level when we have
to change the strategy. Therefore, for sub-threshold compression, the
MNDSS values can be used and then a uniform quantization can be applied
to obtain the desired bit rate.



188 Chapter 3. Perceptual Coding

• In [278], Wang et al. proposed and clearly explain the Daly method to apply
the CSF to the DCT coefficient taking into account visual parameters as the
dot pitch of the monitor and the visual distance, as proposed by Watson in
[106]. The method in [278] was also used in [279] for visual modulation of
halftone patterns, and was initially proposed by Daly in [280]. The Daly
model is based on the Mannos and Sakrison [240] CSF proposal. The
authors use the PVRG-JPEG Codec [281] with their quantization matrix
instead of the baseline JPEG proposed matrix. Results were also compared
with several JPEG encoders; a EZDCT encoder [282], a DCT based
embedded encoder, an Adaptive Thresholding JPEG coder [283]and Joint
Optimization JPEG coder [284]. The results were presented in a table for
the Lena and Barbara images compressed at different bit rates and all
compared encoders, with PSNR the quality metric used. The results show
that with the simple incorporation of the proposed HVS quantization table
for DCT encoders, the performance in PSNR is almost the same as that
obtained with much more complex encoders, like EZDCT, which in their
comparisons is the best performing one; it provides similar PSNR
performance as Shapiro’s EZW coder.

As shown, the simple use of contrast sensitivity thresholds applied to each
subband is a good approximation for sub-threshold compression, but as many
authors state, this does not guaranty the best perceptual performance for supra-
threshold compression.

Therefore, some authors have proposed adaptive modification to account
for supra-threshold compression and therefore perceptually driven rate-control
mechanisms appear to obtain the best perceptual performance in
supra-threshold compression.

• Höntsch and Karam in [272] propose a DCT based encoder that includes a
perceptual adaptive rate-distortion mechanism that is able to reduce to the
minimum rate possible a DCT encoded image while preserving the
maximum (at-threshold) perceptual quality. The algorithm is based first on
a CSF threshold adjustment followed by a contrast masking adaptive
adjustment. Furthermore, the algorithm estimates the masking adjustment
based on the already quantized coefficients; therefore, this adjustment can
be calculated again in the decoder side that avoids the need for sending
threshold information to the decoder. Therefore, the gain in rate obtained by
the reduction of perceptual redundant information is not wasted in sending
side information. They propose an error metric that determines the amount
of error at a specific DCT band and if this error is above thresholds. For
each band, a quantizer scaling weight is iteratively obtained. These weights
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must not be transmitted because in the decoder they can be obtained again
by comparing the quantized coefficients with the threshold model. The
contrast sensitivity thresholds are calculated with the model proposed by
Ahumada and Peterson [250]. The authors compare their results with the
DCTune Watson proposal, providing a table with the bpp needed to encode
different images with both methods, and R/D plots for two of the images
where the distortion metric is PSNR, as well as printed images for visual
inspection. Unlike previous works, the authors perform a set of subjective
tests in order to perceptually compare their results. The subjective test
results, exposed as MOS values, state that for low bit rates, the proposed
method provides better results than DCTune.

• In [252], Karam and Watson introduce their previous research into the
JPEG2000 encoder to improve it with a perceptual distortion control, i.e.,
instead of encoding for a target rate, the target is a desired perceptual
quality. They include the work in [106, 272], the perceptual model and the
distortion rate control, into the JPEG2000 standard (using the JASPER2000
implementation) so that is fully compatible with Part I, and the perceptual
optimization included in the Extensions in Part II of the standard have
already been replaced in their proposal.

They compare two versions for their proposal, the approximate distortion
control, where only the CSF thresholds have been included for each
subband, and the precise distortion control, where in addition the masking
and luminance thresholds are adaptively used. As performance comparison,
they provide R/D curves (with PSNR as distortion metric), showing the
behavior of both versions versus the conventional coding. The R/D
performance of the approximate version is almost the same as the
conventional, but the R/D performance for the precise version is
approximately 2dB worse. This fact is justified. For the approximate
version, the perceptual model equals the performance of the Part II
perceptual extensions included in the standard. The precise version is
designed with the perceptual error metric and not with the MSE, but the
R/D comparison is still made with PSNR as distortion metric. Therefore,
they also presented printing results for visual inspection where, for the same
rate, images from the conventional coding and the precise version are
perceptually indistinguishable, the latter one having lower bit rate. The bit
rate savings were in the range of 14% to 20%. They also perform
comparisons with the inclusion or not of the neighborhood masking
strategy, obtaining for the version with neighborhood masking slightly
larger savings (15% to 21%). The perceptual benefits for the inclusion of
the neighborhood masking do not justify the increased complexity for that
version, so they finally adopted the self masking strategy.
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When facing high resolution images (above 2K), the proposed precise
version clearly outperforms the conventional one. A set of subjective
impairment tests have been conducted to compare the coding performance
in terms of perceived quality for the proposed JPEG2000 encoding with
precise perceptual distortion control and the conventional JPEG2000
encoding. The results are given as R/D plots where the distortion metric is
MOS. The plots show that using MOS, now the precise version is above the
conventional one for low bit rates.

• Extensive experiments run by Nadenau et al., and described in [285, 249]
allowed the introduction of an adaptive way of performing a complete
adjustment of the CSF shape to the coefficients in each of the DWT
subbands, via Finite Impulse Response (FIR) filters. Those filters model the
CSF in each subband. In [249], the authors include their proposal in the
JPEG2000 encoder and also comprehensively review the non adaptive
schemes used in the literature to apply the CSF. Their FIR based proposal
could be applied also in two ways, in the quantization stage called Adaptive
Coefficient Modification (ACM), or as part of the PCDR-opt process called
Adaptive Modification Distortion function (AMD). If the ACM solution is
chosen, the inverse FIR filters must be applied at the decoder which, as they
stated, could produce saturation problems. For both solutions, the FIR filter
must first be designed (that design is CSF model dependent), and must be
applied to each of the subbands, including then computational overhead. If
the ADM is chosen, then the FIR filters must be applied to a copy of the
DWT coefficients in order to be able to construct the weights for each
code-block based on the weights for each coefficient in the block. This
produces memory overhead that could be important for huge images, but
avoids the saturation problems of the ACM solution, the FIR filter length
can be reduced because the analysis/synthesis error produced with a smaller
filter size can be compensated with the PCDR-opt process and also avoids
the need to run the filters at the decoder. The proposed FIR filtering
technique produces good results at-threshold compression, but only the
ADM solution can be easily extended to supra-threshold compression by
means of the PCDR-opt. Nevertheless, the proposed solution can be further
improved by including some of the contrast masking adaptive proposals.

The ACM proposal was tested in JPEG2000 and compared via subjective
tests using printed images at 267 dpi. In these tests, viewers were asked to
separate several compressed images (at different rates) into three quality
levels, Perfect, Good, and Refused. A compression gain could be observed
only by the application of the ACM technique, with gains of 29% for the
Perfect quality level and 28% for the Good compression level. The ADM
proposal obtained almost the same bit rate savings as the ACM one. For
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presenting the results of the ADM version, several cropped regions of the
bike and woman images were printed for visual inspection. The images
compare the visual quality of the plain JPEG2000 version and the
JPEG2000 with the ADM version jointly with the original images. Much
better perceptual quality is observed for the ADM version.

• Another contrast driven rate-control mechanism as in [272] is proposed by
Chandler and Hemami in [248], but this time for DWT encoders, and the
error measure that drives the rate-distortion algorithm is now the Contrast
RMS Error, i.e., the contrast of the distortion errors produced in a DWT
subband for a specific quantization step. The authors establish relationship
among Contrast RMSE and the typical RMSE quantization error produced
at each subband, and on that basis they propose a Dynamic Contrast-Based
Quantization (DCQ) algorithm based on the supra-threshold contrast
adaptation studies described in [134]. The DCQ first determines the
relationship between this minimum Contrast JND, which is weighted
contribution of the contrast JND of each subband [193]. Then it iterates
until the desired bit rate is obtained. The RMSE allowed in each subband
for each iteration step is obtained via the previously mentioned error
relationship, estimating therefore the corresponding quantization steps. If
after an iteration the actual bit rate is above the requested one, then in the
next iteration another minimum contrast distortion unit is applied as a
compound contribution of all subbands. The results were generated from 8
bits/pixel (bpp) grayscale original images. At high bit rates, images coded
with DCQ are competitive in visual quality with those coded using PCRD
with fixed visual weighting, whereas at lower bit rates, DCQ generally
excels at preserving image quality by maintaining the semblance of global
edge-structure. The authors presented printed images at the same rate with
PSNR values as quality metric, and as expected, DCQ encoded images
obtain better perceptual assessment than the PCRD ones although PSNR
indicates the contrary. The authors also provide tabular results for several
images where besides PSNR, another objective QAM is used, the NQM
[286], based on a degradation model. For both metrics the proposed DCQ
methods obtain lower quality values but again, in a visual comparison of
printed images gets better perceptual assessment.

• Sreelekha et al. [287] proposed a DWT coding approach implemented in the
JPEG2000, using the Ramos and Hemami [193] contrast threshold proposal
for the luminance channel, but including a new model for chrominance
thresholds. Unlike most of the previous works, contrast thresholds are used
in both, luminance and chromatic channels simultaneously. To obtain the
chrominance thresholds, they use a YCbCr color space and a series of
psychovisual experiments using a similar procedure as mentioned in [272].
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In the thresholding and quantization phase, first a thresholding quantization
stage over all subbands is run. Then, the remaining coefficients, which are
clustered following a k-mean algorithm, are iteratively quantized so that, for
each subband, the quantization error remain below the detection threshold.
In order to achieve a desired bit rate, they run a simple iterative procedure
where in each step the thresholds are elevated. The authors provide tables
with the chrominance thresholds obtained for the subbands of a five DWT
decomposition for the different orientations and for some of the images
taken from the live database. They provide the threshold values for the Cb
and Cr color components and also the expressions and parameters to obtain
for both chrominance base thresholds.

Using the base thresholds, their solution works in the sub-threshold
compression range. For supra-threshold compression, they tested their
proposal first by simply scaling the luminance and chrominance thresholds.
The scale factors, 1.1 and 1.3 for luminance and chrominance, respectively,
were obtained by trial and error, by applying them to several images and for
different rates. Since the base model itself takes care of the properties of
individual images as well as that of the subbands, a uniform scaling of the
base threshold was enough to achieve higher compression with improved
perceptual quality, compared with that of the standard codec. But as known,
the luminance thresholds, which were developed for at-threshold
compression, are not effective for higher compression ratios. However, it
was also noticed that scaling the chrominance thresholds provides a larger
tolerance and preserves the color details even at a higher scale. So the
algorithm was finally tested with the luminance thresholds kept at the
at-threshold level and scaling only the chrominance thresholds in order to
achieve higher compression rates.

Regarding the results presentation, they use printed images for visual
inspection, but most interesting is that this is one of the first works that uses
some advanced QAMs for obtaining the bit rate savings for the same
perceptual quality. In particular, besides PSNR, they also use the VIF,
SSIM, VSNR, and also MOS values, providing the metric values for the
tested images and for the two versions (luminance scaled or not). The
QAMs were applied to each of the three color components R, G, and B, and
the mean value of the three components is taken as the quality measure. The
comparison with the JPEG2000 compressed image clearly shows
superiority of the proposed algorithm in retaining the colors without losing
the original shades even at much lower rates (but at-threshold). These color
shade variations can be noticed in many parts of most of the test images for
supra-threshold rates. The comparison between their two versions provides
slightly better objective perceptual quality for the version where only
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chrominance thresholds were scaled. The major problem with the proposed
algorithm is the time required to converge to the given rate, as they use an
iterative approach.

• Oh, Bilgin, and Marcellin, proposed a new method to determine the visual
thresholds for the JPEG2000 in [288]. Although visual thresholds for the
wavelet transform had been successfully employed previously, in their
proposals authors include the statistical characteristics of the wavelet
coefficients jointly with the dead zone quantizer.

Previously, in [252], Liu, Karam and Watson assumed that the quantization
error is uniformly distributed over the interval (Δ,−Δ), being Δ the
quantization step. But the authors provide here a PDF of a redefined model
for the quantization distortions produced by a dead zone quantizer and
mid-point reconstruction. Using this model, which depends on the size of Δ
and on σ, the standard deviation of the subband coefficients, they performed
a series of subjective experiments in the same way as in [276]. For a
uniform gray (128 gray level) image that is transformed with the DWT, they
introduced in a single subband (the rest of subbands remain unaltered) a
patch of coefficients altered with the new quantization error model. As the
error model depends on Δ and σ, then for a very low fixed Δ, only by
modifying the σ in the patch they obtained several patches with increasing
error. They performed the subjective test in order to model the visual
thresholds corresponding to the new error model, and finally, the authors
provide the equation that relates the standard deviation σ to the visual
threshold. For the results presentation, only a table with bit rate reduction
for the performed comparison is provided. With this new approach included
in the Kakadu v6.1 (JPEG2000 compliant encoder), the authors obtain an
additional 30% of bit rate reduction for the same perceptual quality than in
[289] for the same digitized radiographs.

The relationship between the visual thresholds for the sub-threshold level and
the standard deviation of the subband coefficients in wavelet based encoders
with dead zone quantization is an important finding.

• Going a step forward, the same authors include visual masking adaptation
to their previous quantization error model in [256]. The previously obtained
Visual Thresholds (VT) were adjusted further using visual masking effects
present in the background image. A masking threshold value is used to
elevate the VTs. This masking threshold value is composed of two weighted
components to account for self masking and texture masking. Compared
with numerically lossless compression of JPEG2000, the proposed method
achieves a 60% bit rate reduction on average, without visual quality
degradation. The bit rate reduction obtained when compared to their
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previous version in [288] is on average 40%. Furthermore, the proposed
method yields superior image quality at equivalent bit rates, compared with
conventional JPEG2000 encoders. The results are presented in tables of bit
rate reduction for several commonly used images and with some cropped
regions of 2k images where the quality differences are clearly perceived. In
[290], authors extend their previous models to chrominance, providing the
Δ values for the Cb, and Cr channels used in their model. In this case, they
compare their results in bit rate savings against the visually lossless
proposal by Chandler et al. in [289], obtaining an average savings of 5.50%.

3.2.4 How proposals compare their results

One of the first ways of presenting how good a specific perceptual encoding
proposal works was to use printed images for visual inspection. This is a good
approximation if the new proposal exhibits clearly higher performance with the
compared methods and the benefits are noticed this way. Normally, several
tables with PSNR values as quality metric were also presented. Those values
and images are normally presented only for a reduced set of specific rates or
even only for one rate.

Another common strategy for presenting results is by the way of bit rate
saving values, normally in tables for a reduced set of qualities. Bit rate savings
are supposed to occur for the same perceptual quality of the image. The main
problem with this way of presenting results is how the perceptual quality is
measured. Normally, authors use subjective tests or simple visual inspection to
determine this equality.

Providing performance results over a wider set of bit rates by means of
Rate/Distortion curves is a much better approach. With a quick look to the
R/D compared curves, the reader can see which proposal is performing better.
In fact, it is the most prevalent way of providing and comparing results in
image and video coding research, jointly with tabled data. As reviewed before
only some proposals include a QAM as distortion metric in the R/D
evaluation. Most of the works still use the PSNR as distortion metric when
using R/D curves because in general it is considered that PSNR is well
correlated with perceived quality, as long as the saturation limits are
considered. As shown in previous chapters human perception of quality
saturates above some specific quality level and for very low quality values it is
difficult and it depends on the subject to determine which image is better. The
use of a QAM as distortion metric in R/D is perceptually much more accurate
than PSNR, but practical issues, i.e., computational cost, impose the use of
PSNR.
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Besides, the log scale of the PSNR metric makes comparing numerically
the gain of quality for two points in a curve difficult, i.e., the comparison of
a specific gain in dB at high bit rates with the same gain at low bit rates has
different perceptual meaning. In addition, although presenting a R/D curve is
easy and provides a quick way to see differences between proposals, it has the
disadvantage of being difficult to provide a numerical comparison value, i.e., it
is easy to measure the bit rate savings for a specific quality value, or also, the
quality gain for a specific bit rate, but for the whole quality range of values, or
for the whole bit rate ranges covered by the curves it is difficult to provide a
single measure for comparing both curves.

During the development of the video coding standard H.264/AVC, an
objective coding efficiency measurement, i.e., the Bjontegaard Delta
PSNR (BD-PSNR) or ΔPS NR [291, 2], was proposed. Many image and
specially video encoder proposals use it now as a de facto standard for
presenting compared results; in fact, the Bjontegaard model is used by various
experts to calculate the coding efficiency of compression standards. For
example, this model was used during the development of H.264/MPEG-4
AVC, the Multiview Video Coding (MVC) extension of H.264/MPEG-4 AVC
[12], H.265/HEVC, and the multi-view extensions of H.265/HEVC. The
Bjontegaard model is also widely used by researchers working on image and
video compression to benchmark the performance of their algorithms against
well-established and state-of-the-art compression algorithms. However, the
Bjontegaard model might not be an accurate predictor of the true coding
efficiency as this model relies on PSNR measurements. In a recent work [292],
the authors use the average MOS and bit rate differences computed between
the fitted R/D curves inspired in the Bjontegaard method. We will also use
some modifications of this method when comparing some of our results using
a QAM instead of the PSNR, therefore, we will first overview the main ideas
behind this model.

The basic idea behind the method is to calculate the average difference
between two R/D curves. This can be done iteratively, calculating the real
obtained PSNR, for small increments of rate, so finally we obtain the average
difference in PSNR. One problem, as mentioned before is the log nature of the
PSNR metric so that differences in high rates have more weight in the final
result. In Figure 3.17 [291], the popular way of presenting R/D curves is
shown. As stated in [291], the difference between the curves is dominated by
the high bit rates, so the range 1500-2000 gets 4 times more weight than the
375-500 range even if both represent a bit rate variation of 33%. This problem
is resolved by using a log scale for the rate as in Figure 3.18 where the R/D
curves do not deviate much from straight lines. The other problem in such a
procedure is that we have to compute a large amount of results iteratively.
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Figure 3.17: Normal R/D curves for two compared proposals

Figure 3.18: Log(Rate) R/D curves for two compared proposals

DPS NR = D(r) = a·r3 + b·r2 + c·r + d (3.27)

Based on experimental observations, Gisle Bjontegaard employed a third
order logarithmic polynomial to approximate a rate-distortion (R/D) curve from
only four real R/D value pair, that properly covers the whole rate range and
instead of using the linear rate scale, a logarithmic scale is used. So given
four output bit rate points a, b, c, d, we can obtain the interpolated curve that
passes through all 4 data points with Equation 3.27, where DPS NR represents
the reconstructed distortion in PSNR and r = log(R) where R is the output bit
rate.

Based on the interpolated R/D curves, the average differential PSNR
between two R/D curves is calculated by Equation 3.28 where subindexes 1
and 2 denote each of the curves and rL and rH are the integration bounds. In
the same way, the average change in rate can be obtained, see [291]

ΔPS NR =

∫ rH

rL
(D2(r) − D1(r))dr

rH − rL
(3.28)

In Figure 3.19 [2], the area that is taken into account for calculating (1), the
average PSNR gain, and (2), the average bit rate saving is shown, jointly with
the integration bounds in each case.
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Figure 3.19: Integration area and limits for calculating 1) average PSNR gain
and 2) average bit rate savings.

Figure 3.20: Performance at low and high bit rate.

Some refinements have been made to the Bjotegaard model; in [2],
Bjontegaard shows that when the R/D curves are obtained for Qp (quantization
parameter for H.264/AVC) differing in 4 or more units, i.e., long distance
between curves, then providing only an average for the whole bit rate range is
not enough. In this case, the use of a log10(Rate) scale is used and three values
are given to achieve better results: 1) the average over the whole range, 2) the
average of the upper section of the curves as indicated in green in Figure 3.20,
and 3) the average of the lower section of the curves as indicated in red in
Figure3.20. In [293], an interpolation with 5 points is proposed, and [294]
presents a metric to validate if the integration area is properly overlapped.

3.3 CSF weighting matrix

As stated before, CSF is the most widely used method to include perceptual
enhancements into image encoders. As reviewed in 3.2.3, most of the methods
use some kind of subjective or psychovisual experiments in order to get the
quantization matrix that will be included in the encoder.

In this section, we will introduce a method based on [295] to obtain these
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quantization matrices directly from a model of the CSF. We will analyze the
behavior of this method when used in the S-LTW encoder [3] and analyze
several optimizations in order to improve its R/D performance in a
perceptually enhanced version of the S-LTW.

The best working optimization has been tested with a large set of images.
Since the encoder modifications are perceptually based, the results must be
compared using a QAM as exposed in the previous chapter.We will use the VIF
metric. Although this metric is not the fastest one, it is the one with the highest
correlation with the MOS values in our tests.

In the Mannos and Sakrison CSF model [240] (see Equation 3.12) , the
spatial frequency f can be expressed in pixels per degree of visual angle. As
commented and explained in section 3.2.1.3, we will use half of the maximal
spatial resolution of the HVS (64 cycles/degree) at a distance of 12 inches. With
these parameters, the quantization matrices obtained are suited for a display
resolution of 300 dpi and a visual distance of 12 inches.

The use of these parameters produces the CSF curve of Figure 3.5. The
spatial frequency of the x axis must to be mapped to each level or subband in
a wavelet decomposition schema. In a typical DWT schema, the input image
is convolved with a low-pass and a high-pass filter for each row and then for
each column. After each filtering operation, the result is down-sampled by
two. This produces 4 frequency subbands named LL, LH, HL, and HH, where
L corresponds to low filtered results and H to high filtered results. The first
letter in each pair represents the rows and the second one the columns. This
schema is repeated N times, taking the last LL subband as input for the next
decomposition.

Figure 3.21 shows a representation of a 6-level DWT decomposition. In
such a 2D wavelet decomposition schema, each level and subband should be
mapped to its representative spatial frequency. In [249], a way to obtain this
mapping is explained.

The CSF spatial frequency range is divided by two, establishing two
frequency ranges. The highest frequency range corresponds to the first
decomposition level and the lower frequency range will be further divided for
the next levels. In Figure 3.22, the CSF curve is shown, with the x axis labeled
with frequency bands for each decomposition level. So, for the first
decomposition level, a representative frequency value is chosen from all the
frequencies in the L1 band. A representative value is chosen for each Ln band.

Having fixed the representative frequency values for each level, Equation
3.12 give us the normalized perceptual contrast sensitivity within a range from
0 to 1. This value is directly used as the at-threshold quantization factor for
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Figure 3.21: Typical DWT subband decomposition.

the corresponding DWT decomposition level. Using this strategy, i.e., with the
same quantization value for each subband within a level, a CSF Quantization
Matrix is obtained.

The key point in this procedure is to choose the right representative
frequency value. Different sets of representative frequency values will cause
different quantization matrices, which in turn lead to different perceptual
qualities in the reconstructed images.

The objective is then to find the CSF Quantization Matrix that produces
the image with the lowest bit rate and the highest perceptual quality, i.e., with
no perceivable difference from the original. This image is told to be
compressed at-threshold, i.e., further quantization will produce noticeable
distortions. The perceptual quantization matrix obtained this way should
exhibit the same behavior in the whole compression range, from low
compression rates to high compression rates, i.e., it should maintain the best
possible perceptual quality for each compression level.

As mentioned before, different ways of choosing these representative values
will produce different R/D behavior. Some sets of representative values exhibit
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Figure 3.22: CSF curve with the frequency bands for each level labeled on the
x axis. The selected representative value for each band is the peak value for
each one (red points). Contrast sensitivity for these values are the quantization
factors for all subbands on the same level.

good R/D behavior for low compression rates only, while others do so for high
compression rates only. The objective is then to choose these representative
values so that the R/D curve is maximized in the whole rate range.

We are talking about a level perceptual quantization/weighting matrix if
there is only a representative value for each wavelet decomposition level, and
we name subband perceptual quantization/weighting matrix if we have different
representative values for each subband within a level.

In [295], the authors propose several methods to obtain the level and
subband quantization matrices (called CSF Masks). The authors conclude that
their level weighting matrix is the best working solution. We will name this
reference proposal bLev. Although the authors conclude that their level
proposal was the best performing one, we have also studied and compared
their best subband proposal in the S-LTW encoder. We name that subband
proposal as bSub.

We have observed that the bLev proposal works well in the very low
compression range, although for some images and for higher compressions, as
shown in Figures 3.25 and 3.24, it does not perform better than the bSub
proposal. Figure 3.23 shows the comparison of the reference methods for the
Lena image for a bit rate range up to 1.7 bpp. In this Figure, the bLev
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Figure 3.23: bSub vs. bLev for Lena. Comparison of the R/D behavior.
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Figure 3.24: bSub vs. bLev for Mandrill. Comparison of the R/D behavior.
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Figure 3.25: bSub vs. bLev for Balloon. Comparison of the R/D behavior.

reference method has better R/D performance than the bSub method. But as
mentioned before, these performance differences are dependent on the image
content. So, for the Mandrill and Balloon images, at figure 3.24 and 3.25,
respectivelly, the bSub proposal is performing better in the low compression
range, and the bLev proposal works better for higher compression.

In the bLev proposal, the representative value for each level frequency
band is the one with the highest contrast sensitivity, i.e., the peak value of each
level. The bSub proposal applies a 5-level DWT decomposition on the CSF
curve, choosing as representative frequency for each subband the peaks of
each wavelet subspace for the HHl subbands, and

√
pl + ql for the HLl and

LHl, being l the DWT decomposition level, pl the peak of the approximation
subspace, and ql the peak for the remaining subspaces of the lth
decomposition. See [295] for more details.

We have analyzed the behavior of these two proposals in the S-LTW
encoder (also a DWT based encoder) in order to see differences in R/D
behavior using VIF as the distortion metric, and we also performed an analysis
in order to find a perceptual weighting matrix proposal that has a better R/D
behavior independently of the quality level.

When no other quantization is applied, the use of the normalized CSF
values as quantization factors for each level produces, as mentioned before,
the at-threshold image version, which has a reduced bit rate and a theoretical
visually lossless quality.
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Figure 3.26: Two alternatives to obtain sub-threshold rates with S-LTW.

For most viewers and images this is true, but when both images are shown
simultaneously, some viewers can detect small differences after an intensive
inspection. In a normal subjective test session, where during short time
periods one image is shown followed by a uniform gray image, and finally the
other image is shown, these differences are unnoticeable. But when a rapid
alternation of the images is done without intermediate frames, as when playing
a video, and depending on the image or only some parts of it, most viewers are
able to detect differences between the original image and the at-threshold
version. This is because a flickering effect appears in some highly textured
areas and in smooth regions of the image. These differences are however
imperceptible for static images as said. This flickering effect is reduced as we
move to lower compression rates, i.e., for sub-threshold qualities.

Due to this flickering effect, and because we will also test our proposals in
the intra video mode with a perceptually improved version of the Motion-LTW
encoder (M-LTW) [296], we need to test our encoder also at higher bit rates,
i.e., for very high image qualities and very low compression.

To increase the rate for the at-threshold image, and thence the quality, two
alternatives are possible. In Figure 3.26, the two alternatives are schematized.

• The first one still uses the Perceptual Quantization Matrix (PQM) with the
quantization factors directly chosen from the CSF curve as explained before
in the range from 0 to 1. Then, to obtain images with lower compression
with the S-LTW encoder, we can use the uniform quantization parameter
of the encoder to provide lower quantization. A quantization parameter of
Qp = 0.5 does not produce any quantization with the finer quantizer, but
the coarser quantizer still applies. So we can use values below 0.5 for the
Qp parameter in order to produce uniform elevation of the transformed and
perceptually quantized coefficients, although it must be taken into account
the quantization produced by the coarser quantizer.

• The second one calculates a Perceptual Weighting Matrix (PWM) by
normalizing the quantization factors, which are obtained from the CSF. This
normalization can be done by dividing all values in the PQM by the lowest
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one as done in the reference paper. The PQM and the PWM matrices
obtained with this method, that is schematized in Figure 3.22, are shown in
Table 3.1. The weights obtained this way multiply the coefficients in their
corresponding levels before any quantization is done. The rationale behind
this normalization is to preserve more, from the uniform quantization stage
(finer quantizer) and also from the coarser quatizer, those subbands that are
perceptually more important than others.
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Figure 3.27: Perceptual weighting matrix values over the CSF curve with the
subbands where each weight is applied.

Table 3.1: Quantization and weighting matrices for a DWT level decomposi-
tion.

PQM PWM
L1 0.1498 1.000
L2 0.6903 4.607
L3 0.9808 6.546
L4 0.9809 6.546
L5 0.8105 5.409
L6 0.5280 3.524
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Figure 3.28: Small R/D differences between PQM or PWM plus a uniform
quantization

For many images, the R/D behavior of both alternatives (using PQM or
PWM) is practically the same, but for some images, slightly worst R/D results
are obtained when the PQM is used. In Figure 3.28, the R/D behavior of both
matrices is shown for the level decomposition. Therefore, we will use for our
studies the perceptual weighting matrix (PWM) approach in order to avoid
these small differences and to protect the coefficients also from the coarser
quantizer of the S-LTW encoder.

The aforementioned quantization or weighting matrices are applied in a
level decomposition granularity, i.e., the same value applied to the whole level.
By following the same approach, we will now increase the granularity of our
proposal to a subband decomposition, but improving the R/D behavior of the
bSub reference proposal. So, we will select a representative frequency value
for each subband to obtain the corresponding CSF value, and then normalize
the weighting matrix.

Different R/D curves can be obtained depending on the way the normaliza-
tion of the quantization factors is done, and how the appropriate representative
frequency values are selected for each subband.

In figures 3.29 to 3.31, schematized images of how we assign the
representative values to a subband decomposition are shown. The position of
the points in these images is only an approximation to help understand the
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Figure 3.29: PWM-S1 and PWM-S2 representative values schema.
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Figure 3.30: PWM-S3 representative values schema.

proposed methods. The accurate values are provided in Table 3.2.

We propose several new perceptual weighting matrices for a subband
decomposition and after a performance comparison of them we will finally
chose the best performing one. In all these proposals, the weights are assigned
to the subbands in a high to low frequencies order: HH1, HL1, LH1, HH2,
HL2, LH2, and so on. The proposals are:
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Figure 3.31: PWM-S4 representative values schema.

• PWM-S1: The first subband, HH1, get its weight from the peak value of the
L1 decomposition level, i.e., the rightmost red point in Figure 3.29. Then,
for the HL1 and LH1 subbands, the weight is obtained from the average CSF
value in level 2. This schema is repeated for the rest of the levels, so for HH2
subband the peak value of the L2 level is chosen, and for HL2 and LH2 the
average CSF value of L3 is chosen. The average CSF values correspond to
the yellow points in Figure 3.29.

• PWM-S2: In this weighting matrix, the first subband (HH1) takes the same
weight as in the previous proposal. For the next subbands, we calculate for
each of the Ln levels (n > 1) the CSF values as follows. We divide the CSF
curve for the Ln frequency segment in four quarters. The representative
frequency points for each level Ln with n > 1 are the green points in
Figure 3.29, which correspond to the first quartile and the third quartile
(from right to left) of the curve values. So, for the HL1 subband the first
quartile of the CSF segment for L2 is chosen. For the LH1 subband, the
third quartile of the same segment is chosen. As in the previous proposal,
this schema is repeated for the rest of the levels. When the level is located to
the left of the maximum of the CSF curve, then the LH subband takes the
first quartile and the HL subband takes the third quartile as representative
value, while the HH subband still takes the peak value.

• PWM-S3: For this weighting matrix, we have shifted to the right the first
representative value, the one for the HH1 subband. In this case, we choose
the lowest CSF value. Figure 3.30 shows how the representative values have
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been chosen for this proposal. With the same schema as in PWM-S1, the
representative value for the subbands HL and LH are the average CSF values,
but this time at the same decomposition level (yellow points in the figure).
So for the HLn and LHn subbands, the average value of the CSF segment in
Ln is chosen, and the value for the HHn subband is the lowest value of the
CSF segment.

• PWM-S4: With the same schema as in PWM-S2 each segment of the CSF
curve for each level has been divided into four quarters, but in this case the
first segment corresponds to the L1 level. Figure 3.31 shows how the
representative values have been chosen for this proposal. The representative
values are also the first and third quartile for each segment (from right to
left), but in this case from the same segment. As in the previous proposal,
when the level is located to the left of the maximum CSF value, the
representative value for the HL and LH subbands are swapped, and in any
case, the HH subband takes the peak of the segment.

In order to obtain the weights from the quantization values, we must
normalize these representative values so that the lowest one is set to 1. The
normalization method proposed in [295] for the level weighting matrix
(dividing by the lowest value) is not suitable for all the proposed methods, as
the weights become too large in the PWM-3 and PWM-S4 methods, and then
the R/D performs worse.

The normalization that we propose for the subband weighting matrices is to
set the minimum value to 1, the maximum value to the maximum value obtained
for the level decomposition, and then maintain the same relative distance (on
the y-axis) between the representative points that they have on the CSF curve.

In Table 3.2, the quantization values from the CSF curve for each proposal
are shown for a 6-level DWT decomposition, which produces 18 subbands. In
Table 3.3, the normalized values for the four proposals are shown.

In Figure 3.32, the x-axis is labeled with the 18 subband names, and each
point of the curve represents the subband quantization value. In Figure 3.33,
the normalized values are shown instead. As shown, the representation of the
PWM-S4 values resembles the CSF curve more, while the PWM-S1 proposal
has up to 5 subbands with almost the maximum quantization value. Also the
PWM-S1 and PWM-S2 proposals overprotect (elevate) the high frequency
subbands.
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Table 3.2: CSF values for the subband proposals

Subbands PWM-S1 PWM-S2 PWM-S3 PWM-S4
LH6 0.4260 0.3740 0.4260 0.3183
HL6 0.4260 0.4810 0.4260 0.3740
HH6 0.5280 0.5280 0.5280 0.4810
LH5 0.6900 0.6200 0.6840 0.5298
HL5 0.6900 0.7600 0.6840 0.6160
HH5 0.8105 0.8105 0.8105 0.7570
LH4 0.9280 0.8920 0.9300 0.8115
HL4 0.9280 0.9720 0.9300 0.8940
HH4 0.9809 0.9809 0.9808 0.9740
LH3 0.9810 0.9810 0.8650 0.9808
HL3 0.9810 0.9810 0.8650 0.9500
HH3 0.9808 0.9808 0.6908 0.7890
LH2 0.8650 0.9490 0.3730 0.6903
HL2 0.8650 0.7880 0.3730 0.5020
HH2 0.6903 0.6903 0.1500 0.2320
LH1 0.3730 0.5020 0.0380 0.1498
HL1 0.3730 0.2310 0.0380 0.0590
HH1 0.1498 0.1498 0.0026 0.0080

Table 3.3: Normalized (weights) values for the Subband Weighting Matrices
proposals

Subbands PWM-S1 PWM-S2 PWM-S3 PWM-S4
LH6 2.8428 2.4958 3.4007 2.7694
HL6 2.8428 3.2098 3.4007 3.0868
HH6 3.5233 3.5233 3.9789 3.6969
LH5 4.6045 4.1374 4.8636 3.9753
HL5 4.6045 5.0716 4.8636 4.4666
HH5 5.4087 5.4087 5.5810 5.2705
LH4 6.1926 5.9524 6.2584 5.5814
HL4 6.1926 6.4862 6.2584 6.0516
HH4 6.5455 6.5455 6.5463 6.5077
LH3 6.5463 6.5463 5.8898 6.5463
HL3 6.5463 6.5463 5.8898 6.3709
HH3 6.5447 6.5447 4.9018 5.4529
LH2 5.7722 6.3328 3.1002 4.8900
HL2 5.7722 5.2584 3.1002 3.8166
HH2 4.6062 4.6062 1.8358 2.2772
LH1 2.4891 3.3500 1.2008 1.8087
HL1 2.4891 1.5416 1.2008 1.2908
HH1 1.0000 1.0000 1.0000 1.0000



210 Chapter 3. Perceptual Coding

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

LH
6

H
L6

H
H
6

LH
5

H
L5

H
H
5

LH
4

H
L4

H
H
4

LH
3

H
L3

H
H
3

LH
2

H
L2

H
H
2

LH
1

H
L1

H
H
1

C
on

tr
as

t S
en

si
tiv

ity

PWM-S1

PWM-S2

PWM-S3

PWM-S4

Figure 3.32: Representative subband quantizer values for each proposal
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Figure 3.33: Representative normalized weights for each proposal

3.3.1 Weighting matrices performance comparison

Differences among the four proposals are very small for some images, while
for others, higher differences are detected. The R/D behavior of the PWM-S2
and PWM-S4 proposals is better in the low and mid-compression range than for
the remaining proposals, see figures 3.34 and 3.35. The PWM-S1 and PWM-
S3 proposals perform better in low-compression range. For highly textured
images, as Mandril (see Figure 3.35), the PWM-S2 proposal fails in the low-
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Figure 3.34: Lena: Comparison of the R/D curves for the different proposals.

compression range. Also PWM-S4 fails with respect to PWM-S1 and PWM-S3
in that range, but to a lower extent than PWM-S2.

The PWM-S4 proposal is the one that provides averaged better R/D
behavior in our tests, so it is chosen to be compared with the reference
proposals, bLev (level decomposition) and bSub (subband decomposition).

For some of the test images, the R/D curves for the comparison between the
PWM-S4 proposal and the bSub and bLev proposals are shown in figures 3.36
to 3.39.

By inspecting these figures, we can see that reference proposals cross their
R/D curves about the mid-compression rate as stated before. The PWM-S4
proposal has an overall better R/D performance as it works better in any bit rate
range. It provides better VIF values for high and mid-compression rates and
almost the same values for low-compression rates than the reference subband
proposal, which does not work well for high or mid-compression rates.

As the R/D behavior of the proposals differs depending on the compression
range, we have defined three compression ranges in order to obtain the quality
gain in each of these ranges as well as for the whole bit rate range. These ranges
are:

• High-Compression Range (HCR): from 0 to 0.87 bpp
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Figure 3.35: Mandrill: Comparison of the R/D curves for the different propos-
als.
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Figure 3.36: Balloon: Comparison of the R/D performance of the PWM-S4
proposal.
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Figure 3.37: Bike: Comparison of the R/D performance of the PWM-S4.
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Figure 3.38: Deer: Comparison of the R/D performance of the PWM-S4.
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Figure 3.39: Big Tree: Comparison of the R/D performance of the PWM-S4.

• Mid-Compression Range (MCR): from 0.87 to 1.75 bpp

• Low-Compression Range (LCR): from 1.75 to 3.5 bpp

In order to obtain a numerical magnitude of the quality gain or loss in each
compression range, we will proceed in the same way as with the Bjontegaard
method, see Section 3.2.4, but instead of using PSNR as the distortion metric,
we will use the VIF metric.

In order to perform the curve fitting for the typical R/D curve when VIF is
used, we propose using 5 real Rate/VIF points evenly distributed along the rate
axis. Then, by using Equation 3.29 or Equation 3.30, an accurate curve fitting is
obtained. As with the Bjontegaard method, once the parameters p1, p2, p3, and
q1 have been fixed by the curve fitting process, we can get the estimated VIF
value for any rate r, and so we can calculate the average gain of one curve over
another in a specific rate interval. In the same way, we can calculate the average
bit rate saving achieved for a quality interval when the integration limits are set
on the VIF axis.

The shape of the R/D curve when the CSF weighting matrix is applied to
the encoder, is slightly different than the one obtained when the perceptual
weighting is not applied. In particular, the R/D curve with the CSF weighting
matrix saturates a bit earlier (on the rate axis) than the other one. The
differences seems not to be important when watching both curves, but the
curve fitting process reveals that using the proper equation in each case
provides better goodness of fit measures. We performed the curve fitting
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process with the Matlab curve fitting toolbox, and the goodness of fit
parameters that this tool provides are: (for more details see [297]).

• The Sum of Squares due to Error (SSE): Measures the total deviation of
the response values from the fit to the response values. It is also called the
summed square of residuals and is usually labeled as SSE. A value closer to
0 indicates that the model has a smaller random error component, and that
the fit will be more useful for prediction.

• R-square: Measures how successful the fit to explain the variation of the
data. Put another way, R-square is the square of the correlation between
the response values and the predicted response values. R-square can take
on any value between 0 and 1, with a value closer to 1 indicating that a
greater proportion of variance is accounted for by the model. For example,
an R-square value of 0.8234 means that the fit explains a 82.34% of the total
variation in the data around the average.

• Adjusted R-square: It uses the R-square statistic defined above and adjusts
it, based on the residual degrees of freedom. The residual degrees of
freedom is defined as the number of response values n minus the number of
fitted coefficients m estimated from the response values. v = n − m indicates
the number of independent pieces of information involving the n data points
that are required to calculate the sum of squares. The adjusted R-square
statistic can take on any value less than or equal to 1, with a value closer to
1 indicating a better fit.

• Root mean squared error (RMSE): This statistic is also known as the fit
standard error and the standard error of the regression. It is an estimate of
the standard deviation of the random component in the data. Just as with
SSE, a MSE value closer to 0 corresponds to a fit that is more useful for
prediction.

In Table 3.4 the mean values for these statistics are shown. The columns
No CSF and CSF indicate if the CSF weighting matrix was applied or not. Not
only the data from the fittings performed in this section are computed in Table
3.4, but also those done in further sections, in total 480 fitting processes have
been evaluated. So, these goodness of fit statistics confirm that the proposed
curves (equations 3.29 and 3.30) are appropriate to estimate the R/D behavior
when the distortion metric is VIF, we name these curves VIF R/D curves.

VIF(r) =
p1 · r2 + p2 · r + p3

r + q1
(3.29)
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Table 3.4: Goodness of fit for the proposed curve fitting equations.

Goodness of fit No CSF CSF
SSE 0.0028 0.0458

R-square 0.9991 0.9996
Adjusted R-square 0.9990 0.9994

RMSE 0.0099 0.0053

VIF(r) =
p1 · r + p2

r + q1
(3.30)

A set of comparisons with a large set of images has been made in order to
analyze the quality gains or losses for each rate range between the PWM-S4
proposal and the reference proposals.

First, we will compare the reference proposals among them. In Table 3.5,
the subband proposal bSub vs. the level proposal bLev, are compared. The
table shows the image sizes and names (images from 1 to 23 belong to the
Kodak Set). The first three columns are the rate ranges and WR is the column
for the whole range (from 0 to 3.5 bpp). The results are expressed in percentage
of VIF quality gain for the first proposal with respect to the second one. When
the percentage is a negative number, then the first proposal has a loss of quality
with respect to the second one.

As shown in Table 3.5, bSub provides loss of quality for the whole image
set in the high compression range, and less than a 1% quality gain on average in
the mid-compression range over bLev with a maximum of 2.63%. It provides
higher quality gains in the low compression-range i.e., for very high bit rates,
in average 1.65% gain and up to 4.18% depending on the image.

As both proposals cross their R/D curves in the mid-compression range, as
shown in figures 3.36 to 3.39, the gain in the low-compression range is
compensated by the loss in the high-compression range, and so taking the
whole range in the comparison, only a gain of 0.89% on average is achieved.

The results of comparison of our PWM-S4 proposal with the subband
bLev proposal are shown in Table 3.6. In this case, the PWM-S4 proposal has
an average quality gain in all rate ranges, and works better in the high and
mid-compression ranges. The lowest average gain is obtained in the
low-compression range with 1.68% of gain, and the highest in the
mid-compression range with an average of 2.13%. Depending on the image
content, the gains go up to a maximum of 4.07% in the high-compression rate,
with an average gain of 2.00%. As our proposal gains quality in all ranges, the
average quality gain for the whole range is also positive, 1.68% of gain.
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Figure 3.40: Averaged % VIF gains

In Table 3.7, both subbands proposals are compared. In this case, the
PWM-S4 proposal performs better, as expected, than the reference proposal in
the high-compression rate with an average gain of 4.75% and in the
mid-compression range with an average gain of 1.27%. By contrast, the
PWM-S4 proposal only has a very low loss of quality (0.27%) in the
low-compression range. The whole range also obtains a gain of 0.79%.

Figure 3.40 summarizes the average gains for tables 3.5 to 3.7; bLev
outperforms bSub only in the high-compression range, whereas bSub is better
than bLev in the mid- and low-compression ranges.

Our subband proposal PWM-S4 has an overall better R/D behavior,
outperforming both reference proposals in the high- and mid-compression
range, and with near the same performance of the best performing reference
proposal in the low-compression range.

We have also performed a bit rate saving analysis. We will determine now,
how much bit rate can be saved when two images are encoded with the same
perceptual quality in terms of the VIF metric. As in the case of the quality gain
analysis, we have defined several quality ranges:

• Visually Lossless (VL): VIF >= 0.83

• Excellent (E): 0.60 <= VIF <= 0.83
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Figure 3.41: Averaged % bit rate savings

• Good (G): 0.30 <= VIF < 0.60

• All (A): 0 < VIF <= 0.83

Our major interest here is to determine the bit rate savings for at least two
approximated quality ranges that we call, Excellent and Good. Therefore the
lower thresholds for these quality ranges have been subjectively selected.

In order to set the lower limit of the Visually Lossless range, we have
encoded all the images using the corresponding quantization values for the
PQM-S4 proposal, i.e., PQM-S4 with no further quantization. This produces
the at-threshold theoretical image. In Table 3.8, the at-threshold quality level
and rate are shown for all images in the test set. The average VIF value for all
images encoded at-threshold is used as the lower limit for the VL range.

The quality value for the Visually Lossless range is obtained with the
comparison between R/D curves at the at-threshold value, i.e., no integration
is performed above this threshold as perceptual quality should be the same. As
with the Bjontegaard method, the integration of the R/D curves to calculate the
bit rate savings in the Excellent, Good, and All ranges, is done over the quality
axis.

Figure 3.41 summarizes the comparison of the reference methods and the
proposed one.In this figure, the percentage of bit rate saving is the average gain
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obtained for all images in the test set for each quality range. The corresponding
image data for these figures is available in tables 3.9 to 3.11. Positive values
in these tables mean a percentage of bit rate saving, i.e., less bit rate is needed
for the same perceptual quality if we use the first method instead of the second
one. So, negative values indicate that the first method needs more bit rate to
achieve the same perceptual quality.

While comparing in Figure 3.41 the two reference proposals, bSub vs.
bLev, is clearly shown that the bLev method works better in the Good range,
while the bSub method is better in the Excellent range and at the Visually
Lossless threshold. The bit rate savings in the All range is practically canceled
because the gain in one range is compensated with the loss in the other. This is
shown in Figure 3.36, where both R/D curves cross approximately between
the Excellent, and Good ranges. This is repeated in most of the images in the
test stet.

Figure 3.41 also shows that when using of the proposed PWM-S4 method
in the S-LTW encoder, bit rate savings are obtained in all the quality ranges
with respect to both reference methods.

In the comparisons, PWM-S4 obtains higher savings with respect to bLev
than with bSub, except for the Good range, because as said before, bSub works
better in the Excellent range than in the Good range. However, PWM-S4 obtains
averaged bit rate savings of 4.15% in the Good range. At Visually Lossless
threshold it saves in average 7.22%, in the Excellent range 6.50% and in all the
range 5.69%. Theses are averaged values for all images, but for some images
higher gains are obtained, so for example for image number 13 of the Kodak
set and for the Bike image, 11.50% and 10.49% of bit rate saving, respectively,
is obtained at Visually Lossless threshold, and 10.08% in the Excellent range
for the Bike image. In the Good range the maximum saving is obtained for the
Deer image with 7.64%.

As the bSub reference when used with the S-LTW, works much better than
bLev, the bit rate savings obtained in the comparison between PWM-S4 and
bSub at Visually Lossless threshold are not as high as when compared with
bLev. But, as PWM-S4 proposal works good in the whole the quality range,
not only in the Excellent range or in the Good range, it get also bit rate savings
when compared with bSub. So, at Visually Lossless threshold only an averaged
bit rate saving of 0.96% is obtained, while for the Excellent range the savings
are 3.40%, and much higher for the Good range with 8.14%. This produces
averaged bit rate savings of 5.00% in the All range. As before, these values
were averaged for all images, and higher values are obtained depending on the
image. So, for example, at Visually Lossless threshold, 8.73% bit rate saving
can be obtained for the Big Tree image, and the maximum for the Excellent
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and Good ranges are obtained for Zelda with 9.37%, and for Deer with 13.41%
respectively.

As shown, the proposed PWM-S4 perceptual weighting matrix with
subband granularity, provides better results than the reference weighting
matrices regardless of the quality range being used.
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Table 3.5: bSub vs. bLev % of quality gain.

bSub vs. bLev ( % VIF Gain)
Image Size Image HCR MCR LCR WR
7168x5376 Big building -1.65 0.00 0.44 0.00
6016x4480 Big tree -1.97 -1.44 -0.50 -0.97
3968x2560 Deer -3.71 -0.66 0.16 -0.55

2048x2560

Bike -3.82 Âº 4.18 2.83
Woman -0.79 1.39 1.03 0.87

Cafe -1.94 0.94 0.64 0.32

768x512

1 -2.41 0.49 0.79 0.26
2 -5.17 0.01 2.32 0.94
3 -3.40 2.23 3.31 2.26
4 -1.80 0.18 0.71 0.19
5 -4.28 1.31 3.83 2.35
6 -1.12 1.61 1.05 0.87
7 -1.65 1.23 1.14 0.76
8 -2.29 1.86 2.38 1.66
9 -2.09 1.05 0.99 0.56
10 -7.98 -0.41 3.90 1.75
11 -3.78 0.63 2.00 0.97
12 -2.85 1.06 1.07 0.49
13 -2.28 1.97 1.97 1.41
14 -3.23 0.01 0.72 -0.03
15 -4.17 0.85 2.44 1.27
16 -3.07 1.26 1.87 1.07
17 -0.43 2.42 1.06 1.18
18 -2.27 2.63 2.90 2.18
19 -2.33 1.27 1.75 1.10
20 -1.53 0.87 0.35 0.17
21 -2.10 1.28 1.80 1.15
22 -0.96 2.47 2.42 2.01
23 -3.71 1.31 3.43 2.14

512x512

Lena -2.15 -0.60 -0.08 -0.53
Zelda -2.07 -0.58 -0.18 -0.61

Barbara -5.75 -1.06 0.71 -0.56
Balloon -2.54 1.79 2.16 1.43

Boat -1.57 1.29 1.44 0.97
Mandrill -9.05 -0.73 3.70 1.40

Mean -2.91 0.82 1.65 0.89



222 Chapter 3. Perceptual Coding

Table 3.6: PWM-S4 vs. bLev. % of quality gain.

PWM-S4 vs. bLev ( % VIF Gain)
Image Size Image HCR MCR LCR WR
7168x5376 Big building 1.54 1.09 0.55 0.84
6016x4480 Big tree 1.63 0.50 0.18 0.50
3968x2560 Deer 4.07 1.77 0.71 1.44

2048x2560

Bike 2.80 3.84 3.15 3.27
Woman 3.50 2.49 1.12 1.80

Cafe 1.82 1.93 0.71 1.20

768x512

1 2.29 1.65 0.79 1.23
2 1.95 2.41 2.02 2.11
3 2.11 3.65 2.86 2.96
4 1.64 1.23 0.65 0.95
5 1.65 3.06 2.94 2.82
6 2.19 2.20 0.98 1.47
7 1.92 1.99 1.02 1.40
8 2.59 2.88 1.88 2.22
9 2.10 2.17 1.07 1.50
10 1.04 2.90 3.37 3.01
11 2.58 2.57 1.80 2.09
12 1.44 1.60 0.75 1.07
13 2.79 3.31 1.91 2.39
14 1.57 1.28 0.69 0.98
15 2.27 2.54 1.89 2.10
16 2.14 2.40 1.51 1.82
17 2.44 2.33 0.70 1.39
18 2.64 3.45 2.32 2.64
19 2.66 2.22 1.28 1.70
20 1.81 1.68 0.41 0.97
21 2.17 2.36 1.51 1.81
22 3.20 2.95 1.70 2.21
23 1.81 2.94 2.71 2.66

512x512

Lena 1.53 0.53 0.17 0.48
Zelda 1.38 0.94 0.30 0.65

Barbara -1.89 -1.50 -0.88 -1.17
Balloon 1.96 2.47 1.60 1.87

Boat 2.44 2.11 1.19 1.61
Mandrill 0.12 2.49 3.20 2.70

Mean 2.00 2.13 1.39 1.68
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Table 3.7: PWM-S4 vs. bSub. % of quality gain.

PWM-S4 vs. bSub ( % VIF Gain)
Image Size Image HCR MCR LCR WR
7168x5376 Big Building 3.14 1.10 0.11 0.84
6016x4480 Big tree 3.53 1.91 0.67 1.46
3968x2560 Deer 7.50 2.42 0.55 1.98

2048x2560

Bike 6.37 1.56 -1.07 0.46
Woman 4.25 1.12 0.09 0.95

Cafe 3.69 0.99 0.06 0.88

768x512

1 4.59 1.16 0.00 0.97
2 6.77 2.41 -0.31 1.18
3 5.33 1.45 -0.48 0.71
4 3.37 1.05 -0.06 0.76
5 5.69 1.77 -0.92 0.48
6 3.27 0.60 -0.06 0.61
7 3.51 0.77 -0.13 0.65
8 4.78 1.03 -0.51 0.57
9 4.11 1.13 0.08 0.94
10 8.35 3.30 -0.56 1.29
11 6.12 1.95 -0.20 1.13
12 4.17 0.54 -0.32 0.58
13 4.96 1.38 -0.06 0.99
14 4.65 1.27 -0.03 1.01
15 6.18 1.71 -0.56 0.83
16 5.05 1.15 -0.37 0.76
17 2.85 -0.10 -0.36 0.21
18 4.80 0.84 -0.60 0.48
19 4.88 0.96 -0.48 0.61
20 3.28 0.82 0.07 0.81
21 4.18 1.09 -0.30 0.67
22 4.12 0.49 -0.74 0.20
23 5.32 1.65 -0.75 0.53

512x512

Lena 3.60 1.12 0.25 1.01
Zelda 3.37 1.51 0.48 1.25

Barbara 3.65 -0.44 -1.59 -0.60
Balloon 4.38 0.68 -0.58 0.44

Boat 3.95 0.83 -0.25 0.64
Mandrill 8.40 3.20 -0.52 1.32

Mean 4.75 1.27 -0.27 0.79
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Table 3.8: At-threshold quality and rate for images encoded with S-LTW and
PQM-S4 matrix, with no further quantization.

Image Size Image Rate VIF
7168x5376 Big building 1.42 0.87
6016x4480 Big tree 1.33 0.83
3968x2560 Deer 1.61 0.72

2048x2560

Bike 1.88 0.85
Woman 1.81 0.80

Cafe 2.48 0.85

768x512

01 2.55 0.83
02 1.62 0.80
03 1.30 0.84
04 1.61 0.82
05 2.43 0.86
06 2.05 0.83
07 1.44 0.88
08 2.63 0.84
09 1.44 0.80
10 1.54 0.82
11 1.95 0.83
12 1.52 0.82
13 2.86 0.82
14 2.22 0.84
15 1.48 0.82
16 1.69 0.83
17 1.58 0.85
18 2.20 0.83
19 1.84 0.84
20 1.29 0.84
21 1.89 0.82
22 1.89 0.83
23 1.14 0.82

512x512

Lena 1.54 0.84
Zelda 1.19 0.83

Barbara 1.90 0.83
Balloon 1.82 0.85

Boat 1.70 0.84
Mandrill 2.76 0.82

Man VIF at-threshold 0.83
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Table 3.9: bSub vs. bLev. % of bit rate savings.

bSub vs. bLev ( % Rate)
Image Size Image VL E G A
7168x5376 Big building -0.11 -1.31 -3.55 -2.07
6016x4480 Big tree -6.09 -5.30 -3.62 -4.78
3968x2560 Deer 0.81 -0.36 -5.09 -1.87

2048x2560

Bike 14.35 10.15 -1.10 6.05
Woman 5.99 4.13 -1.05 2.40

Cafe 4.30 0.86 -5.28 -1.18

768x512

1 3.62 0.86 -4.55 -0.94
2 6.56 2.73 -4.33 0.08
3 11.99 7.30 -2.39 3.72
4 0.36 -0.88 -3.57 -1.81
5 12.08 7.55 -1.86 4.02
6 7.72 4.89 -2.67 2.47
7 6.36 3.06 -3.48 0.89
8 9.46 5.64 -2.22 2.83
9 5.63 2.47 -4.04 0.28
10 12.52 7.78 -3.46 3.47
11 6.77 3.19 -3.82 0.67
12 6.17 2.04 -6.09 -0.66
13 9.39 5.23 -3.20 2.26
14 1.17 -1.55 -6.16 -3.13
15 8.36 4.25 -3.78 1.33
16 7.83 3.61 -4.50 0.78
17 10.03 5.50 -2.79 2.67
18 12.71 8.29 -1.89 4.70
19 7.28 3.97 -2.89 1.58
20 4.74 0.80 -6.11 -1.32
21 6.95 3.46 -3.00 1.20
22 10.51 7.34 -0.14 4.69
23 10.55 6.31 -1.94 3.22

512x512

Lena -2.11 -2.69 -4.27 -3.19
Zelda -2.90 -4.00 -5.91 -4.55

Barbara 0.27 -2.68 -7.98 -4.57
Balloon 8.92 4.27 -4.23 1.29

Boat 6.55 3.22 -2.95 1.13
Mandrill 12.25 7.06 -4.87 2.52

Mean 6.31 3.06 -3.68 0.69
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Table 3.10: PWM-S4 vs. bLev. % of bit rate savings.

PWM-S4 vs. bLev ( % Rate)
Image Size Image VL E G A
7168x5376 Big building 4.52 4.10 3.18 3.79
6016x4480 Big tree 2.11 3.07 4.40 3.48
3968x2560 Deer 2.35 3.90 7.64 5.02

2048x2560

Bike 10.49 10.08 6.23 8.74
Woman 7.44 7.93 7.05 7.65

Cafe 8.51 6.76 3.15 5.58

768x512

1 5.68 5.62 4.68 5.32
2 6.85 5.81 3.63 5.02
3 11.75 9.74 4.52 7.87
4 4.83 4.49 3.45 4.13
5 9.32 8.01 4.23 6.64
6 8.33 7.87 4.47 6.82
7 7.83 6.73 3.68 5.74
8 8.85 7.89 4.96 6.87
9 8.09 7.06 3.99 6.05
10 9.39 8.32 3.95 6.71
11 7.37 6.68 4.74 6.01
12 6.21 5.41 2.77 4.56
13 11.50 9.78 5.24 8.22
14 4.85 4.25 3.02 3.84
15 7.44 6.61 4.29 5.80
16 8.18 7.11 4.12 6.10
17 9.82 8.16 4.43 6.93
18 11.29 10.00 5.35 8.42
19 6.55 6.35 5.01 5.90
20 9.09 7.40 3.24 6.15
21 7.81 6.73 4.21 5.87
22 8.19 7.95 5.92 7.26
23 8.89 7.45 4.05 6.21

512x512

Lena 1.80 2.97 4.25 3.36
Zelda 5.38 5.00 3.36 4.52

Barbara -4.00 -3.82 -3.33 -3.65
Balloon 8.82 7.17 3.64 5.97

Boat 7.66 6.91 4.87 6.24
Mandrill 9.52 8.02 2.80 6.11

Mean 7.22 6.50 4.15 5.69
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Table 3.11: PWM-S4 vs. bSub. % of bit rate savings.

PWM-S4 vs. bSub ( % Rate)
Image Size Image VL E G A
7168x5376 Big building 4.64 5.49 6.98 5.99
6016x4480 Big tree 8.73 8.84 8.32 8.68
3968x2560 Deer 1.54 4.27 13.41 7.02

2048x2560

Bike -3.37 -0.07 7.40 2.53
Woman 1.37 3.66 8.19 5.12

Cafe 4.04 5.84 8.89 6.84

768x512

1 1.98 4.72 9.67 6.32
2 0.27 3.00 8.32 4.93
3 -0.21 2.27 7.08 4.00
4 4.46 5.42 7.28 6.06
5 -2.46 0.42 6.20 2.52
6 0.56 2.85 7.34 4.24
7 1.38 3.56 7.42 4.81
8 -0.55 2.13 7.34 3.93
9 2.32 4.48 8.36 5.76
10 -2.78 0.50 7.67 3.13
11 0.56 3.39 8.90 5.30
12 0.04 3.30 9.43 5.26
13 1.93 4.33 8.71 5.84
14 3.64 5.89 9.78 7.19
15 -0.85 2.27 8.38 4.41
16 0.33 3.38 9.02 5.28
17 -0.19 2.53 7.43 4.15
18 -1.26 1.58 7.39 3.56
19 -0.68 2.29 8.13 4.25
20 4.16 6.54 9.95 7.57
21 0.81 3.16 7.43 4.61
22 -2.10 0.57 6.07 2.45
23 -1.50 1.07 6.11 2.91

512x512

Lena 3.99 5.81 8.90 6.76
Zelda 8.53 9.37 9.85 9.51

Barbara -4.26 -1.17 5.05 0.97
Balloon -0.09 2.78 8.21 4.62

Boat 1.04 3.57 8.06 5.05
Mandrill -2.43 0.90 8.06 3.51

Mean 0.96 3.40 8.14 5.00
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3.4 Perceptually Enhanced Tree Wavelet codec
(PETW)

The LTW and the S-LTW encoders employ a quantization mechanism based
on two parameters [226], one finer (Q) and another coarser (rplanes). Thus,
the quantized image is the result of jointly applying two quantization methods.
The first method performs a scalar quantization with a step-size of 2Q, and
the second one consists in removing the rplanes least significant bits of all
coefficients, being a simple bit-plane quantization process.

In this section, we will introduce a new encoder proposal called
Perceptually Enhanced Tree Wavelet (PETW) based also on the S-LTW
encoder that besides having the perceptual weighting stage (by the use of the
PWM), it has a new quantization strategy based on a Uniform Variable Dead
Zone Quantizer (UVDZQ), so it can reduce in one the parameters needed by
the encoder to control the quantization stage. The S-LTW has, by contrast, two
parameters to control the quantization stage, rplanes that controls the coarse
quantization and Q that controls the uniform quantizer.

Setting in the UVDZQ the equivalent dead zone size that the S-LTW uses,
allow us to use only the step-size parameter Q to control the amount of
quantization, providing the same results as when no perceptual enhancement
is applied. The quantizer change also enables us to obtain encoded images
with higher rates than with the S-LTW encoder, as we do not have the
restriction imposed by the coarse quantizer that is always applied with a
minimum value of rplanes = 2. Reaching higher rate ranges is appropriate, as
told in 3.3, for working in the sub-threshold area or visually lossless, where
distortions are supposed not to be detected in static images.

The motivation for changing the S-LTW quantization stage is based on the
work of [298], where authors made several performance comparisons between
a Uniform Scalar Quantizer (USQ), a Uniform Scalar Dead Zone
Quantizer (USDZQ), and a Universal Trellis Coded Quantizer (UTCQ), using
the same step size, and applied to DWT and DCT transformed coefficients.
Their performance comparisons show that the UTCQ can quantize data more
precisely and provide better PSNR results than the other two quantizers when
using the same step size. But, when they are combined with zero or higher
order entropy coders, the dead zone quantizer (the USDZQ) is the best instead.
In these comparisons, the authors show that if the dead zone is designed
carefully, the USDZQ can effectively reduce significantly the output hits of the
entropy coder, and although it reduces quantization precision by discarding
some data around zero, the obtained rate reduction is worthwhile. Moreover,
the USDZQ is only a USQ with a dead zone, and its computational complexity
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is lower than the UTCQ.

Our studies are oriented, by contrast, to optimize the R/D behavior in terms
of the VIF QAM, and hence to determine which is the influence of the dead
zone size over the perceptual quality, and not over the PSNR as in previous
studies.

The variable deadzone schema that we will use in the PETW encoder is the
one proposed in the JPEG2000 encoder [299, 274]. So the first step to change
in the S-LTW to obtain the PETW encoder is to include the PWM in it. This
has been widely explained before.

In the following subsections, we will briefly review the S-LTW 2-stage
quantizer in contrast with the UVDZQ, and we will also overview how the
quantizer change has been made. We will also prove that the new PETW
encoder has the same PSNR performance than the S-LTW when no perceptual
enhancements are applied, because both quantization strategies are equivalent.

Then, we will also test the performance of the new PETW encoder with
video sequences encoded in intra mode, and make some comparison with
standard video encoders also working in intra mode.

3.4.1 PETW quantizer

As we will see later, the two quantization stages of the S-LTW act jointly as a
Uniform Dead Zone Quantizer (UDZQ), and therefore the use of both
quantization processes may seem a bit strange, but it reveals more natural
when the LTW is studied in depth, as some optimizations can be included as
result [226]. The coarser quantization is useful to shorten the number of bits
needed to represent a coefficient, and to concentrate the symbol probability. In
addition, it allows the introduction of quantization in architectures that only
support integer arithmetic. Finally, with this type of quantization, some values
are never employed by significant coefficients (in particular those∣∣∣Ci, j

∣∣∣ < 2rplanes ), and this range is used to represent specific marks and control
symbols (such as LOWER and ISOLATED LOWER), allowing in-place
symbol computation (which avoids the introduction of extra memory to store
those symbols). In the bit-plane quantization, the available step-sizes are
always powers of two, and thus its granularity is very low. Therefore, a fine
control of the image compression is not possible with only this quantization
parameter. In order to perform finer rate control, a scalar quantization stage is
required.

Changing the encoder in the S-LTW encoder is not a trivial substitution
because the whole encoder is designed and based on the existence of these
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two quantization stages. The design of the quantization strategy of the S-LTW
encoder has a big influence on all parts of the source code and the design of
other parts in the coding chain. For example, as the coefficients have been
truncated in their two less significant bits, in order to reconstruct the coefficient
value with half the error, a value of 2rplanes−1 is added in the dequantization
process. As the rplanes=2 truncation, sets all coefficient values above or equal
to 4, then the coarse quantized coefficient values will never be in the range from
-3 to 3, and this fact is guiding the source code of several parts in the encoder.

All these algorithms must be changed if we want to maintain these
truncated bits as part of the coefficient value, and then we could operate in
lower compression rate ranges. The UVDZQ allows these lower significant
bits to still belong to the coefficient value as it does not impose any bit
truncation operation. But then these special symbols that drive the encoder
must be set in another part of the encoder, and so, we are forced to add new
symbols to the encoder symbol map. This produces a bit memory overhead
and slightly reduces the performance of the arithmetic encoder, but this it is
highly compensate by the quality gain introduced by the PWM, and the
optimization of the dead zone. So, the new PETW encoder must change many
important parts of the original source code.

Details of the quantizer substitution process and other changes made in the
source code are omitted here for brevity, for more detail about the internals of
the S-LTW and the LTW please refer to [226]. At the end, from a quantization
point of view, the most important issue is to determine the parameters of the
UVDZQ that produce the same results as the two stages of the S-LTW together,
when the step size for both strategies is the same. In [226], Oliver exposes how
the two stage quantization is performed in the LTW. We will briefly review
this formulation and compare it with that of the UVDZQ in order to determine
when and why both strategies are equivalent. The formulation for the S-LTW
quantization is reproduced in equations 3.31 to 3.37.

Let us call c the initial wavelet coefficient, cQ the quantized coefficient,
and cR a coefficient recovered on the decoder side. Then, the use of the two
quantization stages can be mathematically expressed with equations 3.31 to
3.33, for the forward quantization, and equations 3.34 to 3.36 for the reverse
quantization or dequantization.

i f c > 0 cQ =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(⌊

c
2Q + 0.5

⌋
+ K

)
2rplanes

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3.31)
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i f c < 0 cQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
(⌈

c
2Q − 0.5

⌉
+ K

)
2rplanes

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥ (3.32)

i f c = 0 cQ = 0 (3.33)

Note that an integer constant K can be used to adjust the bit plane
quantization (by taking some values out of the dead zone, i.e., narrowing it),
which may be useful in some cases. Experimental tests by the LTW authors
have revealed that K = 1 is a good value, increasing the PSNR R/D
performance for most source images.

i f cQ > 0 cR =
(
2
((

2cQ + 1
)

2rplanes − K
)
− 1

)
Q (3.34)

i f cQ < 0 cR =
(
2
((

2cQ − 1
)

2rplanes + K
)
+ 1

)
Q (3.35)

i f cQ = 0 cR = 0 (3.36)

In both dequantization processes, i.e., in the standard scalar dequantization
and in the dequantization from the bit-plane removing, the cR value is adjusted
to the midpoint within the recovering interval, reducing in this way the quanti-
zation error.

The equations for the dequantization process may be clearer if we observe
both dequantization processes separately. First, we have to recover the initial
number of bits of the scalar quantized coefficient; thus if cQ > 0 in Equation
3.37, the value c′R is the temporal value obtained from the coarse
dequantization, and with Equation 3.38, we finally obtain the value of the
recovered coefficient cR.

c′R = cQ2rplanes + 2rplanes−1 =
(
2cQ + 1

)
2rplanes−1 (3.37)

cR =
(
2
(
c′R − K

)
− 1

)
Q (3.38)

As stated before, the quantization of the S-LTW that is jointly produced by
the coarser and finer quantizers produces a dead zone and therefore it could be
substituted with UDZQ. However, such quantizer has a dead zone size of 2Δ,
being Δ the quantization step size. But in the S-LTW, this dead zone size has
been changed by the use of parameter K in equations 3.31,3.32, 3.34, and 3.35.
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We can instead use a UVDZQ so we can control the size of the dead zone. So,
in order to change the S-LTW quantizers with a UVDZQ, the first step is to find
the correspondence with UVDZQ. We will reformulate the S-LTW quantization
so that it is easier to get this correspondence.

The overall step size Δ applied to S-LTW can be viewed as the multiplica-
tion of two deltas, Δ1 corresponding to the finer quantizer and Δ2 correspond-
ing to the coarser one, as shown in Equation 3.39.

Δ = Δ1 · Δ2

Δ1 = 2Q

Δ2 = 2rplanes

(3.39)

In order to replace these two quantizers with a UVDZQ, we must know
the relationship between the dead zone size, and the overall Δ applied in S-
LTW, i.e., to obtain the equivalent dead zone size in the UVDZQ that is used in
S-LTW.

To search for this relationship we can use equations 3.40, where U stands
for the upper bound (maximum positive value) of the dead zone in S-LTW. The
Dead Zone (DZ) size is therefore DZ = 2U, and the relationship between the
dead zone size and the overall Δ is determined with the τ constant.

The value τ depends on the values of Δ1 and Δ2, see Equation 3.39. When
the value of Δ2 is fixed, i.e., the rplanes parameter is fixed, then it is easy to
see that the τ constant keeps the same value for increasing values of Δ1. For
example if we fix rplanes = 2 (which is the minimum rplanes allowed in
S-LTW) then τ = 1.25 independently of the Δ1 step size of the finer quantizer.

So, because the K parameter is fixed in S-LTW to K = 1, we can obtain the
value of τ by fixing the value of Δ2 (fixing the value of the rplanes).

For example, for rplanes = 2, if we set Δ1 = 1, i.e., no finer quantization
(Q = 0.5, see Equation 3.2), then Δ = Δ1 · Δ2 = 1 · 4, then U = 2.5 and hence
the dead zone size is DZ = 5. Finally τ = DZ/Δ = 5/4 = 1.25.

It is easy to see that this relationship holds for increasing values of Δ1.
In Table 3.12, the values of τ for different rplanes are shown. This way we
can determine the dead zone size whatever rplanes is used in S-LTW, but as
our objective is to suppress the rplanes based quantizer, we will use the value
τ = 1.25, i.e., we will fix rplanes = 2 as in the original LTW version.
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Table 3.12: Relationship between the dead zone size and the overall step size
Δ, depending on the rplanes value.

rplanes DZ size
2 DZ = 1.25Δ
3 DZ = 1.63Δ
4 DZ = 1.81Δ
5 DZ = 1.91Δ
6 DZ = 1.95Δ

U = Δ1 · (Δ2 − (K + 0.5))

DZ = 2U

DZ = τΔ

(3.40)

We reformulate the S-LTW quantization as a UDZQ so we can see the
relationship with the dead zone. We also use here a ρ constant that enables
us to round or truncate the coefficients in the S-LTW quantizer, see Equation
3.41. We have separated the formulation of the forward quantization for the
finer and coarser quantizers, with equations 3.42 and 3.43, respectively, where
>> rplanes is a bit displacement of rplanes bits to the right and �.� is the
truncation operation.

ρ =

{
0 f or truncating

0.5 f or rounding

}
(3.41)

c1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sign(c)

⌊ |c|
Δ1
+ K + ρ

⌋
i f

∣∣∣∣ c
Δ1

∣∣∣∣ ≥ U

0 i f
∣∣∣∣ c
Δ1

∣∣∣∣ < U
(3.42)

cQ = c1 >> rplanes (3.43)

The inverse quantization steps in S-LTW can also be expressed with
separate expressions. The value δ sets the recovering point inside the step size,
so a value of δ = 0.5 sets the recovering point in the centroid of the interval.
Equation 3.44 provides the intermediate c1 value after the inverse coarse
quantization, where << n stands for a left bit displacement operator of n bits
and | is the bitwise OR operator, and Equation 3.45 gives the final recovered
coefficient after the finer inverse quantization.

c1 = sign(cQ)
[(

cQ << rplanes
) | (1 << (rplanes − 1))

]
(3.44)
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cR = (c1 − (K + δ))Δ1 = c1Δ1 − Δ1 (K + δ) (3.45)

Once we have determined the DZ size in relation with the overall step size
Δ of S-LTW, we must set the correct parameters in the UVDZQ formulation,
so that its dead zone size is also DZ = 1.25Δ. Then, we can check if the results
obtained with the PETW encoder without perceptual enhancements but with the
UVDZQ are the same as those obtained with S-LTW. Finally, we will proceed
with the performance analysis.

As with the case of the S-LTW quantization, the ρ parameter determines if
we will finally use a truncation operation or a rounding one in the quantizer, see
Equation 3.41, and also the 0 ≤ δ < 1 parameter sets the recovering point inside
the quantization interval. Equation 3.46 is the forward quantizer expression
for a UVDZQ that sets the value cQ of the quantized coefficient [274]. The
parameter ξ, so that ξ < 1, determines the size of the dead zone in such a
quantizer. Depending on the value of this parameter, the dead zone size is set
as follows:

• ξ < 0 increases the dead zone size above the size of 2Δ

• ξ = 0 produces a dead zone with double the size as the quantization step, i.e.,
2Δ and then the upper bound of the positive part of the dead zone is Δ

• 0 < ξ < 1 reduces the dead zone so that its size is lower than 2Δ. A typical
value is ξ = 0.500, which produces a dead zone size of Δ

cQ =

⎧⎪⎨⎪⎩sign(c)
⌊ |c|+ξΔ
Δ
+ ρ

⌋
i f |c|
Δ
+ ξ + ρ > 0

0 Otherwise
(3.46)

cR = sign(c)
(∣∣∣cQ

∣∣∣ − ξ + δ − ρ)Δ (3.47)

So, if for S-LTW we have a τ constant of 1.25, i.e., a dead zone size of
1.25Δ, we must use a ξ value so that 0 < ξ < 1. To use a UVDZQ that equals
the behavior of both quantizers of the S-LTW acting together we must fix ξ =
0.375 and ρ = 0. With Equation 3.47, we can finally obtain the reconstructed
coefficient cR.

In figures 3.42 and 3.43, we can see that the PSNR R/D behavior of the
equivalent PETW, with a dead zone size of DZ = 1.25Δ obtained with a ξ =
0.375, is almost the same as the one obtained with the original joint quantization
of S-LTW.
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Figure 3.42: Equivalence of the R/D behavior between S-LTW joint quantiza-
tion and the PETW dead zone quantization for Mandrill.
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For some images with high frequency content, as those shown in Figure
3.42, the obtained PSNR is slightly better with the new quantization schema of
PETW. This is because in S-LTW, the rate control is enabled and the rplanes
parameter changes depending on the desired rate. This is an expected result as
stated by the S-LTW authors because fixing the rplanes = 2 and then increasing
the finer quantizer up to the desired rate produces slightly better results.

In Figure 3.43, we can also see that when using the UVDZQ in the PETW
encoder we can obtain values with lower compression, i.e., in the sub-threshold
area, than when using the S-LTW encoder.

3.4.2 Performance results for video sequences encoded in intra
mode

Currently, most popular video compression technologies operate in both intra
and inter coding modes. Intra mode compression operates on a frame-by-frame
basis, while inter mode works with a Group Of Pictures (GOP) at a time.

Inter mode compression is able to achieve higher coding efficiency than
intra mode schemes when picture content of adjacent frames is quite similar.
However, under certain conditions, such as fast camera zooms and pans, high
intensity motion (sports, animation, etc.), still camera flash lights, and strobe
lights, as well as other short duration production effects, the correlation of
adjacent frames is severely reduced and results in a visibly reduced picture
quality, or at worst, blocking artifacts.

Most television content productions require recordings in HD to maintain
high picture quality even though the usual final transmission is in SD format.
In video content production stages, digital video processing applications
require fast frame random access to perform an undefined number of real-time
decompressing-editing-compressing interactive operations without a
significant loss of original video content quality.

Intra-frame coding is desirable as well in many other applications, like
video archiving, high-quality high-resolution medical and satellite video
sequences, applications requiring simple and fast real-time encoding, like
video-conference and video surveillance systems [300], and Digital Video
Recording (DVR) systems , where the user equipment is usually not as
powerful as the head-end equipment.

Several studies [301, 302, 303, 304] compare the performance and
suitability of JPEG2000 with respect to H.264/AVC when working with
high-definition and high-quality video content, trying also to determine the
applications (as digital cinema and archiving) and the benefits of working in



3.4. Perceptually Enhanced Tree Wavelet codec (PETW) 237

intra mode or/and visually lossless coding.

For example, in [301] an experimental study was performed with
H.264/AVC and JPEG2000 in order to determine the benefits of using inter
frame encoding versus intra frame encoding for digital cinema. Their results
draw that the coding efficiency advantages of inter frame coding are
significantly reduced for film content at the data rates and quality levels
required by digital cinema. This indicates that the benefit of inter frame
coding is questionable, because it is computationally much more complex,
creates data access complexity due to the dependencies among frames, and in
general, demands much more resources. For lower resolutions, their
experiments confirm that inter frame coding was more efficient than intra
frame coding. These results provide justification for using JPEG2000, or other
intra frame coding methods, for coding digital cinema or
high-quality/high-definition content. These studies use PSNR as distortion
metric in their comparisons; in ours we will use VIF QAM.

So, for the applications mentioned above, a very interesting option to
encode high-quality/high-definition video content is the use of intra coding
systems, since they:

• Efficiently exploit the spatial redundancies of each video sequence frame.

• Exhibit reduced complexity in the design of the encoding/decoding engines.

• Achieve fast random access capability by decoding only the selected frame.

• Have great error resilience behavior by limiting error propagation to the
frame boundaries.

• Are easily portable to parallel processing architectures, i.e., multicore CPUs
.

• Have low coding/decoding delays, which it is of special interest for real-time
applications.

So, we propose the use of the PETW encoder as perceptual intra encoder
suited for high-quality/high-definition applications, which is able to perform
very fast encoding (and decoding) with low demands of computational
resources (processing power, and memory).

Now we will provide the results of the PETW quantizer when running for
video sequences in intra mode. For this task, we have designed a Motion-
PETW (M-PETW) version of the encoder that loads the video sequence in the
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Table 3.13: Frame size, frame rate, and number of frames for the used se-
quences.

Sequence Frame Rate Frame Sizes Frame Num
Foreman 30 QCIF (176x144) CIF (352x288) 300
Container 30 QCIF (176x144) CIF (352x288) 300

Hall 30 QCIF (176x144) CIF (352x288) 300
News 30 QCIF (176x144) CIF (352x288) 300

Mobile 30 ITU (720x576 ) 40
Station2 25 HD (1920x1024) 313

Pedestrian area 25 HD (1920x1024) 375
Ducks take off 50 HD (1920x1024) 130

YUV420 format and submits each frame to the core image encoder to obtain
the perceptually enhanced frame.

The M-PETW receives the quantization step, Δ1 of Equation 3.39, as a
parameter and encodes and decodes the whole sequence producing a single
output perceptually enhanced video sequence in the YUV format. So, it
provides the final bit rate for the desired quantization step. The VIF values for
each frame are obtained independently in a batch process, with the final VIF
value for the sequence the averaged quality values for all frames.

We have compared our M-PETW proposal with the following encoders in
terms of R/D performance, coding delay, and memory consumption. All
evaluated encoders have been tested on an Intel Pentium Core 2 CPU at 1.8
GHz with 6GB of RAM memory, employing several well-known video
sequences with different formats - see Table 3.13 to see the characteristics of
the used sequences where the frame size, frame rate, and number of frames are
specified.

• Motion-JPEG2000 (Jasper 1.701.0)

• Motion-SPIHT (Spiht 8.01)

• X.264/Intra (FFmpeg version SVN-r25117, profile High, level 4.0)

• H.264/AVC/Intra (High-10, JM16.1 and JM18.1)

Although for a specific rate, a perceptually enhanced version provides in
general higher VIF values than a non perceptually enhanced one, our interest is
not to determine which encoder is the best but to measure how much bit rate in
average can be saved when using a perceptually enhanced version, in particular
our PETW versus non perceptually enhanced codecs.
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So, first we will provide the results between the M-PETW and the M-LTW
(the original non perceptually enhanced version) in order to determine the
amount of rate that could be saved only by the inclusion of perceptual
techniques in the same encoder. Later, we will test the M-PETW with the rest
of the cited encoders.

To provide the results of the bit rate savings, we have use the same method
as in section 3.3.1. We obtain 5 real Rate/VIF points evenly distributed along
the rate axis, i.e., five points of real data. With this data, we use equations 3.29
and 3.30 to perform the curve fitting process so we can apply the Bjontegaard
method to integrate over the VIF axis those points obtained with the M-PETW
encoder. We have set the following perceptual quality ranges for the integration
limits:

• Visually Lossless: VIF > 0.83

It represents the sub-threshold value, i.e., above this threshold there are no
perceptual differences with the original frames.

• Excellent: 0.60 <= VIF <= 0.83

In this quality range we include those video frames with very high perceptual
quality.

• Good: 0.30 <= VIF < 0.60

In this quality range we include those video frames with perceptual quality
varying from good to acceptable.

• All: 0.30 <= VIF <= 0.83

It covers the whole range of perceptual qualities, from acceptable to the vi-
sually lossless threshold.

In Table 3.14, the performance results in terms of bit rate saving between
the M-PETW and the M-LTW encoders are shown for all the sequences in our
test set. The table shows the rate savings for each of the cited quality ranges.
It also provides the average value for each frame size. Values in bold type
represent the maximum value for each quality level and frame size.

The bit rate gain at the Visually Lossless threshold, which is set at the 0.83
VIF value, is determined as the difference of rate exactly at this point, as for
higher VIF values no perceptual differences are noticed. Although over this
limit, two R/D curves diverge, or cross, the highest rate difference for the same
perceptual quality is the one fixed at this limit.
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Table 3.14: M-PETW versus M-LTW performance. Bit rate savings percent-
ages for each quality range. Values for individual sequences and average for
each frame size.

M-PETW vs. M-LTW Visually Lossless Excellent Good All
QCIF (176x144)

Foreman 8.55% 10.10% 10.35% 10.19%
Container 10.63% 9.65% 6.62% 8.50%

Hall 5.79% 5.49% 4.91% 5.27%
News 5.24% 4.76% 3.67% 4.34%

Seq. Average 7.55% 7.50% 6.39% 7.07%
CIF (352x288)

Foreman 10.14% 12.14% 13.59% 11.63%
Container 6.22% 7.53% 6.93% 6.75%

Hall 1.46% 3.27% 4.31% 2.75%
News 2.07% 3.82% 4.67% 3.27%

Seq. Average 4.97% 6.69% 7.37% 6.10%
ITU (720x576 )

Mobile 10.05% 8.34% 4.93% 7.99%
HD (1920x1024)

Station2 4.53% 4.21% 2.21% 3.58%
Pedestrian area 7.31% 6.23% 4.81% 6.43%
Ducks take off 16.22% 14.05% 5.54% 12.45%
Seq. Average 9.35% 8.17% 4.19% 7.49%
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QCIF CIF ITU D1 HD

PM LTW vs M LTW
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All

Figure 3.44: Performace comparison between M-PETW and M-LTW. Average
bit rate savings for each frame size and quality segment.
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Figure 3.45: Rate distortion behavior comparison beteween M-PETW and M-
LTW for the Container QCIF sequence.

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

40
0

90
0

14
00

19
00

24
00

29
00

34
00

39
00

VI
F

Kb/s

M PETW

M LTW

Visually Lossless
Threshold

Figure 3.46: Rate distortion behavior comparison beteween M-PETW and M-
LTW for the Foreman CIF sequence.
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Figure 3.47: Rate distortion behavior comparison beteween M-PETW and M-
LTW for the Mobile ITU-D1 sequence.

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

15 30 45 60 75 90 10
5

12
0

13
5

15
0

VI
F

Mb/s

M PETW

M LTW

Visually Lossless
Threshold

Figure 3.48: Rate distortion behavior comparison beteween M-PETW and M-
LTW for the Ducks take off HD sequence.



3.4. Perceptually Enhanced Tree Wavelet codec (PETW) 243

For the QCIF frame size, the best gain is obtained at the Visually Lossless
threshold for the Container sequence, with 10.14% of bit rate gain, whereas
the average gain in this frame size is 7.55%. At the Excellent quality level, and
for the QCIF size, the average gain is 7.50% being Foreman the best
performing sequence with 10.10% of gain. Also, the Foreman sequence for
this frame size is the best performing one for Good, and All quality levels,
with approximately the same gains, being the average gain for these quality
levels 6.39% and 7.07%, respectively.

For the CIF frame size, the best results are obtained again by the Foreman
sequence providing a maximum gain of 10.14%, 12.14%, 13.59%, and 11.63%
for the Visually Lossless, Excellent, Good, and All quality levels, respectively,
and in the same order the average values are 10.05%, 8.34%, 4.93%, and 7.99%.
The gain for the Foreman sequence in the Good quality segment is the highest
of the test set in that segment.

For the HD frame size, the highest values are obtained for the Ducks take off
sequence being also the maximum values for the Visually Lossless, Excellent,
and All quality levels in the entire test set, these gains are 16.22%, 14.05%, and
12.45%, respectively.

The average gains for all the quality levels and frame sizes are summarized
in Figure 3.44, and in figures from 3.45 to 3.48, the R/D comparison between
M-PETW and M-LTW for several sequences are shown. In these figures, the
visually lossless threshold is also represented in order to help to detect how
much the rate gain is at that threshold.

In Table 3.15, the averaged results of comparing the M-PETW versus the
rest of the encoders are shown. These are the average values for the different
sequences at the corresponding frame sizes and quality levels. The maximum
average gain of M-PETW versus all the encoders is produced at the Visually
Lossless threshold for the HD frame size except when comparing with X.264.
With that encoder, the best gain is obtained in the Good quality lelvel. The
best averaged bit rate gains are 10.16%, 22.09%, 11.40%, 23.11%, and 10.69%
in the comparisons with M-JASPER, M-SPIHT, KKDU, X.264, and H.264,
respectively.

The negative values in Table 3.15 refer to a loss of bit rate with the
compared encoder. For example, in the comparison against H.264, the
M-PETW encoder only gets better results for the ITU-D1 frame size for the
Visually Lossless threshold, and for all the quality levels in the HD frame size.
For lower resolutions, H.264 obtains better results on average. The same
happens when comparing with X.264, but in this case M-PETW obtains worse
results only for small frame sizes (QCIF and CIF).
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Table 3.15: Comparison results of the M-PETW encoder versus other encoders.
Average bit rate savings values for each frame size and quality range.

M-PETW vs. M-JASPER QCIF CIF ITU HD
Visually Lossless 6.77% 2.38% 8.81% 10.16%

Excellent 8.15% 4.23% 8.29% 8.62%
Good 5.24% 6.66% 8.87% 7.23%
All 6.85% 5.14% 8.48% 8.19%

M-PETW vs. M-SPIHT QCIF CIF ITU HD
Visually Lossless 11.09% 11.08% 14.89% 22.09%

Excellent 11.25% 11.24% 13.56% 18.62%
Good 4.65% 9.74% 12.00% 12.62%
All 8.83% 10.73% 13.07% 16.81%

M-PETW vs. KKDU QCIF CIF ITU HD
Visually Lossless 10.08% 7.51% 11.07% 11.40%

Excellent 11.19% 8.13% 10.70% 7.77%
Good 10.97% 8.26% 11.31% 2.31%
All 10.91% 8.11% 10.89% 6.11%

M-PETW vs. X.264 QCIF CIF ITU HD
Visually Lossless -1.95% -2.95% 13.08% 15.32%

Excellent -3.72% -3.67% 12.47% 18.39%
Good -12.81% -7.15% 12.76% 23.11%
All -7.05% -4.89% 12.56% 19.99%

M-PETW vs. H.264 QCIF CIF ITU HD
Visually Lossless -8.13% -7.25% 3.10% 10.69%

Excellent -12.99% -11.41% -5.70% 8.32%
Good -30.05% -22.79% -13.73% 2.23%
All -18.54% -15.19% -8.15% 6.53%

In figures 3.49 to 3.52, we can see some of the R/D plots for these
comparisons, and in Table 3.16 the maximum gain obtained for each quality
level and frame size is shown. We can see gains up to 28.01% in the Good
quality level when comparing with X.264, 22.09% in the Visually Lossless
threshold when comparing with M-SPIHT, and even up to 12.85% when
comparing with H.264.

These results show that higher gains are obtained as the video resolution
increases (see Figure 3.53), when comparing with DCT based encoders as
X.264, and H.264, and also, but with a lower slope, this trend is present while
comparing with M-SPIHT. In the comparison with the JPEG2000 derived
encoders (M-JASPER and KKDU) this fact has not been met, as the gain is
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Figure 3.49: Rate distortion behavior of the different encoders for the Foreman
QCIF sequence.

almost constant. Nevertheless, this comparison still provides an average gain
of 8.62%, and 7.77% in the Excellent quality range with respect to M-JASPER
and KKDU. If we take the All quality level, those differences are 8.19% and
6.11% with respect to the same encoders.

Now, we will proceed to compare some of the codecs under test in terms of
coding delay and memory requirements.

Figure 3.54 shows the coding speed in frames per second obtained by the
different encoders being evaluated. As shown, M-PETW outperforms the rest
of the codecs for any sequence frame resolution. For the highest resolution,
M-PETW is 1.08 times as fast as M-SPIHT, 2.22 times as fast as M-JASPER,
2.30 times as fast as X.264, and 28.09 times as fast as H.264/AVC.

It is important to notice that the current implementation of our codec is not
optimized in any sense. While comparing with M-JPEG2000 using KKDU,
execution times of M-PETW are faster only for the QCIF frame resolution.
The reason is that KKDU is fully optimized including multi-thread and
multicore hardware capabilities, processor intrinsics like
MMX/SSE/SSE2/SIMD and fast multicomponent transform. Therefore
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Figure 3.50: Rate distortion behavior of the different encoders for the Foreman
CIF sequence.

KKDU outperforms M-PETW in coding time, processing up to 102.13 fps
(frames per second) in CIF resolution, 42.43 fps in ITU-D1 resolution and
14.0 fps in HD resolution.

Regarding memory requirements, in Figure 3.55 we can see the maximum
amount of memory (in Mbytes) required for each encoder and resolution. As
can be seen, M-PETW requires nearly 4 times less memory resources as
M-SPIHT, M-JASPER, and X.264, and up to 40 times less memory than
H.264/AVC.

3.4.3 Variable dead zone optimization

Our objective in this section is focused into the impact of the dead zone size on
the R/D coding performance. So, we will analyze how different dead zone sizes
affect to the VIF R/D performance, and then we will propose a way to estimate
the dead zone size that maximizes the VIF R/D performance and therefore, the
perceptual quality.

In [299, 274], Marcellin et al. showed the influence of the dead zone size in
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Figure 3.51: Rate distortion behavior of the different encoders for the Mobile
ITU-D1 sequence.

the R/D performance. Their study was done in terms of PSNR. Our studies are
oriented, by contrast, to optimize the R/D behavior in terms of the VIF QAM,
and hence to determine which is the influence of the dead zone size over the
perceptual quality, and not over the PSNR as in previous studies.

Also, the LTW authors exposed in [226] that experimental tests have
revealed that the use of the constant K in the quantization formulation (see
Section 3.4.1), whose objective is to take some values out of the dead zone,
i.e., narrowing it, can increase the PSNR R/D performance of the LTW. Their
studies suggested that a value of K = 1 is appropriate for most source images.
This value produces, as studied before, a dead zone size of 1.25Δ, being this
size the same for all images.

In [305], Ström made an experiment to determine how large the dead zone
should be for optimal performance, and how much quality could be gained
when in a DWT encoder the USQ is substituted with a USDZQ. Their study
was done also in terms of R/D performance with the PSNR as quality metric.
They used only one image, and their results found that for this test image the
optimal size was about 1.9Δ, which finally provides a quality increase of 0.5
dBs for that image.



248 Chapter 3. Perceptual Coding

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

13 33 53 73 93 11
3

13
3

15
3

VI
F

Mb/s

M PETW

M JASPER

KKDU

M SPIHT

H264

Figure 3.52: Rate distortion behavior of the different encoders for the Ducks
take off HD sequence.

20%

10%

0%

10%

20%

QCIF CIF ITU HD

PM LTW vs M JASPER PM LTW vs KKDU
PM LTW vs M SPIHT PM LTW vs H.264
PM LTW vs X.264

Figure 3.53: Bit rate savings in relationship with the frame resolution.



3.4. Perceptually Enhanced Tree Wavelet codec (PETW) 249

25
8.

60

63
.4

4

20
.3

0

3.
09

25
0.

02

60
.9

2

18
.8

6

2.
88

14
5.

28

48
.3

6

16
.4

0

2.
84

77
.9

8

21
.2

1

6.
16

1.
39

95
.6

6

24
.8

5

7.
37

1.
34

6.
88

1.
74

0.
60

0.
11

0

1

10

100

1000

QCIF 30 Hz
at 770 Kb/s

CIF 30 Hz
at 3090 Kb/s

ITU 30 Hz
at 9114 Kb/s

HD 25 Hz
at 45.4 Mb/s

Fr
am

es
/s
ec

(l
og
10

)

M PETW M LTW
M SPIHT M JASPER
X.264 H.264/AVC

Figure 3.54: Encoder frame rate at different sequence resolutions.

1.8 2.1
2.9

9.2

2.3

3.7

8.3

31.6

2.6

3.9

7.1

39.3

5.1
6.6

10.5

31.3

8.0

21.0

62.0

375.2

1

2

4

8

16

32

64

128

256

512

QCIF CIF ITU HD

M
By

te
s
(lo

g2
sc
al
e)

PM LTW

M_SPIHT

M JASPER

X264

H264

Figure 3.55: Memory requirements for different video formats.



250 Chapter 3. Perceptual Coding

Table 3.16: Comparison results of the M-PETW encoder versus other encoders.
Maximum bit rate savings values for each frame size and quality range.

M-PETW vs. M-JASPER QCIF CIF ITU HD
Visually Lossless 10.28% 12.45% 8.81% 11.13%

Excellent 13.44% 13.09% 8.29% 13.20%
Good 11.45% 12.71% 8.87% 15.31%
All 11.87% 12.96% 8.48% 13.87%

M-PETW vs. M-SPIHT QCIF CIF ITU HD
Visually Lossless 14.13% 17.07% 14.89% 22.09%

Excellent 15.81% 16.89% 13.56% 18.62%
Good 9.38% 13.97% 12.00% 12.62%
All 13.47% 15.92% 13.07% 16.81%

M-PETW vs. KKDU QCIF CIF ITU HD
Visually Lossless 13.55% 14.63% 11.07% 15.75%

Excellent 15.20% 15.65% 10.70% 10.83%
Good 15.63% 14.69% 11.31% 6.65%
All 14.61% 15.33% 10.89% 9.57%

M-PETW vs. X.264 QCIF CIF ITU HD
Visually Lossless 2.13% 7.14% 13.08% 17.31%

Excellent 2.43% 9.07% 12.47% 21.10%
Good -3.17% 8.96% 12.76% 28.01%
All 0.32% 9.03% 12.56% 23.48%

M-PETW vs. H.264 QCIF CIF ITU HD
Visually Lossless -1.86% 4.38% 3.10% 12.85%

Excellent -4.96% 2.36% -5.70% 9.71%
Good -18.76% -6.00% -13.73% 8.51%
All -8.11% -0.32% -8.15% 9.32%

As with the Ström experiment, we will also use a DWT based encoder, in
this case our PETW proposal that implements a UVDZQ. We will use VIF as
distortion metric because the optimum dead zone should be calculated taking
into account the perceptual elevation produced by the PWM.

In a first experiment, we use several well-known images such as Lena,
Mandrill, Barbara, and Boat, and also the whole image Kodak set. For those
images, and following the same methodology as in the Ström experiment, we
fix the target bit rate, in this case to 0.4 bpp. For that target bit rate, we
compress the image varying the dead zone size by means of the ξ (Xi)
parameter of equations 3.46 and 3.47 and the resulting images were compared
against the original one using the VIF metric.
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Figure 3.56: VIF variation for image 07 from the Kokak set at 0.4 bpp when
the dead zone size varies from 0.2Δ to 3.0Δ.

This experiment obtains a dead zone size that is optimum for the target bit
rate, but it does not prove if the same dead zone size is optimum for the rest of
bit rates in the range where the R/D behavior is analyzed. Furthermore, in
order to fix the target bit rate, once the dead zone size has been fixed, we must
change the step size to reach the target bit rate, and therefore the experiment
changes two variables, not only the dead zone size. Nevertheless, the
experiment highlights the existence of an optimum dead zone size that
maximizes the perceptual quality at a desired bit rate, and shows the
importance and relationship of the dead zone size with the final perceptual
quality.

Depending on the image, content the VIF gain varies, but for example as
shown in Figure 3.56, which corresponds to image 07 from Kodak set, we vary
the dead zone size in the range from 0.2Δ to 3.0Δ and for a fixed target bit rate
of 0.4 bpp we obtain the best VIF value when ξ = 0.460 that corresponds to
a dead zone size of 1.08Δ. Using this dead zone size instead of 0.2Δ, moves
the image classification from the Good quality range into the Excellent one
according to the classification made in previous sections.

In Table 3.17, the results for this experiment applied to the whole Kodak
image set are shown. Images are ordered in ascending order of maximum VIF
gain. For this experiment, the ξ parameter varies in the range −0.500 <= ξ <=
1, which corresponds to a dead zone variation from 3Δ to 0Δ respectively, and
the bit rate is fixed at 0.4 bpp for all images. Column Max. VIF gain is the
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Table 3.17: Maximum VIF gains for varying dead zone size at 0.4 bpp for the
whole Kodak image set.

Image Max. VIF gain DZ Size ξ

13 0.02 1.12 0.440
08 0.02 1.24 0.380
05 0.04 1.40 0.300
01 0.04 1.12 0.440
20 0.07 1.04 0.480
14 0.07 1.16 0.420
02 0.08 0.92 0.540
12 0.08 0.72 0.640
18 0.09 1.28 0.360
11 0.10 1.00 0.500
16 0.10 0.76 0.620
19 0.11 0.88 0.560
09 0.12 0.88 0.560
04 0.12 0.96 0.520
23 0.12 1.00 0.500
22 0.13 1.08 0.460
15 0.13 1.08 0.460
03 0.13 0.84 0.580
10 0.13 0.88 0.560
21 0.15 1.12 0.440
17 0.17 1.04 0.480
06 0.19 1.08 0.460
07 0.19 1.08 0.460

maximum VIF gain obtained for each image in the specified ξ range, DZ Size
column is the dead zone size for the maximum VIF gain, and the ξ column is
the corresponding ξ value for this optimum dead zone size.

As the study was done for a fixed rate, 0.4 bpp, the next thing to prove
is if with the optimum ξ at this rate for an image, the R/D behavior for the
whole rate range behaves better than or at least equal to the one obtained with
the standard PETW, i.e., when the equivalent dead zone size is used (1.25Δ for
ξ = 0.375). The PETW equivalent dead zone size is not necessary the best
one, as the study performed with the LTW was done in terms of PSNR and
without the perceptual elevation of the coefficients, but in some cases it could
be optimum or near to it.

In Figure 3.57, the R/D behavior is shown for different ξ values. It is clearly
shown that a change in the dead zone size produces different R/D behavior. The
one with best performance corresponds to ξ = 0.500, which is not the optimum
obtained in the previous experiment (ξ = 0.450), although it is not far from it.
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Figure 3.57: VIF variation for image 07 of the Kokak set, at 0.4 bpp when the
dead zone size varies from 1Δ to 3.0Δ

As mentioned before, this is because the experiment obtains the optimum for
a specific bit rate (0.4 bpp), and the step size changes besides, in the different
executions in order to fix it to the target bit rate.

Nevertheless, as shown from previous results, it is worthwhile to fix the
dead zone size to the optimum for each image. The optimum should be the
one that maximizes the bit rate gain for a specific quality range, but the most
difficult task is to automatically obtain this optimum for each image while
encoding it, i.e., obtaining adaptively the optimum dead zone size for each
image. Additionally, we should take special care to perform the optimum
estimation without increasing the computational cost of the encoder.

We performed another experiment to obtain the optimum ξ parameter from
a R/D point of view. In this case we choose five step sizes, i.e., five values for
the Q parameter of the PETW that produce five rates evenly spaced in the bit
rate range. With the real VIF/rate values we use Equation 3.29 to estimate the
VIF R/D curve for those points. We produce 101 estimated curves for each
image, one curve for each ξ value in the range −0.500 <= ξ <= 1 chosen in
increments of 0.010 units. We call these curves Xi Curves. Doing so, the only
parameter that changes in the PETW encoder is the ξ one, as the step sizes for
each of the curves are the same.

Then, for each of the Xi Curves, we obtain the bit rate gain or loss with the
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Bjontegaard method as in previous sections. We compare the gain or loss of
each curve with the one obtained with the reference curve. The reference curve
is the one obtained with ξ = 0.375 that equals the 1.25Δ dead zone size of the
S-LTW. We used the whole image Kodak set to obtain the optimum ξ value for
each image, we call it best xi value, i.e., the value that maximizes the bit rate
gain with respect to the reference R/D curve in the VIF range from 0.30 to 1.0
VIF units.

Table 3.18 shows the best xi values for the Kodak set images. As said
before, the objective is not to perform these calculations for each image. We
search for one value that could be calculated on the fly or used as a
well-working global value.

One way to avoid the task of calculating the best xi for every image is to
obtain a unique value that is sub-optimum for the image. One candidate value
to use is the mean or median ξ value of column best xi in Table 3.18. The mean
value is 0.077 and the median value is 0.120. In Table 3.18, the Median Err.
and Mean Err. columns show the estimation error between these values and the
optimum xi value from the best xi column. The last row shows the mean error
for each of these estimated values. Although for some images these estimated
xi values produce practically the same VIF R/D curve than the one obtained
with the best xi value, none of them is a good approximation because for some
images the R/D curve is below the reference one.

So the objective is to find another estimated xi value that is able to minimize
this averaged error. We then searched for a correlation between the best xi
values and some statistical value or metric obtained directly from the image,
or from the wavelet coefficients before the quantization is performed, as the ξ
parameter must be known at this point.

A first option is to use the SD of the wavelet coefficients, but as shown in
Figure 3.58, where the SD of the LL subband is used, there is no appreciable
correlation between the best xi values from Table 3.18 and the SD for each
image, shown on the horizontal axis.

So we proceeded to search for some entropy measures, which we call
estimators, that are able to estimate the bpp used for each image, producing an
estimation of the bpp value, Ebpp. These estimators were implemented in the
PETW before the quantization stage, and therefore before the encoding stage.
We implemented three estimators:

• Coefficient Entropy: This is the zero order entropy obtained directly from the
wavelet coefficients after transform. This is a generic measure that does not
depend on the encoder.
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Table 3.18: Best xi values for the Kodak set images.

Image Best Xi Median Err. Mean Err.
1 0.340 0.220 0.263
2 -0.360 0.480 0.437
3 -0.190 0.310 0.267
4 -0.130 0.250 0.207
5 0.320 0.200 0.243
6 0.270 0.150 0.193
7 0.120 0.000 0.043
8 0.250 0.130 0.173
9 -0.030 0.150 0.107
10 -0.070 0.190 0.147
11 0.160 0.040 0.083
12 -0.220 0.340 0.297
13 0.410 0.290 0.333
14 0.220 0.100 0.143
15 -0.100 0.220 0.177
16 0.050 0.070 0.027
17 0.080 0.040 0.003
18 0.260 0.140 0.183
19 0.170 0.050 0.093
20 0.080 0.040 0.003
21 0.270 0.150 0.193
22 0.130 0.010 0.053
23 -0.250 0.370 0.327

Avg. 0.171 0.174
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0 1000 2000 3000 4000 5000 6000

Xi
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Figure 3.58: Dispersion plot for the best xi vs. LL std for images in the Kodak
set.
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Figure 3.59: Scatter plot for the Best Xis vs. Ebpp obtained with the Coefficient
Entropy estimator for images in the Kodak set. Logarithmic fitting equation is
also shown.

• Symbols Entropy: This is the zero order entropy of the PETW symbol map
used in the encoding process. This measure depends strictly on the PETW
encoder as the symbols will be used by the encoding algorithm.

• PETW Bpp: This is an entropy estimation that uses the Ebpp produced by
Symbols Entropy plus the real amount of bpp used for the raw bits of each
of the coefficients. In order to determine the real bits needed for each
coefficient, a dead zone size and a step size must be fixed. We use a dead
zone size equivalent to the one used by the rate control stage in the S-LTW,
which uses a rplanes = 2 with no further quantization. This estimator is
also dependent on the PETW.

Once we have the Ebpp from each estimator, we use a scatter plot to see if
there is some correlation between the Ebpp and the optimum xi for each image
in the Kodak set, see Table 3.18. In figures 3.59 to 3.61, we see these scatter
plots, where a correlation is shown.

Figures 3.59 and 3.60 also show the best fitting equation (logarithmic in
both cases), that is used to estimate the best xi values for a desired bit rate. In
Figure 3.61, a polynomial fitting is shown instead.

As mentioned before, the objective is then to find which one of the fitting
equations produce less averaged error while estimating the best xi value.
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Figure 3.60: Scatter plot for the Best Xis vs. Ebpp obtained with the Symbols
Entropy estimator for images in the Kodak set. Logarithmic fitting equation is
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Figure 3.61: Scatter plot for the Best Xis vs. Ebpp obtained with the PETW
Bpp estimator for images in the Kodak set. Polynomial fitting equation is also
shown.
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Table 3.19 shows the results for the Coefficient Entropy and the Symbols
Entropy estimators. Columns are the Kodak set image number, the best ξ from
the previous experiment, the Ebpp obtained with the corresponding estimator,
the Eξ (estimated Xi) value obtained with the fitting equation, and the error
with respect to the optimum ξ for the fitting equation. In the last row, the
average error is also shown for each fitting equation. Table 3.20 shows the
same information, but related to the PETW Bpp estimator.

Eξ = −0.06146E2
bpp + 0.5109Ebpp − 0.6682 (3.48)

The worst results are obtained with the Coefficient Entropy, which is the
only encoder-independent estimator. However, a much better estimation is
obtained than using the Mean or the Median of the optimum xis. Therefore,
this estimator could be used in any wavelet based encoder that uses a dead
zone quantizer, like for example JPEG2000, although some adaptations and
more experiments must be done.

In the case of the PETW-dependent estimators, the best results are obtained
with the PETW Bpp, which is also the better of the three estimators that we have
implemented. It obtains an average error of 0.069ξ. The polynomial fitting
equation used in PETW Bpp is also shown in Equation 3.48, where Eξ stands
for estimated Xi, and Ebpp is the estimated bpp obtained with it.

Once we have an equation to estimate the best ξ for a specific image, we
will test it with other well-known images. In this case we will use also higher
resolution images. The image test set includes the images refereed in
Table 3.21.

As an example of the estimation performance of the PETW Bpp estimator,
in figures 3.62 and 3.63 we show, for the Lena and Balloon images,
respectively, three R/D curves in each figure. One curve for the PETW with
the Equivalent Xi value (ξ = 0.375), another with the Optimum Xi obtained
with the aforementioned experiment (the one that uses the Bjontegaard
method to determine which curve was the best), and the last curve, the one
obtained with the Estimated Xi (Eξ value). The curve for the Optimum Xi, and
the curve for the Estimated Xi are practically the same, so in order to be able
to see both curves at the same time, we have plotted the Estimated Xi curve
with a thicker line.

The PETW Bpp estimator is quite precise as for most images the curves
obtained with the optimum xi and the estimated one are practically the same.
The average error between the Eξ value and the optimum xi for the test images
is 0.082ξ, which is equivalent to a deviation in the dead zone size of only 0.16Δ
with respect to the optimum.
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Figure 3.62: Lena: R/D curve comparison between the Optimum Xi, Estimated
Xi, and Equivalent Xi values.
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Table 3.19: Results for the Coefficient Entropy and Symbols Entropy estimator.
Image and average error for the fitting equations.

Image Best Xi
Coefficient Entropy Symbols Entropy

Est. bpp Log. Xi Log. Err. Est. bpp Log. Xi Log. Err.
01 0.340 4.99 0.333 0.007 2.31 0.316 0.024
02 -0.360 3.62 -0.024 0.336 1.72 -0.020 0.340
03 -0.190 3.20 -0.162 0.028 1.50 -0.179 0.011
04 -0.130 3.70 0.000 0.130 1.77 0.009 0.139
05 0.320 4.86 0.305 0.015 2.29 0.305 0.015
06 0.270 4.41 0.195 0.075 2.10 0.205 0.065
07 0.120 3.41 -0.090 0.210 1.60 -0.099 0.219
08 0.250 5.08 0.354 0.104 2.38 0.349 0.099
09 -0.030 3.48 -0.067 0.037 1.65 -0.071 0.041
10 -0.070 3.56 -0.041 0.029 1.69 -0.040 0.030
11 0.160 4.18 0.136 0.024 2.00 0.152 0.008
12 -0.220 3.51 -0.058 0.162 1.66 -0.058 0.162
13 0.410 5.40 0.421 0.011 2.43 0.371 0.039
14 0.220 4.49 0.217 0.003 2.13 0.224 0.004
15 -0.100 3.59 -0.035 0.065 1.71 -0.026 0.074
16 0.050 3.81 0.034 0.016 1.82 0.047 0.003
17 0.080 3.71 0.004 0.076 1.77 0.012 0.068
18 0.260 4.55 0.231 0.029 2.16 0.239 0.021
19 0.170 4.14 0.126 0.044 1.99 0.144 0.026
20 0.080 3.33 -0.118 0.198 1.62 -0.088 0.168
21 0.270 4.18 0.136 0.134 2.00 0.153 0.117
22 0.130 4.11 0.118 0.012 1.97 0.132 0.002
23 -0.250 2.99 -0.237 0.013 1.35 -0.297 0.047

Avg. Err. 0.076 Avg. Err. 0.075

In Table 3.22, the differences or deviations from the Eξ to the equivalent xi
(0.375) and their translation into dead zone size deviations are shown. For the
test images, the table shows in the Estimation columns: Eξ the estimated xi,
and DZ the corresponding dead zone size, and in the Deviation columns: ξ the
distance or deviation from the equivalent xi, and DZ the translation into dead
zone size units. As shown, deviations over 0.300ξ units produce dead zone
deviations higher than 0.5Δ with respect to the equivalent dead zone size.

This is a big deviation from the dead zone size used by the equivalent
PETW. Depending on the image content, this dead zone deviation can have a
higher impact on the R/D performance at lower compression rates as shown in
figures 3.65, 3.64, 3.66, and 3.67, where the gains are shown for Woman,
Zelda, Deer and Big Tree images. These images are the ones from Table 3.22
with bigger deviations of the estimated xi value. In that images, the previously
used visually lossless threshold is also shown.
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Table 3.20: Results for the PETW Bpp estimator. Image and average error for
the fitting equation.

Image Best Xi
Estimated Bpp

Est. bpp Est. Xi Poly. Err.
01 0.340 3.22 0.340 0.000
02 -0.360 1.56 -0.022 0.338
03 -0.190 1.16 -0.160 0.030
04 -0.130 1.64 0.006 0.136
05 0.320 3.06 0.320 0.000
06 0.270 2.48 0.221 0.049
07 0.120 1.36 -0.088 0.208
08 0.250 3.37 0.355 0.105
09 -0.030 1.41 -0.072 0.042
10 -0.070 1.49 -0.043 0.027
11 0.160 2.21 0.160 0.000
12 -0.220 1.44 -0.061 0.159
13 0.410 3.77 0.385 0.025
14 0.220 2.59 0.244 0.024
15 -0.100 1.53 -0.030 0.070
16 0.050 1.78 0.047 0.003
17 0.080 1.65 0.008 0.072
18 0.260 2.68 0.259 0.001
19 0.170 2.16 0.149 0.021
20 0.080 1.37 -0.082 0.162
21 0.270 2.21 0.160 0.110
22 0.130 2.13 0.140 0.010
23 -0.250 0.92 -0.250 0.000

Avg. Err. 0.069

Table 3.21: Image set used in the variable dead zone experiments.

Images Resolution
Lena

512 x 512

Barbara
Goldhill

Boat
Mandrill
Balloon
Horse
Zelda
Cafe

2048 2560
Bike

Woman
Deer 3968 x 2560

Big Tree 6016 x 4480
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Table 3.22: ξ and dead zone deviations from the equivalent values.

Estimation Deviation
Images Eξ DZ ξ DZ
Lena -0.019 2.04 Δ 0.394 0.79 Δ

Barbara 0.194 1.61 Δ 0.181 0.36 Δ
Goldhill 0.163 1.67 Δ 0.212 0.42 Δ

Boat 0.073 1.85 Δ 0.302 0.60 Δ
Mandrill 0.380 1.24 Δ 0.005 0.01 Δ
Balloon 0.145 1.71 Δ 0.230 0.46 Δ
Horse 0.292 1.42 Δ 0.083 0.17 Δ
Zelda -0.151 2.30 Δ 0.526 1.05 Δ
Cafe 0.035 1.93 Δ 0.340 0.68 Δ
Bike 0.144 1.71 Δ 0.231 0.46 Δ

Woman 0.116 1.77 Δ 0.259 0.52 Δ
Deer -0.003 2.01 Δ 0.378 0.76 Δ

Big Tree -0.184 2.37 Δ 0.559 1.12 Δ
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Figure 3.64: Zelda: R/D curve comparison between the Estimated Xi and
Equivalent Xi values.
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Figure 3.65: Woman: R/D curve comparison between the Estimated Xi and
Equivalent Xi values.
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Figure 3.66: Deer: R/D curve comparison between the Estimated Xi and Equiv-
alent Xi values.
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Figure 3.67: Big Tree: R/D curve comparison between the Estimated Xi and
Equivalent Xi values.

Table 3.23: Additional % of bit rate gain/loss due to the use of the PETW Bpp
estimator for the VL and E quality ranges.

Images
Visually Lossless Excellent
% Add. % Tot. % Add. % Tot.

Lena 3.80% 18.08% 1.89% 14.59%
Barbara 1.18% 12.35% 0.84% 14.32%
Goldhill 2.33% 9.46% 1.73% 11.12%

Boat 1.62% 8.29% 0.91% 7.79%
Mandrill -0.07% 10.96% -0.05% 13.83%
Balloon 0.17% 9.39% -0.18% 9.14%
Horse 0.72% 10.55% 0.54% 12.58%
Zelda 6.50% 23.50% 3.54% 16.70%
Cafe 0.57% 8.87% -0.63% 9.81%
Bike 1.91% 11.25% 0.24% 12.02%

Woman 2.95% 9.17% 2.09% 9.87%
Deer 16.11% 28.65% 13.34% 34.24%

Big Tree 9.98% 16.37% 6.48% 13.95%
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Table 3.24: Additional % of bit rate gains/lossess due to the use of the PETW
Bpp estimator for the G and A quality ranges.

Images
Good All

% Add. % Tot. % Add. % Tot.
Lena -0.95% 7.74% 0.98% 12.46%

Barbara 0.37% 18.42% 0.68% 15.81%
Goldhill 0.70% 12.70% 1.39% 11.65%

Boat 0.60% 6.90% 0.60% 7.49%
Mandrill -0.02% 21.26% -0.04% 16.63%
Balloon -0.55% 8.79% -0.31% 9.02%
Horse 0.25% 16.33% 0.44% 13.91%
Zelda -0.23% 4.97% 2.40% 13.36%
Cafe -1.00% 11.53% -0.76% 10.44%
Bike -0.58% 13.29% -0.04% 12.46%

Woman 0.76% 11.36% 1.62% 10.41%
Deer 8.61% 40.79% 11.84% 36.55%

Big Tree 0.97% 9.98% 4.73% 12.68%

In Tables 3.23 to 3.24, we show in the column labeled as %Add. the
percentage of additional gain or loss that could be obtained using the estimator
in the PETW, and in the column labeled as %Tot. the percentage of bit rate
saving that is obtained with respect to the rate obtained if we use the S-LTW
encoder. Table 3.23 shows the values corresponding to the Visually Lossless
and Excellent quality ranges, whereas Table 3.24 shows the values
corresponding to the Good and All quality ranges.

So, the use of the PETW Bpp estimator in the PETW is able to produce
additional bit rate savings in most of the images, increasing therefore the gain
with respect to other encoders for those images. For some images instead there
is a small loss of bit rate with respect to the equivalent xi value. Additionally,
as the estimator uses the same algorithms used in the rate distortion stage of the
S-LTW, no further computational cost or complexity is added to obtain the Eξ
value.

3.4.4 Performance results with dead zone estimation

In this section we will compare the PETW performance with the inclusion of
the PETW Bpp estimator with other standard image encoders.

PETW has been compared with Kakadu 5.2.5 and SPIHT (Sphit 8.01) en-
coders with images in Table 3.21 with resolutions of 512x512, and 2048x2560
(higher resolutions failed in the SPIHT encoder used version).
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Figure 3.68: PSNR R/D comparison of Woman image encoded with PETW,
SPIHT and Kakadu. Rates are in bpp.

When comparing with the Kadadu encoder, we perform two comparisons,
one labeled as Kakadu csf, which has enabled its perceptual weighting mode
(with the perceptual weights presented in [242]), and the other one, labeled as
Kakadu, without the perceptual weights.

Figure 3.68 shows the R/D comparison of the Woman image compressed
with the PETW encoder, SPIHT, Kakadu and Kadadu csf, using PSNR as the
distortion metric. A misleading conclusion after looking at the R/D curves for
the PETW, and Kakadu csf, is that the encoding strategy used in these
proposals are inappropriate, since their quality results are always lower than
the ones for other encoders, specially at high bit rates. This is a consequence
of using PSNR as distortion metric and not a QAM, when comparing
perceptual enhanced encoders with non perceptual enhanced ones.

As an example of why measuring the quality of perceptual enhanced images
with PSNR is misleading, we can see in Figure 3.69, a subjective comparison of
the three encoders with a cropped region of the Woman test image compressed
at 0.25 bpp. In this case the third image, encoded with PETW seems to have
better subjective quality than the other two. This observation contradicts the
conclusion obtained from Figure 3.68 that suggest that at 0.25 bpp PETW is
worse than SPIHT and Kakadu. The same behavior can be observed as well
with the other test images. So it is better not to trust in how PNSR assess quality
and use instead a perceptual inspired quality assessment metric like VIF that, as
stated in [210, 306] and in our tests, it has a better correlation with the human
perception of quality.

Figures 3.70 and 3.71, show some of the VIF R/D results (R/D plots where
VIF is the distortion metric) for some test images. As shown, PETW encoder
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(a) SPIHT PSNR=29.95 dB (b) Kakadu PSNR=30.01 dB

(c) PETW PSNR=29.11 dB

Figure 3.69: Subjective comparison of the Woman image encoded at 0.25 bpp
with a) SPIHT, b) Kakadu, and c) PETW.

can achieve higher compression rates while maintaining the same perceptual
quality than the other encoders, i.e., a bit rate saving is obtained at a desired
quality when the PETW is used instead Kakadu or SPIHT.

Tables 3.25 to 3.27 show the rate savings obtained with PETW versus
Kakadu, SPIHT and Kakadu csf. These tables group the results also by image
resolution. Results are expressed as percentage of saved rate in the
aforementioned VIF intervals, i.e., Visually Lossless, Excellent, Good and All
the range.

If we focus in the All quality range we see that the highest bit rate savings
are obtained in comparison with the SPIHT encoder for both studied
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Table 3.25: Rate savings of PETW versus Kakadu without perceptual weights

PETW vs. KKDU
Excellent Good All

512x512
Lena 15.75% 9.98% 13.88%

Barbara 13.61% 15.91% 14.42%
Goldhill 6.93% 10.48% 8.10%

Boat 6.49% 7.53% 6.84%
Mandrill 21.40% 27.06% 23.45%
Balloon 10.35% 9.65% 10.11%
Horse 19.46% 19.11% 19.34%
Zelda 16.40% 10.25% 14.49%

Mean 512x512 13.80% 13.75% 13.83%
2048x2560

Cafe 10.37% 11.67% 10.84%
Bike 9.97% 12.06% 10.69%

Woman 5.16% 5.11% 5.14%
Mean 2048x2560 8.50% 9.61% 8.89%

Table 3.26: Rate savings of PETW versus SPIHT

PETW vs. SPIHT
Excellent Good All

512x512
Lena 20.22% 12.90% 17.84%

Barbara 20.42% 24.49% 21.85%
Goldhill 16.73% 16.85% 16.77%

Boat 11.75% 13.58% 12.36%
Mandrill 23.26% 26.38% 24.39%
Balloon 11.06% 10.72% 10.94%
Horse 18.56% 20.27% 19.15%
Zelda 21.48% 7.74% 17.22%

Mean 512x512 17.94% 16.62% 17.57%
2048x2560

Cafe 13.99% 16.15% 14.77%
Bike 18.08% 20.92% 19.07%

Woman 11.98% 13.44% 12.50%
Mean 2048x2560 14.69% 16.84% 15.45%
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Figure 3.70: VIF R/D comparisons for the Lena and Barbara images.
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Figure 3.71: VIF R/D comparisons for the Zelda and Woman images.
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Table 3.27: Rate savings of PETW versus Kakadu with perceptual weights

PETW vs. KKDU CSF
Excellent Good All

512x512
Lena 4.87% 5.30% 5.01%

Barbara -2.98% -1.86% -2.59%
Goldhill 3.19% 1.91% 2.77%

Boat -0.03% 2.07% 0.67%
Mandrill 1.35% 3.91% 2.28%
Balloon 0.73% 6.18% 2.57%
Horse 2.05% 6.37% 3.53%
Zelda 6.88% 4.41% 6.11%

Mean 512x512 2.01% 3.54% 2.54%
2048x2560

Cafe 0.22% 1.08% 0.53%
Bike -1.12% -2.14% -1.47%

Woman 2.12% 3.70% 2.68%
Mean 2048x2560 0.41% 0.88% 0.58%

resolutions. The mean bit rate savings for the 512x512 resolutions is up to
15.57% and 15.54% for the 2048x2560 resolution. The maximum saving
when comparing with SPIHT is obtained for the Mandrill image in the Good
quality range with 26.38%.

When comparing with KKDU without perceptual weighting, the bit rate
savings are also significant for the All quality range, in average 13.83% for
small images and 8.89% for big ones. The maximum bit rate savings in
comparison with this encoder are obtained also for the Mandrill image, and in
the Good quality range with 27.06%

If the perceptual weightings are enabled in KKDU, for some images as
Barbara or Bike, KKDU is performing better than our proposal, but in average
for all the images there is still a bit rate saving of 2.54% for small images in
the All range and 0.58% for big ones. The highest gains are obtained in the
Excellent quality range for Zelda image with 6.88%.

But, in order to reduce the overall encoding time with respect to the S-LTW,
we have also coded the PETW using a parallel implementation of the 2D-DWT
transform on a GPU.

In [307], the authors analyzed the behavior of several parallel algorithms
developed to compute the two-dimensional discrete wavelet transform using
both, OpenMP! (OpenMP!) over a multicore platform, and CUDA! (CUDA!)
over a GPU. So, we have used this implementation with the inclusion of the
proposed PWM and the PETW Bpp estimator in [308], naming that encoder
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Table 3.28: Speedup comparison by target bit rate and image size

PE LTW Speed-up Comparisson
Rates(bpp) vs. SPIHT vs. KKDU

Average for 512x512 image size
1 2.76 0.42

0.5 3.74 0.61
0.25 4.80 0.66
0.125 6.86 0.83

Average for 2048x2560 image size
1 1.73 0.33

0.5 5.22 0.38
0.25 4.31 0.44
0.125 4.39 0.53

version Perceptually Enhanced LTW encoder (PE LTW).

As the 2D-DWT transform runs on a GPU, the overall encoding time is
highly reduced compared to the sequential version of the same encoder (the
PETW), obtaining maximum speed-ups of 6.86 for 512x512 images and 4.39
for 2048x2560 images. Comparing with SPIHT and Kakadu, the new proposal
is clearly faster than SPIHT but needs additional optimizations to outperform
Kakadu times. For details about how the wavelet transform has been
parallelized, detailed encoding times, and detailed speedups per image, see
[307, 308].

Table 3.28 compares the averaged speed ups for each image size in the test
set at different compression rates. The PE LTW is faster than SPIHT regardless
of the target rate, and for any image size. However the Kakadu encoder is still
faster than the PE LTW. The reason is that, although the PE LTW runs its DWT
stage over the GPU, it is the only optimized stage in the whole encoder. By
contrast, all encoding stages in the Kakadu 5.2.5 are fully optimized. Besides of
the use of multi-thread and multi core hardware capabilities, Kakadu uses also
processor intrinsic capabilities like MMX/SSE/SSE2/SIMD and uses a very
fast multicomponent transform, i.e., block transform, which is well suited for
parallelization.
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4.1 Conclusions

In this section, we conclude this thesis and summarize some of the main
contributions introduced in this thesis.

In Chapter 2, we proceeded with the state-of-the-art in the field of QAM,
analyzed the most important aspects of the human visual system that
researchers have included in their metrics design, and performed a
classification of the metrics into frameworks attending to the way and methods
that the metrics use in order to emulate how the human visual system assesses
quality.

We also review how to compare QAM, and discussed some issues that must
be taken into account in those comparisons. The metrics under comparison
were DMOSp-PSNR, MSSIM, VIF, NRJPEG2000, RRIQA, NRJPEGQS, and
VQM.

In our correlation analysis, the metric that obtained higher correlation with
DMOS was the VIF metric. In order to be able to fairly compare the QAM,
they must be first moved to a common scale. We used the DMOSp scale, which
is a prediction of the real DMOS. To move a metric into the DMOSp scale, a
parametric equation must be used. We have published the parameters obtained
in our study here so that the results can be replicated.

Then we performed a comparison of the behavior of the QAM under study
in two environments, specifically image and video compression, and mobile
networks with packet losses.

• For the compression environment, we analyzed the performance of
H.264/AVC [224], Motion-JPEG2000 [225], and Motion-LTW [226] in
intra mode.

We made the comparisons using R/D curves changing the PSNR with each of
the evaluated metrics using the different encoders. We conclude that the VIF
metric ranks the performance of the tested encoders more accurately, i.e.,
orders the encoders by quality in the same order that the subjective ranking
does for any compression level.

If we want to replace the PSNR metric with one of the evaluated QAMs in
order to test the performance of a new encoder design, then if the reference
(image or video) is available and accuracy is needed, the choice is the VIF
metric followed by MSSIM. If computational time is critical, then the choice
is VQM and MSSIM. If the reference is not available, the choice is RRIQA.

We use the VIF metric in the comparisons made in Chapter 3 as we work in
a compression environment, with access to the reference images or
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sequences, i.e., in full reference mode, and the accuracy is more important
than obtaining the perceptual quality value faster.

• In the loss-prone environment, we analyzed the metrics behavior when
measuring reconstructed video sequences encoded and delivered through
error prone wireless networks, like MANETs.

– NR metrics are not able to properly detect and measure the sharp quality
drop due to the loss of several consecutive frames.

– The RR metric has a non-deterministic behavior in the presence of packet
losses, having difficulties to identify and measure this effect at moderate
to high compression rates.

– MSSIM, DMOSp-PSNR, and VIF exhibit similar behavior in all cases.

So, for the loss-prone environment, we propose the use of the MSSIM metric
as a trade-off between accuracy and computational cost.

In Chapter 3, we presented a comprehensive study of the perceptual coding
techniques. The most widely used technique is the use of the CSF with several
approximations found.

One of the motivations of this work was to avoid the need to perform
continuous subjective tests. This motivation led us to choose some
approximations that use the CSF without the need to perform subjective tests
in order to determine the perceptual importance of the wavelet coefficients via
a perceptual weighting matrix. These values are extracted directly from a CSF
model.

Following the methods in those reference works, we increased the
granularity of the reference work into a subband decomposition level. So, a
subband weighting matrix is proposed, whose weights are obtained in an
alternative way that optimizes the perceptual R/D behavior, i.e., using a QAM
as distortion metric. We performed a comprehensive study of different ways to
obtain the perceptual quantization matrix for at-threshold compression. We
also proposed a normalization strategy for that matrix in order to obtain a
perceptual subband weighting matrix.

The PWM-S4 weighting matrix, which is the best performing one among
our proposals, was implemented into the S-LTW and the results have been
compared with the reference matrices, one for a level decomposition and
another for a subband decomposition.

Compared with the level decomposition of the reference, our proposal
obtains bit rate savings on average for the test image set of 7.22% at the
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Visually Lossless threshold, 6.50% in the Excellent quality range, 4.15% in the
Good range, and 5.69% in the All quality range. Otherwise, the best results are
11.50%, 10.08%, and 7.64% for Visually Lossless, Excellent, and Good
ranges, respectively.

Compared with the subband decomposition of the reference, our proposal
obtains bit rate savings on average for the test image set of 0.96% at the
Visually Lossless threshold, 3.40% in the Excellent quality range, 8.14% in the
Good range, and 5.00% in the All quality range. Otherwise, the best results are
8.73%, 9.73%, and 13.41% for Visually Lossless, Excellent, and Good ranges,
respectively.

We have finally presented the PETW encoder, which is an evolution of the
S-LTW encoder into a perceptual image wavelet encoder that reveals the
importance of exploiting the contrast sensitivity function by means of an
accurate perceptual weighting of the wavelet coefficients.

In a first version of the PETW encoder, only the PWM-S4 was included and
the quantization strategy of the encoder has been changed. We implemented
a uniform variable dead zone quantizer (UVDZQ) into the PETW, changing
the original two-stage quantizer. We prove the equivalence of the PSNR R/D
performance with the original S-LTW encoder, and then we compare the new
proposal with the M-LTW original video encoder and other well-known video
encoders running in intra using a motion version of the PETW that we called
M-PETW.

The best results of the comparison with the M-LTW show bit rate savings
for:

• The QCIF resolution of 10.63%, 10.10%, 10.35%, and 10.19% for the Visu-
ally Lossless, Excellent, Good, and All quality ranges, respectively.

• The CIF resolution of 10.14%, 12.14%, 13.59%, and 11.63% for the Visually
Lossless, Excellent, Good, and All quality ranges, respectively

• The ITU-D1 resolution of 10.05%, 8.34%, 4.39%, and 7.99% for the Visually
Lossless, Excellent, Good, and All quality ranges, respectively

• The HD resolution of 16.22%, 14.05%, 5.54%, and 12.45% for the Visually
Lossless, Excellent, Good, and All quality ranges, respectively

Regarding the comparison of M-PETW versus the rest of the encoders, the
maximum bit rate average saving is produced at the Visually Lossless threshold
for the HD frame size, except when compared with X.264. With that encoder,
the best gain is obtained at the Good quality level. The best averaged bit rate
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savings are 10.16%, 22.09%, 11.40%, 23.11%, and 10.69% in the comparisons
with M-JASPER, M-SPIHT, KKDU, X.264, and H.264, respectively. But we
obtain a maximum up to 28.01% at the Good quality level when compared
with X.264, 22.09% in the Visually Lossless threshold when compared with
M-SPIHT or even up to 12.85% when compared with H.264.

As shown in these comparisons, the proposed perceptual weighting matrix
and implemented in the PETW encoder, obtains higher bit rate savings on av-
erage as the frame resolution increases.

In the final version of the PETW encoder, we implemented a new proposal
of an image adaptive dead zone size estimator. Results confirm the importance
of using an optimum dead zone size for each image to obtain a better quality of
the reconstructed image.

The image adaptive dead zone size estimator is developed in order to obtain
the best R/D performance when the distortion metric is the VIF metric. The
methods used in this proposal can be extrapolated for use any other distortion
metric instead. Several estimators were tested and the best performing one is
PETW encoder dependent. One of the proposed dead zone size estimators is,
however encoder independent, so with some adaptations it could be used in
other wavelet and DCT-based encoders.

The use of the image adaptive dead zone size estimator in the PETW
produces additional bit rate savings, and, depending on the image, up to
16.11%, 13.34%, 8.61%, and 11.84% in the Visually Lossless, Excellent,
Good, and All quality ranges, respectively.

The PETW is very competitive in terms of perceptual quality, measured
with the VIF QAM, being able to obtain important bit rate savings regardless of
the image resolution, and at any bit rate, when compared with S-LTW, SPIHT,
and Kakadu (with and without its perceptual weighting mode enabled). The
PETW encoder is able to produce a quality equivalent image with respect to
the other encoders with a reduced rate.

When compared with other encoders, the average bit rate savings are:

• With SPIHT:

– For the 512x512 resolution, they are 17.94%, 16.62%, and 17.57% for
the Excellent, Good, and All quality ranges, respectively, with a maximum
savings of 26.38% in the Good range.

– For the 2048x2560 resolution, they are 14.69%, 16.84%, and 15.45% for
the Excellent, Good, and All quality ranges, respectively, with a maximum
savings of 20.92% in the Good range.
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• With Kakadu without perceptual weighting:

– For the 512x512 resolution, they are 13.80%, 13.75%, and 13.83% for
the Excellent, Good, and All quality ranges, respectively, with a maximum
savings of 27.06% in the Good range.

– For the 2048x2560 resolution, they are 8.50%, 9.61%, and 8.89% for the
Excellent, Good, and All quality ranges, respectively, with a maximum
savings of 12.06% in the Good range.

• With Kakadu with perceptual weighting:

– For the 512x512 resolution, they are 2.01%, 3.54%, and 2.54% for the
Excellent, Good, and All quality ranges, respectively, with a maximum
savings of 6.58% in the Good range.

– For the 2048x2560 resolution, they are 0.41%, 0.88%, and 0.58% for the
Excellent, Good, and All quality ranges, respectively, with a maximum
savings of 3.70% in the Good range.

The PETW encoder does not increases the overall encoding time with
respect to the S-LTW, the dead zone size estimator uses an estimation of the
bits per pixel needed that the already implemented rate control algorithms of
the S-LTW provides, and the perceptual weighting is a simple multiplication
of the wavelet coefficients with the corresponding perceptual scaling factor.

As a final conclusion, we have to remark that we have covered all the
proposed objectives for this thesis, although some experiments and future
work could be done as we expose next.

4.2 Conclusiones

En esta sección vamos a resumir las contribuciones más relevantes de esta tésis.

En el Capı́tulo 2, realizamos un estudio del arte sobre las métricas de
valoración subjetiva de la calidad (Quality Assessment Metrics - QAM),
analizando los aspectos más importantes del sistema visual humano (HVS)
que los investigadores en este campo han incluido en el diseño de sus
métricas, y realizamos una clasificación de las métricas agrupÃ¡ndolas
atendiendo a la forma y métodos que las métricas utilizan para emular la
forma en la que el sistema visual humano realizar la valoración de la calidad.

También revisamos cómo se deben comparar las QAM, y discutimos
ciertas cuestiones que tienen que ser tomadas en cuenta en estas
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comparaciones. Las metricas comparadas fueron: DMOSp-PSNR, MSSIM,
VIF, NRJPEG2000, RRIQA, NRJPEGQS y VQM.

En nuestros análisis de correlación, la métrica que obtuvo mayor
correlación con el DMOS fue la VIF. Para realizar una comparación justa
entre métricas, éstas deben trasladarse primero a una escala común. Nosotros
hemos utilizado la escala DMOSp, que es una predicción de los valores reales
DMOS. Para trasladar una métrica a la escala DMOSp, se necesita una
ecuación parametrica. Nosotros hemos puclicado aquı́ los parÃ¡metros
obtenidos en nuestro estudio de forma que los resultados puedan ser
reproducidos.

Después realizamos una comparación del comportamiento de las métricas
(QAM) en dos entornos, concretamente compresión de imagen y video y redes
móviles con pérdida de paquetes.

• En el entorno de compresión analizamos el rendimiento del H.264/AVC
[224], Motion-JPEG2000 [225] y Motion-LTW [226] en modo intra.

Realizamos las comparaciones utilizando curvas R/D cambiando el PSNR
por cada una de las métricas evaluadas y utilizando diferentes codificadores.
Concluimos que la métrica VIF ordena por calidad el rendimiento de los
codificadores probados de manera mÃ¡s precisa, es decir, ordena los
codificadores por calidad en el mismo orden que una ordenación subjetiva
para cualquier nivel de compresión.

Si pretendemos reemplazar la métrica PSNR por una de las métricas QAM
analizadas para valorar el rendimiento del diseño de un nuevo codificador,
entonces, si la referencia (imagen o video) estÃ¡ disponible y es necesaria
precisión la elección es la métrica VIF seguida por la MSSIM. Si el tiempo de
cÃ¡lculo es crı́tico, entonces la elección es VQM y MSSIM. Si la referencia
no estÃ¡ disponible, entonces la elección es RRIQA.

Usaremos la métrica VIF en las comparaciones realizadas en el Capı́tulo 3
puesto que trabajamos en un entorno de compresión, con acceso a la imagen
o sequencia de referencia, es decir en modo full reference, y estamos
diseñando una propuesta de codificación por lo que la precisión es mÃ¡s
importante que obtener el valor perceptual de calidad mÃ¡s rÃ¡pido.

• En el entorno propenso a pérdidas, analizamos el comportamiento de las
métricas al medir la calidad de secuencias de video reconstruidas enviadas a
traves de redes móviles propensas a la pérdida de paquetes como las
MANETs.

– Las métricas NR no son capaces de detectar apropiadamente y medir la
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abrupta caida de calidad producida por la pérdida de varios frames
consecutivos.

– La métrica RR tiene un comportamiento no determinista ante la pérdida de
paquetes, mostrando dificultades para identificar y medir este efecto para
ratios de compresión de moderados a altos.

– Las métricas MSSIM, DMOSp-PSNR y VIF muestran un comportamiento
similar en todos los casos.

Por tanto para el entoro propenso a pérdidas proponemos el uso de la métrica
MSSIM como compromiso entre precisión y coste computacional.

En el Capı́tulo 3 presentamos un completo estudio de las técnicas de
codificación perceptual. La técnica mÃ¡s ampliamente utilizada es utilizar la
CSF (Contrast Sensitivity Function) para lo cual encontramos varias
aproximaciones.

Una de las motivaciones de este trabajo fue tratar de evitar la necesidad de
realicar continuos test subjetvios. Esta motivación nos llevó a elegir
aproximaciones qeu usan la CSF sin necesidad de realizar tests subjetivos para
determinar la importancia perceptual de los coeficientes wavelet, utilizando
una matriz perceptual de pesos. Estos valores se obtienen directamente de un
modelo de la CSF.

Siguiendo los métodos del trabajo de referncia hemos incrementado la
granularidad de éste a el nivel de descomposicion en subbandas. Por lo que
proponemos una matriz de pesos por subbandas cuyos pesos se obtienen de
una forma alternativa que optimiza el comportamiento R/D perceptual, es
decir usando una métrica QAM como métrica de distorsión. Realizamos un
completo estudio de diferentes formas de obtención de la matriz de
quantización para una compresión at-threshold. Proponemos también una
estrategia de normalización para esta matriz para convertirla en una matriz
perceptual de pesos por subbandas.

La matriz PWM-S4, que es la que mejor rendimiento ha demostrado de
entre nuestras propuestas, se ha implementado en el codificador S-LTW y los
resultados han sido comparados con las matrices de referencia, una para una
descomposición por niveles y otra por subbandas.

En la comparación con la matriz de referencia por niveles, nuestra
propuesta obtiene unos ahorros en rate, que en promedio para el conjunto de
imÃ¡genes de prueba es de un 7.22% en el umbral Visually Lossless, un 6.50%
en el rango de calidad Excellent, un 4.15% en el rango Good y un 5.69% en el
rango de calidad All. Los mejores resultados han sido sin embargo de un
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11.50%, un 10.08% y un 7.64% para lor rangos Visually Lossless, Excellent y
Good respectivamente.

En la comparación con la matriz de referencia por subbandas, nuestra
propuesta obtiene unos ahorros en rate, que en promedio para el conjunto de
imÃ¡genes de prueba es de un 0.96% en el umbral Visually Lossless, un 3.40%
en el rango de calidad Excellent, un 8.14% en el rango Good y un 5.00% en el
rango de calidad All. Los mejores resultados han sido sin embargo de un
8.73%, un 9.73% y un 13.41% para los rangos Visually Lossless, Excellent y
Good respectivamente.

Finalmente hemos presentado el codificador PETW. Una evolución del
codificador S-LTW en un codificador perceptual de imagen, basado en
wavelets, que manifiesta la importancia de explotar la funcion de sensibilidad
al contraste por medio de una ponderación perceptual muy precisa de los
coeficientes wavelet.

En una primera vesión del codificador PETW, sólo se ha incluido la matriz
PWM-S4 y se ha cambiado la estratégia de quantización del codificador.
Hemos implementado un quantizador uniforme con dead zone variable
(UVDZQ) en el PETW, sustituyendo el cuantizador en dos fases original.
Hemos demostrado la equivalencia del rendimiento R/D en PSNR con el
codificador S-LTW original y entonces hemos comparado la nueva propuesta
contra el codificador de video M-LTW original y contra otros codificadores de
video muy populares corriendo en modo intra, para lo que hemos usado una
versión motion del codificador PETW y que llamamos M-PETW.

Los mejores resultados de las comparaciones con el M-LTW muestran
ahorros de rate para:

• La resolución QCIF en un 10.63%, un 10.10%, un 10.35%, y un 10.19%
para los rangos de calidad Visually Lossless, Excellent, Good, y All
respectı́vamente.

• La resolución CIF en un 10.14%, un 12.14%, un 13.59%, y un 11.63% para
los rangos de calidad Visually Lossless, Excellent, Good y All
respectı́vamente.

• La resolución ITU-D1 en un 10.05%, un 8.34%, un 4.39%, y un 7.99% para
los rangos de calidad Visually Lossless, Excellent, Good y All
respectı́vamente.

• La resolución HD en un 16.22%, un 14.05%, un 5.54%, y un 12.45% para los
rangos de calidad Visually Lossless, Excellent, Good y All respectı́vamente.
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En cuanto a la comparación del M-PETW versus el resto de codificadores,
los mÃ¡ximos ahorros de rate se producen en el umbral Visually Lossless para
la resolución HD, excepto cuando comparamos con el X.264. Con este
codificador las mejores ganancias se obtienen en el rango de calidad Good.
Los mejores ahorros de rate en promedio que se obtienen son de un 10.16%,
un 22.09%, un 11.40%, un 23.11%, y un 10.69% en las comparaciones con
M-JASPER, M-SPIHT, KKDU, X.264, y con H.264 respectı́vamente. Pero se
obtienen unos mÃ¡ximos de hasta un 28.01% en el nivel de calidad Good
cuando comparamos con X.264, un 22.09% en el umbral Visually Lossless
cuando comparamos con M-SPIHT o incluso un 12.85% cuando comparamos
con H.264.

Como se ve en estas comparaciones, la matriz perceptual de pesos
propuesta e implementada en el codificador PETW obtiene mayores ahorros
en rate en promedio a medida que la resolución crece.

En la versión final del codificador PETW implementamos una nueva prop-
uesta de un estimador adaptativo del ancho del dead zone. Los resultados con-
firman la importancia de utilizar un ancho óptimo del dead zonepara cada ima-
gen de forma que se obtenga una mayor calidad en la imagen reconstruida.

El estimador adaptativo por imagen del ancho del dead zone se ha
desarrollado para obtener el mejor rendimiento R/D cuando la metrica de
distorsión utilizada es la VIF. Los métodos utilizados en esta propuesta pueden
extrapolarse sin embargo, para ser usados con cualquier otra métrica de
calidad. Se han probado diferentes estimadores y el que mejor rendimiento
ofrece es dependiente del codificador PETW. Sin embargo, una de las
propuesta de estimadores del ancho del dead zone es independiente del
codificador, por lo que con las adaptaciones oportunas podrı́a ser usado en
otros codificadores basados en wavelet o incluso en DCT.

El uso del estimador adaptativo en el PETW proporciona ahorros de rate
adicionales, que dependiendo de la imagen llegan hasta un 16.11%, un 13.34%,
un 8.61%, y un 11.84% en los rangos de calidad Visually Lossless, Excellent,
Good y All respectı́vamente.

El PETW es muy competitivo en terminos de calidad perceptual, medida
con la métrica VIF, siendo capaz de obtener importantes ahorros de rate
independientemente de la resolución de la imagen y a cualquier tasa de bits,
cuando es comparado con S-LTW, SPIHT, y Kakadu (con y sin su modo de
ponderación perceptual activo). El codificador PETW es capaz de producir
una imagen con una calidad perceptual equivalente con respecto a otros
codificadores reduciendo la tasa de bits.

En las comparaciones con otros codificadores los ahorros de rate son:
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• Con SPIHT:

– Para la resolución 512x512 un 17.94%, un 16.62% y un 17.57% para los
rangos de calidad Excellent, Good y All respectı́vamente y con un
mÃ¡ximo de ahorro de un 26.38% en el rango Good.

– Para la resolución 2048x2560 un 14.69%, un 16.84% y un 15.45% para
los rangos de calidad Excellent, Good y All respectı́vamente y con un
mÃ¡ximo de ahorro de un 20.92% en el rango Good.

• Con Kakadu sin ponderación perceptual:

– Para la resolución 512x512 un 13.80%, un 13.75% y un 13.83% para los
rangos de calidad Excellent, Good y All respectı́vamente y con un
mÃ¡ximo de ahorro de un 27.06% en el rango Good.

– Para la resolución 2048x2560 un 8.50%, un 9.61% y un 8.89% para los
rangos de calidad Excellent, Good y All respectı́vamente y con un
mÃ¡ximo de ahorro de un 12.06% en el rango Good.

• Con Kakadu con ponderación perceptual:

– Para la resolución 512x512 un 2.01%, un 3.54% y un 2.54% para los
rangos de calidad Excellent, Good y All respectı́vamente y un mÃ¡ximo
de ahorro de un 6.58% en el rango Good.

– Para la resolución 2048x2560 un 0.41% un 0.88% y un 0.58% para los
rangos de calidad Excellent, Good y All respectivamente y un mÃ¡ximo
de ahorro de un 3.70% en el rango Good.

El codificador PETW no retrarda el tiempo de codificación respecto al
S-LTW porque el estimador adaptativo del ancho del dead zone utiliza los
algoritmos de rate control ya implementados en el S-LTW y la ponderación
perceptual es una simple multiplicación de los coeficientes wavelet por su
factor de escala correspondiente.

Como última conclusión, remarcar que se han realizado todos los objetivos
propuestos para esta tesis, aunque algunos experimentos y algún trabajo futuro
se puede realizar como se expone a continuación.
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4.3 Future work

There are some tasks and more research related with the subject of this thesis
that could be done as future work, such as:

• Extend the study of the QAM with new metrics published recently.

• Analyze comprehensively the behavior and performance of the new metrics,
and the ones studied here, when facing ultra high definition resolutions.

• Include chrominance models of the CSF in the development of the perceptual
weighting matrix.

• Include a luminance and masking model in the PETW. Analyze the behavior
in the PETW of different proposals, optimize them to be used in the PETW,
and try to make them image adaptive.

• Improve the adaptive dead zone size estimator trying also to make it encoder
independent.

• Analyze how to include the methods followed to obtain the perceptual
weighting matrix into the HEVC encoder.
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ACM Adaptive Coefficient Modification

ACR Absolute Category Rating

AMD Adaptive Modification Distortion function

AMP Asymmetric Motion Partitions

ANSI American National Standards Institute

APIC Adaptive Picture Image Coding

ATM Asynchronous Transfer Mode

AVC Advanced Video Coding

BD-PSNR Bjontegaard Delta PSNR

bpp bits per pixel

CAVLC Context Based Adaptive Variable Length Coding

Cb Chrominance blue

CCIR International Radio Consultative Committee - Comité
Consultatif International des Radiocommunications

CIE International Commission on Illumination

cpd Cycles per Degree

CPU Central Processing Unit

Cr Chrominance red

CSF Contrast Sensitivity Function

CU Coding Unit

CW-SSIM Complex Wavelet SSIM

dB decibel

DCQ Dynamic Contrast-Based Quantization

DCR Degradation Category Rating

DCT Discrete Cosine Transform

DMOS Difference Mean Opinion Score
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DMOSp Predicted DMOS

DSCQS Double-Stimulus Continuous Quality-Scale

DSIS Double-Stimulus Impairment Scale

DVQ Digital Video Qualtiy

DVR Digital Video Recording

DWT Discrete Wavelet Transform

DZ Dead Zone

EBCOT Embedded Block Coding with Optimized Truncation

ESF Error Sensitivity Framework

EZW Embedded Zero-tree Wavelet

FFT Fast Fourier Transoform

FGS Fine Grain Scalability

FIR Finite Impulse Response

FMO Flexible Macroblock Ordering

FR Full Reference

FRExt Fidelity Range Extension

FRTV-I Full-Reference Television

FTP File Transfer Protocol

FWQI Foveated Wavelet Image Quality Index

GB Giga Byte

GGD Generalized Gaussian Density

GIS Geographic Information System

GOP Group of Pictures

GQMF Generalized Quadrature Median Filter

GSM Gaussian Scale Mixtures

HD High Definition
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HEVC High Efficiency Video Coding

HIQM Hybrid Image Qualitiy Metric

HMM Hidden Markov Model

HRC Hypothetical Reference Circuit

HVS Human Visual System

I Intra

IAF Information Allocation Function

IEEE Institute of Electrical and Electronics Engineers

IFC Information Fidelity Criterion

IIR Infinite Impulse Response

IPQ Instrumental Picture Quality

ISF Invariant Scaling Factor

ISO International Organization for Standardization

ITS Institute for Telecommunication Sciences

ITU-R International Telecommunication Union Recommendation

JCT-VC Joint Collaborative Team on Video Coding

JND Just Noticeable Difference

JP2K JPEG2000

JPEG Joint Photographic Experts Group

Kb/s Kilobits per second

KLD Kullback-Leiber Distance

LCU Larger Coding Unit

LIP List of Insignificant Pixels

LIS List of Insignificant Sets

LSB Least Significant Bit

LSF Line Spread Function



289

LSP List of Significant Pixels

LTW Lower Tree Wavelet

LZC Layered Zero Coding

MANET Mobile Ad Hoc Networks

Mbps Mega bits per second

MC Motion Compensation

MC-ed LS Motion Compensated Lifting Schemes

MDIS Mode dependent intrasmoothing

ME Motion Estimation

M-LTW Motion LTW

MM-I VQEG Multimedia Phase I

MNDSS Minimum Noticeable Quantizer Step Size

MOS Mean Opinion Score

MPEG Moving Picture Experts Group

M-PETW Motion-PETW

MPQM Moving Picture Quality Metric

MSB Most Significant Bit

MSE Mean Squared Error

MSSIM Mean SSIM

M-SSIM Multi-Scale Structural SIMilarity

MTF Modulation Transfer Function

MV Motion Vector

MVC Multiview Video Coding

NR No Reference

NRJPEG2000 No-Reference JPEG2000 Quality Assessment

NRJPEGQS No-Reference JPEG Quality Score
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NTIA National Telecommunications and Information
Administration

OBR Objective Blocking Rating

OR Outlier Ratio

P Predicted

PC Pair Comparison

PCC Pearson Correlation Coefficient

PCRD Post-Compression Rate Distortion

PDF Portable Document Format

PDF Probability Density Function

PDM Perceptual Distortion Metric

PETW Perceptually Enhanced Tree Wavelet

PIC Perceptual Image Codec

PQM Perceptual Quantization Matrix

PSF Point Spread Function

PU Prediction Unit

PWM Perceptual Weighting Matrix

QM Quantization Matrix

QMF Quadrature Mirror Filter

Qstep Quantization step

RBSP Raw Byte Sequence Payload

RMSE Root Mean Squared Error

ROI Regions Of Interest

RR Reduced Reference

RRIQA RR Image Quality Assesment

RTP Real-time Transport Protocol
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SD Standard Deviation

SDSCE Simultaneous Double Stimulus for Continuous Evaluation

SFQ Space-Frequency Quantization

SI Switching I

SNR Signal to Noise Ratio

SP Switching P

SPIHT Set Partitioning In Hierarchical Trees

SROCC Spearman Rank Order Correlation Coefficient

SS Single-Stimulus

SSCQE Single Stimulus Continuous Quality Evaluation

SSD Solid State Drives

SSE Sum of Squares due to Error

SSIM Structural SIMilarity

TCP Transmission Control Protocol

TU Tansform Unit

UQI Universal Quality Index

USDZQ Uniform Scalar Dead Zone Quantizer

USQ Uniform Scalar Quantizer

UTCQ Universal Trellis Coded Quantizer

UVDZQ Uniform Variable Dead Zone Quantizer

UVDZQ Uniform Variable Dead Zone Quantizer

VCEG Video Coding Experts Group

VIF Visual Information Fidelity

VLC Variable Length Coding

VPSF Visual Progressive Single Factor

VQEG Video Quality Experts Group
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VQM Video Quality Measurements Techniques

VT Visual Thresholds

WMSE Weighted Mean Squared Error

WMSE Weighted MSE

WPP Wavefront Parallel Processing

WT Wavelet Transform
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Img01 Img02 Img03

Img04 Img05 Img06

Img07 Img08 Img09

Img10 Img11 Img12

Figure II.1: Kodak image set (768x512)
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Img13 Img14 Img15

Img16 Img17 Img18

Img19 Img20 Img21

Img22 Img23

Figure II.2: Kodak image set (768x512)
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Barbara (512x512) Lena (512x512)

Boat (512x512) GoldHill (512x512)

Mandrill (512x512) Horse (512x512)

Figure III.1: Test image set
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Zelda(512x512)

Bike(2048x2560)

Cafe(2048x2560)

Deer (3968x2560)

Big Tree (6016x4480) Big Building (7168x5376)

Figure III.2: Test image set



300 Appendix III. Test images



Appendix IV

Test Videos

301



302 Appendix IV. Test Videos

Foreman (QCIF and CIF) News (QCIF and CIF)

Container (QCIF and CIF) Hall (QCIF and CIF)

Mobile (ITU)
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Ducks Take Off (HD)

Station2 (HD)

Pedestrian Area (HD)

Figure IV.1: Test video sequences set
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When comparing the performance of video coding approaches, evaluating different commercial video encoders, or measuring the
perceived video quality in a wireless environment, Rate/distortion analysis is commonly used, where distortion is usually measured
in terms of PSNR values. However, PSNR does not always capture the distortion perceived by a human being. As a consequence,
significant efforts have focused on defining an objective video quality metric that is able to assess quality in the same way as a
human does. We perform a study of some available objective quality assessment metrics in order to evaluate their behavior in two
different scenarios. First, we deal with video sequences compressed by different encoders at different bitrates in order to properly
measure the video quality degradation associated with the encoding system. In addition, we evaluate the behavior of the quality
metrics when measuring video distortions produced by packet losses in mobile ad hoc network scenarios with variable degrees of
network congestion and nodemobility. Our purpose is to determine if the analyzedmetrics can replace the PSNRwhile comparing,
designing, and evaluating video codec proposals, and, in particular, under video delivery scenarios characterized by bursty and
frequent packet losses, such as wireless multihop environments.

1. Introduction

In the past years, the development of novel video coding
technologies has spurred the interest in developing digital
video communications, where evaluation mechanisms to
assess the video quality play a major role in the overall design
of video communication systems.

Themost reliableway of assessing zthe quality of a video is
subjective evaluation, because human beings are the ultimate
receivers in most applications. The mean opinion score
(MOS), which is a subjective quality metric obtained from
a number of human observers, has been regarded for many
years as themost reliable form of qualitymeasurement. How-
ever, the MOS method is too cumbersome, slow, and expen-
sive for most applications. Objective quality assessment met-
rics (QAM) are valuable because they provide video designers

and standard organizations withmeans for makingmeaning-
ful quality evaluations without convening viewer panels.

Recently, new objective image and video quality metrics
have been proposed. They emulate human perception of
video quality since they produce results which are very simi-
lar to those obtained from subjective methods. Most of these
proposals were tested and compared in the different phases
carried out by the video quality experts group (VQEG),
which was formed to develop, validate, and standardize new
objective measurement and comparison methods for video
quality. The models that the VQEG forum validates result in
International Telecommunication Union (ITU) recommen-
dations and standards for objective quality measurement for
both television and multimedia applications [1]. Some of the
QAM proposals are designed to be as generalist as possible,
that is, to be able to assess quality for a wide set of different

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 743604, 18 pages
http://dx.doi.org/10.1155/2014/743604
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distortion types, while other QAM focus their design on the
detection of one, two, or a reduced set of specific distortions.

It would be desirable to find a QAM for image and video
that exhibits a goodbehavior for any set of video and/or image
distortions, that is, that detects accurately (as close as possible
to the human perceived quality) any distortion regardless of
its type and degree. Also, it would be desirable that the time
required to obtain a quality measurement is short enough in
order to have a practical use or even to be able to use it in real
time.

But quality is by definition a highly subjective feature
that is influenced not only by the intrinsic characteristics
of the signal but also by psychological and environmental
factors. Therefore, the task of choosing “the best QAM” is
influenced by too many factors and sources of inaccuracy.
These sources of inaccuracy are, for example, the reliability
of unbiased subjective reference data, the selection of video
or image contents, the degree of the impairments and where
they appear (in space and time), the procedure used to
map between subjective and objective quality values, and
even the use and interpretation of the correlation indicators.
These factors must be taken into account when making
comparisons between metrics [2].

The selection of a QAM may also depend on the target
applicationwhere it will be used. Examples of applications are
a real-time monitor that adaptively adjusts the image quality
in a video acquisition or transmission system, a benchmark-
ing image processing system, or even algorithms and encoder
proposals that are embedded into image processing systems
to decide about the preprocessing and postprocessing stages.

Weworkwith a set of themost relevant quality assessment
metrics whose source code or test software has been made
available by their authors. So, we can use them in our own
evaluation tests.

As mentioned before, we will analyze the behavior of the
candidate metrics in two test environments. The first one,
is the compression environment, where the quality of com-
pressed sequences at different bitrates with different encoders
is compared by means of QAM. The most common way of
doing the comparisons between existing image/video coding
approaches, improvements over these approaches, or com-
pletely new codec designs is by performing a rate/distortion
(R/D) analysis. When using R/D, the distortion is usually
measured in terms of PSNR (peak signal-to-noise ratio)
values, where rates are often measured in terms of bpp (bits
per pixel) for images or bps (bits per second) for video. So,
in this test environment, we work with the selected QAM as
candidates to replace the PSNR as the distortionmetric in the
R/D comparisons.Wewill also consider theQAMcomplexity
in order to determine their applicability. The second one
is the packet loss environment, where we will analyze the
behavior of the candidate metrics in the presence of packet
losses under different mobile ad hoc networks (MANET)
scenarios. In particular, we are going to compare the behavior
of QAM when measuring the quality degradation of an
H.264/AVC video delivery in a MANET. We use a hidden
Markov model (HMM) to accurately reproduce the packet
loss patterns typical of these networks, including variable
network congestion levels and different degrees of node

mobility. For each particular network scenario, we perform a
bitstream erasure process based on the loss patterns suggested
by the HMM model. The resulting bitstream is delivered to
the H.264/AVC decoder in order to get the resulting HRC
that will be used to calculate the QAM value.

The organization of the paper is as follows. In the next
section, we will describe the main frameworks addressing
objective QAM. In Section 3, we will expose some key aspects
of how to compare heterogeneous metrics and the method
used to compare the metrics under evaluation. In Section 4,
we show the behavior of several available quality metrics
in the compression environment. In Section 5, the models
and the methods used for the packet loss environment are
explained and a behavioral analysis of the metrics is made for
different network scenarios. Finally, in Section 6, we present
the main conclusions of this work.

2. Objective Quality Assessment Metrics

In the past years, a big effort has been done in the field of
QAM. A large number or objective metrics can be found in
the literature. Some of them have been designed for a specific
kind of distortions, while others are more generalist and try
to assess quality regardless of the distortion type. Besides,
eachmetric design is different.Objective evaluation of picture
quality in line with human perception is still difficult [3–9]
due to the complex, multidisciplinary nature of the problem,
including aspects related to physiology, psychology, vision
research, and computer science. Nevertheless, with proper
modeling of major underlying physiological and psychologi-
cal phenomena and by obtaining results from psychophysical
tests and experiments, it is possible to develop better visual
quality metrics to replace nonperceptual criteria as PSNR or
MSE being still widely used nowadays.

In the literature, we can find different classifications and
frameworks that group several QAM depending on the way
they are designed. In this section, we will briefly describe the
main ideas behind the different frameworks, along with their
main QAM.

There is a consensus in a primer classification of objective
quality metrics [10, 11] attending to the availability of original
nondistorted info (video reference) to measure the quality
degradation of available distorted versions.

(i) Full reference (FR) metrics perform the distortion
measure with full access to the original image/video
version, which is taken as a perfect reference.

(ii) No reference (NR) metrics have no access to the
reference image/video. So, they have to perform the
distortion estimation based on the distorted version
only. In general they have lower complexity but are
less accurate than FR metrics and are designed for a
limited set of distortions and video formats.

(iii) Reduced reference (RR) metrics have access to partial
information about the original video. A RR metric
defines what information has to be extracted from
original video, so it can be compared with the the
same one extracted from the distorted version.
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(a) (b) (c) (d)

Figure 1: Example of three figures with different impairments and the same PSNR values: (a) original, (b) contrast stretched 26.55 dB, (c)
JPEG compressed 26.60 dB, and (d) blurred 26.55 dB.
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Figure 2: Common block diagram of the error sensitivity framework.

The most widely used FR objective video quality metrics
are the mean square error (MSE) and the peak signal-to-
noise ratio (PSNR). They are simple and quick to calculate,
providing a good way to evaluate the video quality [12].
However, it is well known that these metrics do not always
capture the distortion perceived by the human visual system
(HVS). In Figure 1, an original image has been distorted in
different ways. The PSNR metric gives almost the same value
for each distortion, indicating that the quality of the distorted
images is the same, but as it can be seen, the perceived quality
is different for each image.Moreover, it is not unusual that the
perceived quality of image in Figure 1(b) is higher than the
one given to the original one, Figure 1(a). That is, a distorted
image has better perceptual quality than the original one.
If PSNR is used for measuring the quality of the resulting
images/videos produced by the different coding proposals,
how can we certify that one coding proposal has a better
perceptual quality than another?

In this section, we will briefly describe also themain ideas
behind the different frameworks and the most relevant and
cited QAM of each one. QAM can be classified by many
factors such as the metric architecture (number and type of
blocks and stages or algorithms used in the metric design),
the primary domain (space or frequency) where they work,
and the inclusion or not of HVS characteristics or HVS
models in their design.

2.1. HVS Model Based Framework. A basic idea of any
metric based on a HVS model is that subjective differences
between two images cannot be extracted directly from the
given images (original and distorted one) but from their
perceived versions, that is, from the version that our brain
perceives. As it is known, the HVS produces several visual
scene information reductions, carried out in different steps.

The way in which this information reduction process is
modeled is the key to obtain a good subjective fidelity metric.

This framework includes themetrics that are clearly based
on a HVS model, that is, their design follow the stages of any
of the available HVS models. We include here metrics from
the error sensitivity framework (ESF) [7] and also some other
RR and NR metrics that are based on HVS models.

This frameworkmainly include FRmetrics based onHVS
models that measure errors between the reference and the
distorted content using a HVS model.

In general, the emulation ofHVS is a bottom-up approach
that follows the first retina processing stages to continue with
different models of the visual cortex behavior. Also, some
metrics deal with cognitive issues about the human visual
processing modeling that are included as additional stages.

The main difference between the FR metrics of this
framework is related to the way they perform the subband
decomposition inspired by the complex HVS models [13–
15], low cost decompositions in DCT [16, 17] or wavelet [18]
domains, and with other HVS related issues like in [19] where
foveal vision is also taken into account and in [20] where
focus of attention is also considered. It is worth noting that
most of proposed FR quality assessment models share the
error sensitivity based philosophy which is motivated from
psychophysical vision science research [11].

Figure 2 shows a block diagram with the typical process-
ing stages of a FRmetric. In the preprocessing stage, different
operations are done in order to adequate some characteristic
of the reference and the distorted input versions. These
operations commonly include pixel alignment, image crop-
ping, color space transformations, device calibrations, PSF
filtering, light adaptation, and other operations. Not all the
metrics perform all these operations; each metric processes
both signals in a different way. After the preprocessing stage,
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usually HVS models first decompose the input signal into
spatiotemporal subbands at both the reference and distorted
signals.

The contrast sensitivity function (CSF) can be imple-
mented in the channel decomposition step by the use of linear
filters that approximate the frequency responses to the CSF
like in [21]. But most of the metrics choose to implement
the CSF as weighting factors that are applied to the channels
after the channel decomposition, providing for each channel
a different perceptual sensitivity.

As mentioned before, frequency decomposition is one of
the biggest differences between models and hence between
metrics. Complex HVS frequency channel decomposition
models are used in QAM designs, but some of these models
are simplified attending to computational constraints. In this
sense, other QAM use the DCT [16] or wavelet [18] trans-
forms showing good MOS correlation results. Depending
also on the metric type and the distortions it handles, metrics
use different channel decomposition models.

Cortical receptive fields are represented by 2D Gabor
functions, but the Gabor decomposition is hard to compute
and is not suitable for some operations as invertibility, recon-
struction by addition, and so forth. In [22], Watson modeled
a frequency and orientation decomposition with profiles
similar to the 2D Gabor functions but computationally more
efficient. Other authors like Lubin [23], Daly [24], Teo and
Heeger [13], and Simoncelli et al. [25] provided different
models trying to approximate as close as possible the HVS
channel decomposition.

There are also some models that use temporal frequency
decomposition in order to account for the characteristics of
the temporal mechanisms in the HVS [21, 26]. The design of
temporal filter banks is typically implemented using infinite
impulse response filters (IIR) with a delay of only a few
frames; other authors use finite response filters that despite
their higher delay are simpler to implement.

The next step is error normalization and masking.
Masking occurs when a stimulus that is visible by itself
cannot be detected due to the presence of another stimulus.
In contrast, facilitation occurs when a nonvisible stimulus
becomes visible due to the presence of another stimulus.
Most of the HVS models implement error normalization and
masking as a gain-control mechanism, using the contrast
visibility thresholds toweight the error signal at each channel.
Somemetrics [14], due to complexity and performance issues,
use only intrachannel masking, while others [13] include
interchannel masking, as there are evidences that channels
are not totally independent in the HVS. Other authors
[27] include also in this stage the luminance masking, also
called light adaptation. In [28, 29], some comparisons of
different masking models and some considerations about
how to include them into an image encoder are made. In
[30], authors propose a contrast gain-control model of the
HVS that incorporates also a contrast sensitivity function for
multiple oriented bandpass channels.

The last processing step (Figure 2) is the error pooling,
which is in charge of combining the error signals in differ-
ent channels into a single distortion/quality interpretation,
providing different importance to errors depending on the

channels where they appear. For most QAM, a Lp norm or
Minkowski norm is used to produce an image spatial error
maps. From the spatial error map, a frame-level distortion
score is computed. In video quality assessment, we obtain the
corresponding sequence-level distortion score by averaging
frame scores. For the time domain, some metrics use tem-
poral HVS models or information to accurately reproduce
human scores, while others simply do not assess time domain.
Other QAM that may be included in the model based
framework may be found in [13, 15–21, 26, 27, 31–36].

2.2. HVS Properties Framework. In this framework we con-
sider the metrics that, although are not based on a specific
HVS model, are still inspired in features of the HVS. We
also include those metrics that are designed to detect specific
impairments produced by any of the processing stages of
image and video coding, like quantization, transmission
errors, and so forth.

The Institute for Telecommunication Sciences (ITS) pre-
sented in [37] an objective video quality assessment system
that was based on human perception. They extract several
features from the original and degraded video sequences
that were statistically analyzed in comparison with the cor-
responding human rating extracted form subjective tests.
This analysis provide parameters to adjust objectivemeasures
for these features and, after being combined in a simple
linear model, they provide the final predicted scores. Some
of the extracted features require the presence of the origi-
nal sequence, while others are extracted in a no-reference
mode. The proposed metric exploits spatial and temporal
information. The processing include Sobel filtering, Laplace
filtering, fast Fourier transforms, first-order differencing,
color distortion measures, and moment calculation.

In [38], authors proposed a RR metric for in-service
quality monitoring system. Their metric is built on a set
of spatiotemporal distortion metrics that can be used for
monitoring in-service of any digital video system. Authors
expose that a digital video quality metric, in order to
be widely applicable, must accurately emulate subjective
responses, must work over the full range of quality (from
very low bit rate to very high), must be computationally
efficient, and should work for end-to-end in-service quality
monitoring.Themetrics are based on extracted features from
the video sequence as in [37] and in order to satisfy the last
condition (to be able to work in in-service monitoring sys-
tems), these features, extracted from spatiotemporal regions
are sent, compressed following the ITU-R Recommendation
BT.601, through an ancillary data channel so that it can be
continuously transmitted. In the paper, the authors describe
these spatiotemporal distortion metrics in detail, so that they
can be implemented by researchers.

Later, through The National Telecommunications and
Information Administration (NTIA), the same authors, pro-
posed the general model of the video quality measurements
techniques (known as VQM metric [39, 40]) for estimating
video quality and its associated calibration techniques. This
metric was submitted to be independently evaluated on
MPEG-2 and H.263 video systems by the video quality
experts group (VQEG) in their phase II full reference
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television (FR-TV) test. In [41], authors reduce the require-
ments of some of the features extracted in the NTIA general
model in order to achieve a monitoring system that uses less
than 10 kbits/s of reference information.

We also can find metrics based on watermarking tech-
niques that analyze the quality degradation of the embed-
ded image [42]. There are metrics that are designed for
measurement-specific distortions types and those produced
by specific encoders [43, 44]. Another representative metrics
in this framework are the ones proposed in [43–49].

2.3. Statistics of Natural Images Framework. Some drawbacks
of the model based HVS framework are reviewed in [7, 50].
Some of these drawbacks are, for example, that the HVS
models work appropriately for simple spatial patterns, like
pure sine waves; however, whenworkingwith natural images,
where several patterns coincide in the same image area,
their performance degrades significantly. Another drawback
is related to the Minkowski error pooling, as it is not a
good choice for image qualitymeasurement. As authors show,
different error patterns can lead to the same final Minkowski
error.

Therefore, several authors argue that the approach to the
problem of perceptual quality measurement must be a top-
down approach, analyzing the HVS to emulate it at a higher
abstraction level. The authors supporting this approach pro-
pose using the statistics of the natural images. Some of them
propose the use of image statistics to define the structural
information of an image. When this structural information
is degraded, then the perceptual quality is also degraded. In
that sense, a measurement of the structural distortion should
be a good approximation to the perceived image distortion.
These metrics are able to distinguish between distortions that
change the image structure and distortions that do not change
it, like changes in luminance and contrast.

In [7, 51], authors define a Universal Quality Index
that is able to determine the structural information of the
scene. This index models any distortion as a combination
of three different factors: (a) the loss of correlation between
the original signal and the distorted one, (b) the mean
distortion that measures how close the mean of the original
and distorted version are, and (c) the variance distortion that
measures how similar the variances of the signals are. The
dynamic range of the Quality Index is [−1, 1]. A value of 1
indicates that both signals are identical.They apply this index
in a 8 × 8 window for an image, obtaining a quality map of
the image.The overall index is the average of the quality map.

Authors in [50] further improve their previous quality
index and in [52] propose a generalization of their work
where any distortion may be decomposed into a linear
combination of different distortion components. In [53], the
model is extended to the complex wavelet domain in order
to design a robust metric to scaling, rotation, and translation
effects.

Authors in [54] proposed a video qualitymetric following
a frame by frame basis. It takes quality measures for different
blocks of each frame taking into account their spatial variabil-
ity, the movement, and other effects (like blocking) by means
of a specifically adapted NR metric [45].

Other authors use also statistics of the natural scene in a
different way.They state that the statistical patterns of natural
scenes have modulated the biological system, adapting the
different HVS processing layers to these statistics. First a
general model of the natural images statistics is proposed.
The modeled statistics are those captured with high quality
devices working in the visual spectrum (natural scenes). So,
text images, computer generated graphics, animations, draws,
random noise or image, and videos captured with nonvisual
stimuli devices like radar, sonar, X-ray, and so forth are out
of the scope of this approach. Then, for a specific image, the
perceptual quality is measured taking into account how far its
own statistics are from the modeled ones. In [55], a statistical
model of a wavelet coefficient decomposition is proposed,
and in [56] the authors propose an NR metric derived from
previous work.

Some metrics defined under this approach take the
objective quality assessment as an information loss problem,
using techniques related to information theory [57, 58].

2.4. Metrics under Study. Now, we introduce the metrics we
will use in our study.The criteria to choose thesemetrics, and
no other ones, was the availability of their code (source or
executable) to reproduce their behavior as follows.

(i) The DMOSp-PSNR metric: we translate the tradi-
tional PSNR to the DMOS space applying a scale-
conversion process. We call the resulting metric
DMOSp-PSNR.

(ii) The Mean Structural SIMilarity index [50] (MSSIM)
from the structural distortion/similarity framework:
in the reference paper, this FR metric was tested
against JPEG and JPEG2000 distortion types. We
test its performance with the new distortion types
available in the second release of Live Database,
“Live2 Database” since it is considered a generalist
metric.

(iii) The visual information fidelity (VIF)metric [59] from
the Statistics of Natural Images Framework. A FR
metric that quantifies the information available in
the reference image and determine how much of
this reference information can be extracted from the
distorted image.

(iv) The no-reference JPEG2000 quality assessment
(NRJPEG2000) [54] from the Statistics of Natural
Images Framework. A NR metric that uses natural
scene statistical models in the wavelet domain
and uses the Kullback-Leibler distance between
the marginal probability distributions of wavelet
coefficients of the reference and distorted images as a
measure of image distortion.

(v) Reduced-reference image quality assessment
(RRIQA) [57] from the Statistics of Natural Images
Framework. The only RR metric under study. It is
based on a natural image statistical model in the
wavelet transform domain.

(vi) The no-reference JPEG quality score (NRJPEGQS)
[43] from the HVS properties framework. A NR
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Figure 3: Block diagram of the QAM evaluation process.

metric designed specifically for JPEG compressed
images.

(vii) The video quality metric [40] (VQM general model)
from the HVS properties framework. The VQM uses
RR parameters sent through an ancillary channel that
requires at least 14% of the uncompressed sequence
bandwidth. Although being conceptually an RR met-
ric, it was submitted to the VQEG FR-TV test because
the ancillary channel can be used to receive more
detailed and complete references from the original
frames, even the original frames themselves.

3. Comparing Heterogeneous Metrics

As previously mentioned, each QAM gets the quality of the
image/video using its own and specific scale that depends
on its design. Therefore, these raw quality scores cannot be
compared directly, even though the range of the values (scale)
is the same. In order to compare fairly the behavior of various
metrics for a set of images or sequences, the objective quality
index obtained from each metric has to be converted into a
common scale.

When reviewing the performance comparisons that
authors made in their new QAM proposals, few details are
provided about the comparison procedure itself. So, it is
difficult to replicate these results. Authors in [2] reviewed the
sources of inaccuracy of each step of the QAM comparing
process, shown at Figure 3. The sources of inaccuracy may
be related to many factors as the reliability of the subjective
reference data, the types and grade of the distortions in the
images or videos, the selection of the content thatmade up the
training and testing sets, and even the use and interpretation
of the correlation indicators.These sources of inaccuracy can
lead to quantitative differences when the same QAM is tested
by different authors, even when the tests are correctly done.
Although different tests can provide slightly varying results
for a set of metrics, their results should be in line as explained
in [2].

These issues encouraged and guided us to perform our
own comparison test with the selectedQAM in order to adapt
the test to the target applications we are interested in. The
results of our test, as expected, were slightly different from
other comparison tests but remain in line with their results
[2].

We use the method and mapping function proposed by
the VQEG [6, 60] with some refinements proposed in other

relevant comparison tests [61]. The chosen target scale is
the DMOS scale (differences mean opinion score) which is
the one used by the VQEG and other authors [61] when
comparing metric proposals.

In order to compare several QAM, first a subjective test
must be done, for example, a Double Stimulus Continuous
Quality Scale (DSCQS) method as suggested and explained
in [6], in order to get the subjective quality assessment of
a set of images or sequences. The scale used by the viewers
goes from 0 to 100. Raw scores obtained in subjective tests are
converted into difference scores and processed further [58]
to get a linear scale in the 0–100 range. The mean opinion
score (MOS) can be calculated for the source and distorted
versions of each image or sequence in this set. The DMOS is
therefore the difference between the MOS value obtained for
the original image/sequence and the MOS value obtained for
the distorted one. So, for a particular image or sequence, its
DMOS value gives themean subjective value of the difference
between the original and the distorted versions. A value of 0
means no subjective difference found between the images by
all the viewers. Due to the nature of the subjective test this
value is very unlikely.

In this work, we have not done such a subjective test.
Instead of this, we have used directly the DMOS values
published in the Live Database Release 2 [62] and in the
VQEG Phase I Database [63].

Basically, the raw score of each metric must be converted
into a value in this predicted DMOS (DMOSp) scale. This is
done in the curve fitting step, shown in Figure 3. The final
result of this scale-conversion process allows the quality score
given by a metric for a specific image/sequence to be directly
comparable with the one given by the other metrics for the
same image/sequence.

We use the nonlinear mapping function between the
objective and the subjective scores, as suggested in the VQEG
Phase I and Phase II testing and validation tests [6, 60] as
well as in other extensive metrics comparison tests [61]. This
function is shown in (1). It is a parametric function which
is able to translate a QAM raw score to the DMOSp space.
As suggested in [2, 64], the performance evaluation of the
metrics (correlation analysis step in Figure 3) is computed
after a nonlinear curve fitting process.

A linear mapping function cannot be used because
quality scores are rarely scaled uniformly in the DMOS
scale, because different subjectsmay interpret vocabulary and
intervals of the rating scale differently, depending on the
language, viewing instructions, and individual psychological
characteristics. Therefore, a linear mapping function would
give too pessimistic view of the metric performance. Several
mapping functions could be selected for this purpose, such
as cubic, logistic, exponential, and power functions, with
monotonicity being themain property that the functionmust
comply with, at least in the relevant range of values.

Consider

Quality (𝑥) = 𝛽1logistic (𝛽2, (𝑥 − 𝛽3)) + 𝛽4𝑥 + 𝛽5, (1)

logistic (𝜏, 𝑥) = 1

2
−

1

1 + exp (𝜏𝑥)
. (2)
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Table 1: Equation parameters of metrics under study.

𝛽
1

𝛽
2

𝛽
3

𝛽
4

𝛽
5

MSSIM −39.5158 14.9435 0.8684 −10.8913 46.4555
VIF −3607.3040 −0.5197 −1.6034 −476.0144 −693.3585
NRJPEGQS 37.6531 −0.9171 6.6930 −0.2354 40.7253
NRJPEG2000 37.3923 0.8190 0.6011 −0.8882 74.5031
RRIQA −18.9995 1.5041 3.0368 6.4301 5.0446
PSNR-DMOSp 23.2897 −0.4282 28.7096 −0.6657 61.5160
VQM-GM −163.6308 6.3746 −7.6192 114.4685 76.6525
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Figure 4: Dispersion plot used for the VIF metric including the
curve fit for (1).

Equation (1) has five parameters, from 𝛽
1
to 𝛽
5
, that

are fixed by the curve fitting process that achieves the best
correlation between the QA metric values and the subjective
DMOS values. We have not found in the literature any
mapping function with its parameters for any image/video
database. So, we have calculated these parameters based on
sets of images and sequences that conformwith our “training
sets”.

As an example, Figure 4 shows the dispersion plot used in
the fitting process for one of the metrics, in this case the VIF
metric. Each point of the scatter-plot corresponds to an image
of the training set used, Live2 Database [62]. For each image
in the training set, we get the average DMOS value obtained
in the subjective test and we run each metric in order to get
its raw quality scores. Each metric gives its score in its own
scale.

The𝑥-axis of Figure 4 corresponds to the raw values given
by the VIF implementation used, where 0 corresponds to
the highest quality reported by the metric and decreasing
values report lower quality. In the 𝑦-axis, we have the
corresponding DMOS values. The curve fitting process gives
us the parameters for (1), which is represented by the solid
curve in Figure 4.

The quality of the images in the subjective test is variable,
covering a large range of distortion types and intensities
for each distortion. Image distortions go from very highly
distorted to practically undistorted ones. The viewers gave

Table 2: Goodness of DMOSp-DMOS fitting.

PCC RMSE SROCC
MSSIM 0.8625 7.9682 0.851
VIF 0.9529 0.0516 0.9528
NRJPEGQS 0.936 3.0837 0.902
NRJPEG2000 0.9099 7.056 0.9021
RRIQA 0.9175 4.4986 0.9194
PSNR-DMOSp 0.85257 9.0969 0.8197
VQM-GM 0.8957 7.6746 0.9021

their scores for each image in the set, obtaining the average
DMOS value. As shown in Figure 4, the dynamic range of the
average DMOS values does not reach the limits of the DMOS
scale (0 and 100) for any distortion type; therefore, the fitted
curve predictsDMOSp values inside the samedynamic range.
This is the reason why for a raw score of 0 (the best possible
quality for the metric in this case), the predicted DMOSp
value is not 0; that is, there was no image scored with an
average DMOS value of 0, instead of that, the best DMOSp
value obtained is around the value of 20. So, in the case of the
VIF metric its dynamic DMOSp range varies from 20 to 80.

Having fixed the beta parameters for each metric (see
Table 1), (1) can be used to estimate or predict the DMOSp
value for any objective metric score.

In Table 2, the performance of our fittings is shown.
These performance parameters show the degree of correlation
between the DMOSp values and the subjective DMOS values
provided by the viewers. Performance validation parameters
are the Pearson correlation coefficient (PCC), the root mean
squared error (RMSE), and the Spearman rank order corre-
lation coefficient (SROCC).

Another key point to consider while comparing QAM [2]
is the selection of the image or video sequence set used as
“training set.” The “training set” is used to perform the curve
fitting process.This set should be chosenwith special care and
must be excluded fromvalidation tests. So for eachmetric, the
fitting process must be done using images or sequences with
impairments that the metric is designed to handle. See [2] for
details of how an incorrect selection of the image “training
set” can influence the final interpretation of the statistics used
in the correlation analysis.

Once the metric has been evaluated in the correlation
analysis step, it will work with another set of images or
sequences that we call the “testing set.” For the “testing set,”
the DMOS values are unknown; therefore, we obtain them
via (1).
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Figure 5: PSNR versus DMOSp-PSNR for the evaluated codecs (mobile sequence).

In our study, all the metrics have been “trained” only with
the luminance information. The MSSIM, VIF, RRIQA, and
DMOSp-PSNR metrics were “trained” with the whole Live2
Database because they are intended to be generalist metrics.

The NRJPEGQS was “trained” only with the JPEG dis-
torted images of Live2 database as thismetric is designed only
to handle this type of distortions. And for the same reason
the NRJPEG2000 was “trained” only with the JP2K distorted
images of Live2 Database and the VQM-GM was “trained”
with a subset of 8 video sequences and its 9 corresponding
HRCs of the VQEG Phase I Database in a bitrate range of 1 to
4Mb/s.

It is important to mention that each of these “training
sets” has different dynamic ranges in the DMOS scale
depending on the degree of distortions applied to the images
in each set.

We define as “homogeneous metrics” those which were
trained with the same sets, and therefore, we use the term
“heterogeneous metrics” to refer to metrics that were trained
with different sets.

Our “testing set” comprises different standard video
sequences that are commonly used in video coding evalua-
tion research, as shown in Table 3. For FR-metrics, both ref-
erence and distorted images/sequences are used as input. For
NR-metrics only the distorted image/sequence is available.
For RR-metrics, the reference image/sequence is the input of
the features extraction step, and both the extracted features
and the distorted image/sequence are the input for the final
metric evaluation step. Image metrics were applied to each
frame of the sequences and the mean raw value for all the
frames was translated to the DMOSp scale. Hence, we finally
obtain comparable DMOSp values for all images/sequences.

4. Analyzing Metrics Behavior in
a Compression Environment

In this section, we will study the behavior of the QAM
under evaluation when assessing the quality of compressed
images and sequences with different encoders. As exposed

Table 3: Sequences included in the “test set”.

Sequence Frame F. number F. rate
Foreman QCIF: 176 × 144

300
30 fps.

Container
Foreman CIF: 352 × 288
Container
Mobile 640 × 512 40

before, in the development of a new encoder or when
performing modifications to existing ones, the performance
of the proposals must be evaluated in terms of perceived
quality by means of the R/D behavior of each encoder. The
distortion metric commonly used in the R/D comparisons is
PSNR.

So, in this test environment, we will work with the
selected metrics as candidates to replace the PSNR as the
quality metric in a R/D comparison of different video codecs.
In this case, we will use a set of video encoders and video
sequences in order to create distorted sequences hypothetical
reference circuit (HRC) at different bitrates and analyze the
results of the different QAM under study. Also, we will
consider the metric complexity in order to determine their
scope of application. For the tests, we have used an Intel
Pentium 4 CPU Dual Core 3.00GHz with 1 Gbyte RAM.The
programming environment used is Matlab 6.5 Rel.13. The
codecs under test are H.264/AVC [65], Motion-JPEG2000
[66], and Motion-LTW [67]. The fitting between objective
metric values and subjective DMOS scores was done using
theMatlab curve fitting toolbox looking for the best fit in each
case.

A R/D plot of the different video codecs under test,
using the traditional PSNR as a distortion measure, is shown
in Figure 5(a). It is usual to evaluate performance of video
codecs in a PSNR range varying from 25–27 dB to 38–
40 dB, because it is difficult to determine which one is better
with PSNR values above 40 dB. This saturation effect, at
high qualities, is not captured by the traditional PSNR that
increases steadily as the bitrate rises, as shown in Figure 5(a).
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Figure 6: QAM comparison using the same sequences with different codecs.

We convert the traditional PSNR to a metric that we
call DMOSp-PSNR by applying the scale-conversion process
explained in Section 3. We can consider the DMOSp-PSNR
metric to be the “subjective” counterpart of the traditional
PSNR. It is the same metric, though expressed in a different
scale. The DMOSp scale denotes distortion, thereby quality
increases as DMOSp value decreases. The main difference
between PSNR and its counterpart DMOSp-PSNR is that
the saturation effect is fixed, as we can see in Figure 5(b).
As it can be seen, subjective saturation effect is noticeable
above a specific quality value. At bitrates above 11.5Mbps,
the DMOSp values practically do not change. This behavior
is the same for all the evaluated codecs and video formats,
confirming that there is no noticeable subjective difference
when watching the sequences at the two highest evaluated
bitrates (11.7 and 20.7Mbps).

But as mentioned before the only modification that has
been done to the PSNR metric was the mapping process
with the DMOS data; that is, the raw values of the PSNR
have not changed; therefore, DMOSp-PSNR metric does not
fix the known drawbacks shown in Figure 1. For bitrates
values below the saturation point (11.5Mbps in the case of
Figure 5(b)), the behavior of the two R/D curves is the same.
In fact, the DMOSp-PSNR metric below the saturation point
arranges the codecs by quality in the same order as the PSNR
does, agreeing also with the results of subjective tests. This
behavior is the same for all evaluated sequences and bitrates.

Since PSNR, and therefore DMOSp-PSNR, are known to
be inaccurate perceptual metrics for image or video quality
assessment, we now analyze the remaining metrics under
study for all codecs and bitrates. These metrics have a better
perceptual behavior and they offer different scores for the
images in Figure 1.

The expected behavior of a QAM scoring an image or
sequence at different bitrates is as follows.

(i) It should give a decreasing quality value as the bitrate
decreases when bitrate values are below saturation
threshold.

(ii) The quality value should be almost the same when
bitrate values are above saturation threshold.

So, we run all the metrics for each HRC and analyzed
the resulting data between consecutive bitrates, obtaining
the quality scores in the DMOSp space. A simple subjective
DSCQS test was performed with 23 viewers in order to detect
if there was really perceived differences above threshold in
these sequences at high bitrates (above saturation 11.5Mbps).
In the tests, the three HRCs (for each sequence and encoder)
with higher bitrates were presented to the viewers: the first
HRC (the first located below saturation point, 6.4Mbps)
and the last two HRCs (two rightmost points from curves
in Figure 5, 11.58 and 20.65Mbps) that are locate in the
saturation region. The test concluded that no perceptual
differenceswere detected above saturation threshold,whereas
all the viewers detected some perceptual differences bellow
threshold. The predicted DMOSp differences for these HRCs
above threshold vary from 0.82 to 4.91 DMOSp points, so we
can initially conclude that above saturation these small differ-
ences in DMOSp values are perceptually indistinguishable.

In Figure 6 we can see examples of the R/D plots used
for comparing the metrics where all the evaluated QAM
were applied to the same sequence. In Figure 6(a), the HRCs
were encoded with the H.264/AVC codec. The NRJPEG2000
metric is omitted because it is not designed to handle DCT
transform distortions. In the same way, in Figure 6(b), where
HRCs were encoded with M-JPEG2000, the NRJPEGQS
metric is omitted because it is not designed to handle the
distortions related to the wavelet transform. We can see that
the perceptual saturation is captured by all the QAM at high
bitrates (high quality) regardless of the encoder. The same
holds for all the sequences and encoders.

As mentioned in Section 3, monotonicity is expected
in the mapping function. So, the expected behavior of the
metrics should also be monotonic; that is, metrics should
indicate lower quality values as the bitrates decrease. How-
ever, if we look at Figure 6(b) and focusing on the two lowest
bitrates, the quality score given by both the RRIQA and
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Figure 7: First frame of Foreman QCIF encoded at 70Kbps (left)
and 135Kbps (right).

NRJPEG2000metrics increases as the bitrate value decreases.
This is contrary to the expected behavior of a QAM. Figure 7
shows the first frame of the Foreman QCIF frame size
sequence at these bitrates. Clearly, the right image (135 Kbps)
receives a better subjective score than the left one (70Kbps),
though the mentioned metrics state just the opposite in this
particular case. Our results for the compression environment
show that NRJPEG2000 offers wrong quality scores between
the two highest compression ratios with the M-JPEG2000
codec, for all the sequences and frame sizes tested. RRIQA
also failed with this codec at high compression ratios, but
only for small video formats. All the other metrics exhibit a
monotonic behavior for all bitrates regardless of the encoder
and sequence being tested.

Figure 6 will also help us to explain what it was exposed
in Section 3; heterogeneous metrics should not be compared
directly because the dynamic range of the subjective quality
scores in each training set is different. Looking at Figure 6(a)
and focusing on the lowest bitrate, the DMOSp rating
differences between metrics arrive surprisingly up to 44.21
DMOSp units.

In fact, there are three different behaviors corresponding
to the use of three different training sets: VQM-GM was
trained with VQEG sequences, NRJPEGQS was trained
only with the JPEG distorted images, and the rest of the
metrics trained with the whole set of distorted images in the
Live2 Database. This is the main reason of these anomalous
behaviors in Figure 6.

So, when including in the same R/D plot curves from
different metrics it should be checked that the metrics are
homogeneous in order to avoid misleading conclusions.

Determining how good a metric works depends on how
good themetric predicts the subjective scores given by human
viewers. This goodness of fit is measured in parameters like
those of Table 2. Our performance validation data tells that
the VIFmetric is the one which best fits the subjective DMOS
values among the metrics in the same “training set.”

Figure 8 represents the common R/D plots used when
comparing the performance of the encoders being tested.
In this case the plot shows how the VIF metric evaluates
the performance of the encoders. If the mapping function
of the metrics was obtained with the same “training set,”
then the ranking order of the encoders should agree with the
subjective ranking order for each bitrate being evaluated.

We performed a simple subjective test with 23 viewers in
order to evaluate if we can trust the codec ranking; that is,
for a specific bitrate, the metric should arrange the encoders
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Figure 8: R/D performance evaluation of the three video codecs
using mobile ITU video sequence by means of VIF metric.

by quality, in the same order that a human observer does.
For each rate and sequence, the reconstructed sequence of
each encoder was presented simultaneously to the subjects.
The ordering of the three sequences varies for each HRC, so
that the subjects had no knowledge about the encoder order.
The subjects ranked the sequences by perceptual quality if no
differences were detected between pairs of sequences; they
also annotated this fact. After analyzing the users scores and
removing outliers, the test confirms that the ranking order of
the metrics was the same as the subjective ranking.

In the cases where viewers scored no perceptual dif-
ference between sequences, the metrics gave always values
lower than 2.9 DMOSp units of difference between encoders.
In this test, for slightly higher differences, for example,
3.11 DMOSp units at 2.1Mb/s between H264/AVC and M-
JPEG2000 in Figure 8, most of the viewers could see some
perceptual differences between the sequences, since they
ranked H264/AVC to have better perceptual quality than M-
JPEG2000 and M-LTW.

In order to determine how much difference expressed in
the DMOSp scale is perceptually detectable, deeper studies
and subjective tests must be done. From our studies, we
detect that the perceptual meaning of the difference depends
on the point in the DMOSp scale where we are working.
For example, for high quality (as stated before in previous
tests), DMOSp value differences up to 4.91 DMOSp points
were imperceptible; however, at lower quality levels, smaller
differences (3.11) can be perceived.

Finally, Table 4 shows, for different frame sizes, the mean
frame evaluation time and the evaluation time for the whole
sequence needed by eachmetric to assess its rawquality value.
Times for the two steps of RRIQA, features extraction (f.e.),
and quality evaluation (eval.) have been separately measured.
For a CIF sequence (calibration and colour conversion time is
not included) the VQM-GM is faster than the other metrics,
except NRJPEGQS and DMOSp-PSNR. DMOSp-PSNR is by
far the less computationally expensive metric at all frame
sizes. On the other hand, RRIQA and VIF are the slowest
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Table 4: QAM average scoring times (seconds) at frame and sequence level.

QCIF CIF 640 × 512

Frame Seq. Frame Seq. Frame Seq.
MSSIM 0.028 8.4 0.147 44.1 0.764 30.5

VIF 0.347 104.1 1.522 456.5 6.198 247.9

NRJPEGQS 0.01 3 0.049 14.6 0.201 8.1

NRJPEG2000 0.163 48.9 0.486 145.9 1.595 63.8

RRIQA (f.e.) 4.779 1433.7 6.95 2084.9 10.111 404.5

RRIQA (eval.) 0.201 60.2 0.635 190.6 2.535 101.4

DMOSp-PSNR 0.001 0.3 0.006 1.7 0.02 0.8

metrics (they run a linear multiscale, multiorientation image
decomposition), although in our tests the VIF is the most
accurate metric among the general purpose metrics.

5. Analyzing Metrics Behaviour in a Packet
Loss Environment

Our objective in this section is to analyze the behavior of
the candidate metrics in the presence of packet losses under
different MANET scenarios. In order to model the packet
losses in these error prone scenarios, we use a three-state hid-
den Markov model (HMM) and the methodology presented
in [68]. HMMs are well known for their effectiveness in
modeling bursty behavior, relatively easy configuration, quick
execution times, and general applicability. So, we consider
that they fit our purpose of accelerating the evaluation
process of QAM for video delivery applications on MANET
scenarios, while offering similar results to the ones obtained
by means of simulation or real-life testbeds. Basically, by the
use of the HMM, we define a packet loss model for MANET
that accurately reproduces the packet losses occurring during
a video delivery session.

The modeled MANET scenario is composed of 50 nodes
moving in an 870 × 870 square meters area. Node mobility
is based on the random way-point model, and speed is
fixed at a constant value between 1 and 4m/s. The routing
protocol used is DSR. Every node is equipped with an IEEE
802.11g/e enabled interface, transmitting at the maximum
rate of 54Mbit/s up to a range of 250 meters. Notice that a
QoS differentiated service is provided by IEEE 802.11e [69].
Concerning traffic, we have six sources of background traffic
transmitting FTP/TCP traffic in the best effort MAC access
category. The foreground traffic is composed by real traces
of an H.264 video encoded (using the Foreman CIF video
test sequence) at a target rate of 1Mbit/s. The video source
is mapped to the video MAC acess category.

We apply the HMM described above to extract packet
arrival/loss patterns for the simulation traces and later repli-
cate these patterns for testing.Wedescribe two environments:
(a) congestion related environment and (b) mobility related
environment.

The congestion environment is composed of 6 scenarios
with increasing level of congestion, from 1 to 6 video sources.
The mobility environment is composed of 3 scenarios with

only one video source, but with increasing degrees of node
mobility (from 1 to 4m/s).

For each of these scenarios, we get different packet loss
patterns provided by the HMM that represents each scenario.

After an analysis of the packet losses, different patterns
are defined as follows.

(i) Isolated small bursts represent less than 7 consecutive
lost packets. As each frame is split in 7 packets at
source, isolated bursts will affect 1 or 2 frames, but
none of them will be completely lost. This error pat-
tern is mainly due to network congestion scenarios,
where some packets are discarded due to transitory
high occupancy in the wireless channel or buffers at
relaying nodes.

(ii) Large packet loss bursts. Large Bursts cause the loss of
one or more consecutive frames. Large packet error
bursts are typically a consequence of high mobility
scenarios, where the route to the destination node
is lost and a new route discovery process should
be started. This will keep the network link in down
state during several seconds, losing a large number of
consecutive packets.

We have used the H.264/AVC codec adjusting the error
resilience parameters to the values proposed in [70], so that
the decoder is able to reconstruct sequences even when large
packet loss bursts occur. H.264/AVC is configured to produce
one I frame every 29 P frames, with no B frames and to
split each frame in 7 slices, so we put each slice into a
separate packet and encapsulate its output in RTP packets. As
suggested in [70], we also force 1/3 of themacroblocks of each
frame to be randomly encoded in intramode.

We have used the ForemanCIF seq. (300 frames at 30 fps)
to build an extended video sequence by repeating the original
one up to the desired video length. After running the encoder
for each extended video sequence, we get RTPpacket streams.
Then, we delete from the RTP packet stream, those packets
that have been marked as lost packets by the HMM model.
This process simulates packet losses in theMANET scenarios,
so a distorted bitstream will be delivered to the decoder. The
decoder behavior depends on the packet loss burst type as
follows.

(i) When an isolated small bursts appear, the decoder is
able to apply error concealmentmechanisms to repair
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Figure 9: PSNR frame values during a long packet loss burst (from
frame 2327 to 2525) at different bitrates.

the affected frames. The video quality decreases, and
just after the burst, the reconstructed video quality
recovers the quality by means of the random intra-
coded macroblock updating. When the next I frame
arrives, it completely stops error propagation.

(ii) When the decoder faces large bursts, it stops decoding
and waits until new packets arrive. This produces a
sequence in the decoder that is shorter than the orig-
inal one. Therefore, both sequences are not directly
comparable with the QAM and so we freeze the last
completely decoded frame until the burst ends.

Once we have comparable video sequences (original and
decoded video sequences with the same length), we are able
to run the QAM. Each metric produces an objective quality
value for each frame in its own scale. Then, we perform the
scale-conversion to the DMOSp scale (see Section 3).

Figure 9 shows the objective quality value in the tradi-
tional PSNR scale at three different compression levels (low
compression, medium compression, and high compression)
during a large packet loss burst. We observe the evolution
of quality during the burst period. What the observer sees
during this large burst is a frozen frame, with more or
less quality depending on the compression level. The PSNR
metric reports that quality drops drastically with the first
frame affected by the burst and decrease even more as the
difference between the frozen frame and the current frame
increases. Nearly at the middle of the burst, an additional
drop of quality can be observed. It corresponds to a scene
change (with the beginning of a new cycle of the foreman
video sequence). At this point, the drastic scene changemakes
the differences between sequences even higher, and the PSNR
metric scores with even worse values, reaching values as low
as 10–12 dBs.

On the other hand, the perceived quality which changes
at these levels is quite difficult to evaluate. So, a better
perceptually designed QAM should not score such a quality
drop in this situation because quality saturates. When the

burst ends, quality rapidly increases because of the arrival of
packets belonging to the same frame number than the current
one in the original sequence (frame 2525 in Figure 9).

If during such a burst a QAM takes into account only the
quality of the frozen frame, disregarding the differences with
the original one (which changes over time), the effect of the
burst would remain unnoticed for that metric, that is, quality
remain constant.

Figure 10 shows the evolution of the candidate QAM
during a large burst (similar to Figure 9 but in this case in the
DMOSp space). There is a panel for each compression level:
Figure 10(a) corresponds to high compression, Figure 10(b)
to middle compression, and Figure 10(c) to low compression.
We observe some interesting behaviors that we proceed to
analyze.

From a perceptual point of view, quality must drop to a
minimum when one or more frames are lost completely and
should remain that way until the data flow is recovered. It
should not matter if a scene change takes place inside the
large burst. VIF andMSSIM behaves this way. At the point of
the burst, where the scene change takes place, both the VIF
and MSSIM metrics have almost reached their “bad quality”
threshold regardless of the compression level and therefore
there is no substantial change in the reported quality. The
drop of quality to the minimum at the beginning of the burst
evidence the lost of whole frames.

NR metrics do not detect the presence of a frozen frame
(by dropping the quality score) as expected because the
quality given by these metrics remain at the level scored
for the frozen frame during the burst duration. So, NR
metrics could not detect the beginning of a large burst,
since lost frames will be replaced with the last correctly
decoded frame (frozen frame) and the reference frames are
not available for comparison. However, NR metrics detect
the end of such bursts. Figure 11 will help us to explain this
behavior, showing how reconstruction is done after a large
burst. This figure shows the impairments produced when the
large burst ends. Figure 11(a) is the current frame, the one
being transmitted. Figure 11(b) is the frozen frame that was
repeated during the burst duration. When the burst ends,
the decoder progressively reconstruct the sequence using the
intramacroblocks from the incoming video packets. So the
decoder partially updates the frozen framewith the incoming
intramacroblocks. This is shown in Figures 11(c) and 11(d)
where the face of the foreman appears gradually.

The gradual reconstruction of the frame with the incom-
ing macroblocks is interpreted in a different way by NR met-
rics and FR metrics. When the macroblocks begin to arrive,
what happens at frame 2522 (see Figure 12), the NR metrics
react scoring down quality, while the FR metrics begin to
increase their quality score, just the opposite behavior. For
a NR metric, without a reference frame, Figure 11(c) has
clearly worse quality than Figure 11(b). But for a FRmetric the
corresponding macroblocks between Figures 11(c) and 11(a)
help to increase the scored quality.

So, NR metrics react only when the burst of lost packets
affects frames partially, that is, isolated bursts and at the end
of a large burst. The NRJPEGQS metric reacts harder (i.e.,
it shows higher quality differences) than the NRJPEG2000
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Figure 10: Metric comparison in the DMOSp space during a very large burst.

(a) (b) (c) (d)

Figure 11: Frame reconstruction after a large burst: (a) original frame, (b) last frozen frame, and (c) (d) first and second reconstructed frames
after the burst.

because it was designed to detect the blockiness introduced
by the discrete cosine transform. When the frame is fully
reconstructed then the score obtained with NR and FR
metrics approaches again the values achieved before the
burst, which depends on the compression rate.

The RRIQA metric shows high variability in its scores
between consecutive frames inside bursts. These variations
becomemore evident as the degree of compression decreases.
The nature of the data sent through the ancillary channel, 18
scalar parameters obtained form the histogram of the wavelet
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Figure 12: End of the large burst for the low compression panel. FR
and NR metrics show the opposite behavior.

subbands of the reference image, is very sensitive to loss of
synchronism between the reference frame and the frozen
one. On the decoder, the same extracted parameters are
statistically compared with the received through the ancillary
channel. When this comparison is performed with two sets
of parameters obtained from different frames, unexpected
results appear.

Concerning the FR metrics, MSSIM, VIF, and PSNR-
DMOSp show a similar behavior or trend.MSSIMandPSNR-
DMOSp show closer quality scores between them than the
ones obtained with the VIF metric, which gives lower quality
values than the other two metrics. This behavior is the same
regardless of the compression level inside the large burst.
Leaving aside the PSNR-DMOSp, which is not really a QAM,
the other two FR metrics (VIF and MSSIM) have the same
behavior when facing large bursts.

Figure 13 shows an isolated burst. In this case, blur
and edge shifting impairments are introduced altering only
one frame. This fact is perceived only by the FR metrics
and the NRJPEG2000, which is designed to detect this
type of impairments. The error concealment mechanism of
H.264/AVC needs up to 6 frames to achieve the same quality
scores obtained before the burst. Figure 14 shows the original
frame (a) and three subsequent frames (b, c, d), where the
effect of the lost packets is concealed by the H.264/AVC
decoder.

As defined previously, an isolated burst can affect one or
two consecutive frames. In the last case, the behavior of the
QAM when facing the isolated burst resembles the behavior
of the metrics with a large burst. The difference is that the
concealment mechanisms and the correct reception of part
of the frames avoid the largest drop in the quality.
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Figure 13: Metric comparison for an isolated burst.

Figure 15 shows multiple consecutive bursts (large and
isolated) that behave as exposed previously. From left to right,
we see a large burst followed by an isolated one. This pattern
repeats again one more time, and at the right most part of
the figure, between frames 352 and 372, two large bursts
occur consecutively, having a gap between them where new
incoming packets arrive for a short period of time (frames 361
and 362).

In Figure 16, we zoom into this area (frames 352 to 372) to
analyze why the behavior of the DMOSp-PSNRmetric differs
from the other FR metrics during the gap between bursts. In
the gap, the encoder is not able to reconstruct a whole frame
because the gap is too small, that is, between the two large
bursts only a small amount of packets arrive, and this is not
enough to reconstruct a whole frame. So the involved frames
(361 and 362) are partially reconstructed (Figures 17(b) and
17(c)). Both frames exhibit perfect correspondence in the
lower half with the original one (Figure 17(a)). Therefore,
the scored quality must increase, at least to some extent,
compared to the quality of the previous frozen frame, as
occurs at the end of a large burst.This fact is only reflected by
theVIF andMSSIMmetrics.ThePSNR-DMOSpmetric is not
able to detect this because it is computed using information
from the whole frame. For the VIF and theMSSIM, which are
perceptually driven, the lower half of the frame increases their
raw scores, in the same way as the human scores do. After
frame 362, quality decreases again since the following frame
is frozen too. So, VIF andMSSIM detect two consecutive loss
burst, while PSNR-DMOSp and the other metrics consider
only a single larger one.

6. Conclusions

The main goal of this work was focused on looking for a
quality assessment metric that could be used instead of the
PSNR when evaluating compressed video sequences with
different encoder proposals at different bitrates and to analyze
the behavior of such metrics when compressed video is
transmitted over error prone networks such as MANETs.
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(a) (b) (c) (d)

Figure 14: Packet loss affecting only one frame. (a) Original frame and (b, c, d) next three decoded frames.
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Figure 15: Frame interval where different type of bursts occurs
consecutively.

We explained the procedures that we followed to compare
QAM metrics and alerted about some issues that arise when
a comparison between heterogeneous metrics is made. The
metrics must be compared using a common scale, since the
raw scores of the metrics are not directly comparable. The
scale-conversion process involves subjective tests and the use
of mapping functions between the subjective MOS values
and the metrics raw values. The parameters for the mapping
function we used are provided in the paper.Themetrics were
first trained with a set of images from two open source image
and video databases with known MOS values. The metrics
were tested with another set of images and videos also taken
from available databases. In order to perform a fair com-
parison, the training and testing sets used with each metric
must use only impairments which the metric was designed
to handle. We defined as heterogeneous metrics those that
were trained with different sets of images or sequences. The
R/D comparisons of heterogeneous metrics must be done
carefully, focusing not only on the absolute quality scores,
but also on the relative scoring between consecutive bitrates
as the differences between DMOSp values are perceptually
detected (or not) depending on the quality range. When
metrics are trained with the same training set, differences
in DMOSp values have the same perceptual meaning for all
the metrics, but this may not be true between heterogeneous
metrics. Normalizing the DMOSp scale when comparing
heterogeneous metrics helps to detect these differences.
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Figure 16: Detail from two consecutive long burst with incoming
packets between them.

We performed the comparison between metrics in two
environments: a compression environment and a packet loss
environment. We performed several subjective tests in order
to confirm that the analysis and the behavior of the metrics
were consistent with human perception. Our tests included
the comparisons of three encoders by replacing the PSNR
as distortion metric in their R/D curves with each of the
candidate metrics.

From our results of the compression environment, we
conclude that we can trust the quality provided by the VIF
metric, which is the one that obtains a better fit in terms of
DMOS during the calibration process and on how it ranks
the performance of the tested encoders for the bitrate range
under consideration. The NRJPEG2000 and the RRIQA
metrics break monotonicity for very high compression levels
when M-JPEG2000 is the evaluated encoder. For the rest of
the bitrates, all the other metrics show a monotonic behavior
for all the bitrate range and for all encoders.

The choice of a QAM to replace the traditional PSNR,
when working in a compression framework with no packet
losses, depends on the availability of the reference sequence.
In applications where the reference sequence is not available,
RRIQA is our choice because its behavior is similar to FRmet-
rics. If the reference sequence is available, the choice depends
on the weight given to the tradeoff between computational
cost and accuracy. If time is themost important parameter, we
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(a) (b) (c)

Figure 17: Decoded frames between two consecutive bursts: (a) original frame; reconstructed frames (b) 361 and (c) 362.

will choose DMOSp-PSNR followed by VQM andMSSIM. If
accuracy is more important, then the choice will be VIF and
MSSIM metrics.

In the loss-prone environment, we analyzed the metrics
behavior when measuring reconstructed video sequences
encoded and delivered through error prone wireless net-
works, likeMANETs. In order to obtain an accurate represen-
tation of delivery errors in MANETs, we adopted an HMM
model able to represent different MANET scenarios.

The results of our analysis are as follows. (a) NR metrics
are not able to properly detect and measure the sharp quality
drop due to the loss of several consecutive frames. (b) The
RRmetric has a nondeterministic behavior in the presence of
packet losses, having difficulties in identifying andmeasuring
this effect when the video is encoded with moderate to high
compression rates. (c) Concerning the othermetrics,MSSIM,
DMOSp-PSNR, and VIF show a similar behavior in all cases.
In summary, we consider that although they exhibit slight
differences in the packet loss framework, we propose the use
of the MSSIM metric as a tradeoff between a high quality
measurement process (resembling human visual perception)
and computational cost.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This research was supported by the Spanish Ministry of
Education and Science under Grant no. TIN2011-27543-C03-
03.S.

References

[1] K. Brunnstrom, D. Hands, F. Speranza, and A.Webster, “VQEG
validation and ITU standardization of objective perceptual
video quality metrics,” IEEE Signal ProcessingMagazine, vol. 26,
no. 3, pp. 96–101, 2009.

[2] J. Korhonen, N. Burini, J. You, and E. Nadernejad, “How to
evaluate objective video quality metrics reliably,” in Proceedings

of the 2012 4th InternationalWorkshop on Quality of Multimedia
Experience (QoMEX ’12), pp. 57–62, July 2012.

[3] M. P. Eckert and A. P. Bradley, “Perceptual quality metrics
applied to still image compression,” Signal Processing, vol. 70,
no. 3, pp. 177–200, 1998.

[4] T. N. Pappas and R. J. Safranek, “Perceptual criteria for image
quality evaluation,” inHandbook of Image and Video Processing,
pp. 669–684, Academic Press, 2000.

[5] VQEG, “Final report from the video quality experts group on
the validation of objective models of video quality assessment,”
phase I, 2000.

[6] VQEG, “Final report from the video quality experts group on
the validation of objective models of video quality assessment,”
phase II, 2003.

[7] Z. Wang, A. C. Bovik, and L. Lu, “Why is image quality assess-
ment so difficult?” in Proceedings of the 2002 IEEE International
Conference on Acoustic, Speech, and Signal Processing (ICASSP
’02), vol. 4, pp. 3313–3316, May 2002.

[8] S. Winkler and P. Mohandas, “The evolution of video quality
measurement: from PSNR to hybrid metrics,” IEEE Transac-
tions on Broadcasting, vol. 54, no. 3, pp. 660–668, 2008.

[9] F. Porikli, A. Bovik, C. Plack et al., “Multimedia quality
assessment [DSP Forum],” IEEE Signal Processing Magazine,
vol. 28, no. 6, pp. 164–177, 2011.

[10] S. Winkler, “Issues in vision modeling for perceptual video
quality assessment,” Signal Processing, vol. 78, no. 2, pp. 231–252,
1999.

[11] Z.Wang,H. R. Sheikh, andA.C. Bovik, “Objective video quality
assessment,” inThe Handbook of Video Databases: Design and
Applications, chapter 41, pp. 1041–1078, CRC Press, 2003.

[12] B. Girod, “What’s wrong with mean-squared error,” in Digital
Images and Human Vision, pp. 207–220, 1993.

[13] P. C. Teo and D. J. Heeger, “Perceptual image distortion,”
in Proceedings of the IEEE International Conference on Image
Processing (ICIP ’94), vol. 2, pp. 982–986, 1994.

[14] C. J. van den Branden Lambrecht and O. Verscheure, “Per-
ceptual quality measure using a spatiotemporal model of the
human visual system,” Storage and Retrieval for Image andVideo
Databases, vol. 2668, pp. 450–461, 1996.

[15] A. B.Watson, J.Hu, and J. F.McGowan III, “Digital video quality
metric based on human vision,” Journal of Electronic Imaging,
vol. 10, no. 1, pp. 20–29, 2001.

[16] J. Malo, A. M. Pons, and J. M. Artigas, “Subjective image fidelity
metric based on bit allocation of the human visual system in



The Scientific World Journal 17

the DCT domain,” Image and Vision Computing, vol. 15, no. 7,
pp. 535–548, 1997.

[17] A. B. Watson, “Toward a perceptual video-quality metric,” in
Human Vision and Electronic Imaging III, Proceedings of SPIE,
July 1998.

[18] M. Masry and Y. Sermadevi, “A scalable wavelet-based video
distortion metric and applications,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 16, no. 2, pp. 260–
272, 2006.

[19] Z. Wang, A. C. Bovik, L. Lu, and J. Kouloheris, “Foveated
wavelet image quality index,” in Applications for Digital Image
Processing XXIV, Proceedings SPIE, pp. 42–52, August 2001.

[20] A. Cavallaro and S. Winkler, “Segmentation-driven perceptual
quality metrics,” in Proceedings of the 2004 International Con-
ference on Image Processing (ICIP ’04), vol. 5, pp. 3543–3546,
October 2004.

[21] C. J. van den Branden Lambrecht, “A working spatio-temporal
model of the human visual system for image restoration and
quality assessment applications,” in Proceedings of the 996
IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP’ 96), vol. 4, pp. 2291–2294, May 1996.

[22] A. B. Watson, “The cortex transform: rapid computation of
simulated neural images,” Computer Vision, Graphics, and
Image Processing, vol. 39, no. 3, pp. 311–327, 1987.

[23] J. Lubin, “The use of psychophysical data and models in the
analysis of display system performance,” in Digital Images and
Human Vision, pp. 163–178, MIT Press, Cambridge, Mass, USA,
1993.

[24] S. Daly, “The visible differences predictor: an algorithm for
the assessment of image fidelity,” in Digital Images and Human
Vision, pp. 179–206, MIT Press, Cambridge, Mass, USA, 1993.

[25] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J.
Heeger, “Shiftable multiscale transforms,” IEEE Transactions on
Information Theory, vol. 38, no. 2, pp. 587–607, 1992.

[26] S.Winkler, “Perceptual distortionmetric for digital color video,”
in Proceedings of the 1999 Human Vision and Electronic Imaging
IV, pp. 175–184, January 1999.

[27] A. B.Watson, “Dct quantizationmatrices visually optimized for
individual images,” 1993.

[28] M. Nadenau, Integration of human color vision models into
high quality image compression [Ph.D. thesis], STI, Lausanne,
Switzerland, 2000.

[29] M. J. Nadenau, J. Reichel, and M. Kunt, “Performance com-
parison of masking models based on a new psychovisual test
method with natural scenery stimuli,” Signal Processing: Image
Communication, vol. 17, no. 10, pp. 807–823, 2002.

[30] A. B. Watson and J. A. Solomon, “Model of visual contrast gain
control and pattern masking,” Journal of the Optical Society of
America A, vol. 14, no. 9, pp. 2379–2391, 1997.

[31] C. Lambrecht and O. Verscheure, “Perceptual quality measure
using a spatio-temporal model of the human visual system,” vol.
2668 of Proceedings of the SPIE, pp. 450–461, San Jose, Calif,
USA, January-February 1996.

[32] A. B. Watson, “Perceptual optimization of dct color quantiza-
tion matrices,” in Proceedings of the 1994 IEEE International
Conference on Image Processing (ICIP ’94), vol. 1, pp. 100–104,
1994.

[33] S. Winkler, “Quality metric design: a closer look,” in Human
Vision and Electronic Imaging, vol. 3959 of Proceedings of SPIE,
pp. 37–44, January 2000.

[34] A. B. Watson, G. Y. Yang, J. A. Solomon, and J. Villasenor,
“Visibility of wavelet quantization noise,” IEEE Transactions on
Image Processing, vol. 6, no. 8, pp. 1164–1175, 1997.

[35] Z. Yu, H. R. Wu, S. Winkler, and T. Chen, “Vision-model-
based impairmentmetric to evaluate blocking artifacts in digital
video,” Proceedings of the IEEE, vol. 90, no. 1, pp. 154–169, 2002.

[36] Y. Sermadevi and S. S. Hemami, “Linear programming opti-
mization for video coding under multiple constraints,” in
Proceedings of the Data Compression Conference (DCC ’03), pp.
53–62, March 2003.

[37] A. A. Webster, C. T. Jones, M. H. Pinson, S. D. Voran, and S.
Wolf, “An objective video quality assessment system based on
human perception,” in Human Vision, Visual Processing, and
Digital Display IV, Proceedings of SPIE, pp. 15–26, September
1993.

[38] S. Wolf and M. H. Pinson, “Spatial-temporal distortion metrics
for in-service quality monitoring of any digital video system,”
in Proceedings of the 1999 Multimedia Systems and Applications
II, pp. 266–277, September 1999.

[39] S. Wolf and M. Pinson, “Video quality measurement tech-
niques,” NTIA Technical Report TR-02-392, 2002.

[40] M. H. Pinson and S. Wolf, “A new standardized method for
objectively measuring video quality,” IEEE Transactions on
Broadcasting, vol. 50, no. 3, pp. 312–322, 2004.

[41] S. Wolf and M. H. Pinson, “Low bandwidth reduced reference
video quality moni- toring system,” in Proceedings of the 1st
InternationalWorkshop on Video Processing and Quality Metrics
for Consumer Electronics, January 2005.

[42] S. Winkler, E. D. Gelasca, and T. Ebrahimi, “Perceptual quality
assessment for video watermarking,” in Proceedings of the
International Conference on Information Technology: Coding
and Computing, pp. 90–94, April 2002.

[43] Z. Wang, H. R. Sheikh, and A. C. Bovik, “No reference
perceptual quality assessment of JPEG compressed images,” in
Proceedings of the International Conference on Image Processing
(ICIP ’02), pp. 477–480, September 2002.

[44] P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, “Percep-
tual blur and ringing metrics: application to JPEG2000,” Signal
Processing: Image Communication, vol. 19, no. 2, pp. 163–172,
2004.

[45] Z. Wang, A. C. Bovik, and B. L. Evans, “Blind measurement
of blocking artifacts in images,” in International Conference on
Image Processing (ICIP 2000), vol. 3, pp. 981–984, Vancouver,
Canada, September 2000.

[46] A. C. Bovik and S. Liu, “DCT-domain blind measurement of
blocking artifacts in DCT-coded images,” in Proceedings of the
2001 IEEE Interntional Conference on Acoustics, Speech, and
Signal Processing (ICASSP ’01), vol. 3, pp. 1725–1728, May 2001.

[47] P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, “A
No-reference perceptual blur metric,” in Proceedings of the
International Conference on Image Processing (ICIP’02), vol. 3,
pp. 57–60, September 2002.

[48] T. M. Kusuma and H. J. Zepernick, “A reduced-reference per-
ceptual quality metric for in-service image quality assessment,”
in Proceedings of the Joint First Workshop on Mobile Future and
Symposium on Trends in Communications (SympoTIC ’03), pp.
71–74, 2003.

[49] P. Gastaldo, R. Zunino, I. Heynderickx, and E. Vicario, “Objec-
tive quality assessment of displayed images by using neural
networks,” Signal Processing: Image Communication, vol. 20, no.
7, pp. 643–661, 2005.



18 The Scientific World Journal

[50] Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600–
612, 2004.

[51] Z. Wang and A. C. Bovik, “A universal image quality index,”
IEEE Signal Processing Letters, vol. 9, no. 3, pp. 81–84, 2002.

[52] Z. Wang and E. P. Simoncelli, “An adaptive linear system
framework for image distortion analysis,” in Proceedings of the
IEEE International Conference on Image Processing 2005 (ICIP
’05), vol. 3, pp. 1160–1163, September 2005.

[53] Z. Wang and E. P. Simoncelli, “Translation insensitive image
similarity in complex wavelet domain,” in Proceedings of the
2005 IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP ’05), vol. 2, pp. 573–576, March 2005.

[54] Z. Wang, L. Lu, and A. C. Bovik, “Video quality assessment
using structural distortion measurement,” in Proceedings of the
International Conference on Image Processing (ICIP’02), vol. 3,
pp. 65–68, September 2002.

[55] E. P. Simoncelli, “Modeling the joint statistics of images in
the wavelet domain,” in 44th Annual Meeting, vol. 3813 of
Proceedings of SPIE, pp. 188–195, July 1999.

[56] H. R. Sheikh, A. C. Bovik, and L. Cormack, “No-reference
quality assessment using natural scene statistics: JPEG2000,”
IEEE Transactions on Image Processing, vol. 14, no. 11, pp. 1918–
1927, 2005.

[57] Z.Wang and E. P. Simoncelli, “Reduced-reference image quality
assessment using a wavelet-domain natural image statistic
model,” in Human Vision and Electronic Imaging X, vol. 5666
of Proceedings of SPIE, pp. 149–159, January 2005.

[58] H. R. Sheikh, A. C. Bovik, and G. de Veciana, “An information
fidelity criterion for image quality assessment using natural
scene statistics,” IEEE Transactions on Image Processing, vol. 14,
no. 12, pp. 2117–2128, 2005.

[59] H. R. Sheikh and A. C. Bovik, “Image information and visual
quality,” IEEE Transactions on Image Processing, vol. 15, no. 2,
pp. 430–444, 2006.

[60] VQEG, “Final report from the video quality experts group on
the validation of objective models of video quality assessment,”
phase I, 2000.

[61] H. R. Sheikh, M. F. Sabir, and A. C. Bovik, “A statistical
evaluation of recent full reference image quality assessment
algorithms,” IEEE Transactions on Image Processing, vol. 15, no.
11, pp. 3440–3451, 2006.

[62] H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik,
“Live image quality assessment database release 2,”
http://live.ece.utexas.edu/research/quality/.

[63] Video Quality Experts Group (VQEG), “Vqeg fr-tv phase i
database,” http://www.its.bldrdoc.gov/vqeg/downloads.aspx.

[64] A. M. Rohaly, P. J. Corriveau, J. M. Libert et al., “Video quality
experts group: current results and future directions,” in Visual
Communications and Image Processing, K. N. Ngan, T. Sikora,
and M. T. Sun, Eds., vol. 4067 of Proceedings SPIE, pp. 742–753,
May 2000.

[65] “Coding of audiovisual objects part 10: advanced videocod-
ing,” ISO/IEC 14496-10:2003, ITUT Recommendation H264
Advanced video codingfor generic audiovisual services, 2003.

[66] “JPEG 2000 image coding system, part 1: core coding system,”
ISO/IEC 15444-1, 2000.

[67] J. Oliver and M. P. Malumbres, “Low-complexity multires-
olution image compression using wavelet lower trees,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
16, no. 11, pp. 1437–1444, 2006.

[68] C. T. Calafate, P. Manzoni, and M. P. Malumbres, “Speeding
up the evaluation of multimedia streaming applications in
MANETs using HMMs,” in Proceedings of the 7th ACM Sym-
posium on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (ACMMSWiM ’04), pp. 315–322, October 2004.

[69] “Specific requirements Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) specifications:
Amendment 8: Medium Access Control (MAC) Quality of
Service Enhancements,” IEEE 802.11 WG. 802.11e, 2005.

[70] C. T. Calafate, M. P. Malumbres, and P. Manzoni, “Perfor-
mance of H.264 compressed video streams over 802.11b based
MANETs,” in Proceedingsof the 24th International Conference on
Distributed Computing Systems Workshops (ICDCSW ’04), vol.
7, pp. 776–781, March 2004.



�



�



Martínez-Rach et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:141
http://asp.eurasipjournals.com/content/2013/1/141

RESEARCH Open Access

Enhancing LTW image encoder with
perceptual coding and GPU-optimized
2D-DWT transform
Miguel O Martínez-Rach*, Otoniel López-Granado, Vicente Galiano, Hector Migallón, Jesús Llor

and Manuel P Malumbres

Abstract

When optimizing a wavelet image coder, the two main targets are to (1) improve its rate-distortion (R/D) performance

and (2) reduce the coding times. In general, the encoding engine is mainly responsible for achieving R/D performance.

It is usually more complex than the decoding part. A large number of works about R/D or complexity optimizations

can be found, but only a few tackle the problem of increasing R/D performance while reducing the computational

cost at the same time, like Kakadu, an optimized version of JPEG2000. In this work we propose an optimization of the

E_LTW encoder with the aim to increase its R/D performance through perceptual encoding techniques and reduce

the encoding time by means of a graphics processing unit-optimized version of the two-dimensional discrete wavelet

transform. The results show that in both performance dimensions, our enhanced encoder achieves good results

comparedwith Kakadu and SPIHT encoders, achieving speedups of 6 times with respect to the original E_LTW encoder.

Keywords: Wavelet image coding; Perceptual coding; Contrast sensitivity function; GPU optimization

1 Introduction
Wavelet transforms have been reported to have good

performance for image compression; therefore, many

state-of-the-art image codecs, including the JPEG2000

image coding standard, use the discrete wavelet trans-

form (DWT) [1,2]. The use of wavelet coefficient trees and

successive approximations was introduced by the embed-

ded zerotree wavelet (EZW) algorithm [3] with a bitplane

coding approximation. SPIHT [2], an advanced version of

EZW, processes the wavelet coefficient trees in a more

efficient way by partitioning the coefficients depend-

ing on their significance. Both EZW and SPIHT need

the coefficient tree construction to search for significant

coefficients through a multiple iterative process at each

bitplane, which involves high computational complexity.

Bitplane coding is implemented by the JPEG2000

encoding codeblocks with three passes per plane, so the

most important information, from a rate-distortion (R/D)

point of view, is first encoded. It also uses an optional

*Correspondence: mmrach@umh.es

Physics and Computer Architecture Department, Miguel Hernández

University, Elche 03202, Spain

and low-complexity post-compression optimization algo-

rithm, based on the Lagrange multiplier method. Besides,

it uses a large number of contexts for the arithmetic

encoder. This post-compression rate-distortion optimiza-

tion algorithm selects the most important coefficients by

weighting them, based on the mean square error (MSE)

distortion measurement.

Wavelet-based image processing systems are typically

implemented with memory-intensive algorithms and with

higher execution time than other encoders based on

other transforms like discrete cosine transform. In usual

two-dimensional (2D)-DWT implementations [4], image

decomposition is computed by means of a convolution

filtering process, and so its complexity rises as the filter

length does. The image is transformed at every decom-

position level, first column by column and then row by

row.

In [5], the authors proposed the E_LTW codec with

sign coding, precise rate-control, and some optimizations

to avoid bitplane processing, at the cost of not being

embedded, but with low memory requirements and simi-

lar R/D performance than the one obtained by embedded

encoders like JPEG2000 and SPIHT.

© 2013 Martínez-Rach et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative

Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly cited.
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Part II of the JPEG2000 standard includes visual pro-

gressive weighting [6] and visual masking by setting the

weights based on the human visual system (HVS) using

contrast sensitivity function (CSF). Many other image

encoders have included much of the knowledge of the

human visual system in order to obtain a better percep-

tual quality of the compressed images. The most widely

used characteristic is the contrast adaptability of the HVS,

because HVS is more sensitive to contrast than to abso-

lute luminance [7]. The CSF relates the spatial frequency

with the contrast sensitivity.

This perceptual coding will improve the perceptual

quality of the reconstructed images, so that for a desired

rate range, a better perceptual R/D behavior is achieved.

Although most studies employ the peak signal-to-noise

ratio (PSNR) metric to measure image quality perfor-

mance, it is well known that this metric does not always

capture the distortion perceived by the human being.

Therefore, we decided to use objective quality assessment

metrics whose design is inspired by the HVS, since our

proposal includes perceptual-based encoding techniques

that may not be properly evaluated by the PSNR metric.

In this work, we propose the PE_LTW (perceptually

enhanced LTW) as an enhanced version of the E_LTW

encoder by including perceptual coding based on the CSF

and the use of graphics processing unit (GPU)-optimized

2D-DWT algorithms based on the methods described in

[4,8].

After improving the perceptual R/D behavior of our pro-

posal, we proceed to optimize the 2D-DWT transform

module by GPU processing to reduce the overall encod-

ing time. From previous work, we have defined a CUDA

implementation of the 2D-DWT transform that is able to

considerably reduce the 2D-DWT computation time.

So as to test the behavior of our proposal, we have com-

pared the performance of our PE_LTW encoder in terms

of perceptual quality and encoding delays with the Kakadu

implementation of the JPEG2000 standard, with and with-

out enabling its perceptual weighting mode, and with the

SPIHT image encoder.

2 Encoding system
2.1 Encoder

The basic idea of this encoder is very simple: after comput-

ing the 2D-DWT transform of an image, the perceptually

weighted wavelet coefficients are uniformly quantized and

then encoded with arithmetic coding.

As mentioned, the 2D-DWT computation stage runs on

a GPU and includes the perceptual weighting based on

the CSF and implemented as an invariant scaling factor

weighting (ISFW) [9] that weights the obtained coeffi-

cients depending on the importance that the frequency

subband has for theHVS contrast sensitivity.We detail the

CSF and the ISFW later in the next sections.

The uniform quantization of the perceptually weighted

coefficients is performed by means of two strategies: one

coarser and another finer. The finer one consists of apply-

ing a scalar uniform quantization (Q) to the coefficients.

The coarser one is based on removing the least significant

bitplanes (rplanes) from coefficients.

For the coding stage, if the absolute value of a coef-

ficient and all its descendants (considering the classic

quad-tree structure from [2]) is lower than a threshold

value (2rplanes), the entire tree is encoded with a single

symbol, which we call LOWER symbol (indicating that all

the coefficients in the tree are lower than 2rplanes and so

they form a lower tree). However, if a coefficient is lower

than the threshold and not all its descendants are lower

than it, that coefficient is encoded with an ISOLATED

LOWER symbol. On the other hand, for each wavelet

coefficient higher than 2rplanes, we encode a symbol indi-

cating the number of bits needed to represent that coeffi-

cient, along with a binary-coded representation of its bits

and sign (note that the rplanes less significant bits are not
encoded).

The encoder exploits the sign neighborhood correla-

tion of wavelet subband type (HL,LH,HH) as Deever and

Hemami assessed in [10] by encoding the prediction of the

sign (success of failure).

The proposed encoder also includes the rate control

algorithm presented in [11] but taking into account the

sign coding and the intrinsic error model of the rate con-

trol. As the rate control underestimates the target rate, the

required bits to match the target bitrate are added to the

bitstream. The selected bits correspond to the bitplanes

(lower or equal to the rplanes quantization parameter) of

significant coefficients added to the output bitstream fol-

lowing a particular order, from low-frequency subbands

to the highest one.

More details about the coding and decoding algorithms,

along with a formal description and an example of use, can

be found in [5,12].

2.2 The contrast sensitivity function

In [9], the authors explained how the sensitivity to con-

trast of the HVS can be exploited by means of the CSF

curve to enhance the perceptual or subjective quality of

the DWT-encoded images. A comprehensive review of

HVS models for quality assessment/image compression

is found in [7]. Most of these models take into account

the varying sensitivity over spatial frequency, color, and

the inhibiting effects of strong local contrasts or activity,

called masking.

Complex HVS models implement each of these low-

level visual effects as a separate stage. Then the overall

model consists of the successive processing of each stage.

One of the initial HVS stages is the visual sensitivity as a

function of spatial frequency that is described by the CSF.
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Figure 1 Contrast sensitivity function.

A closed-form model of the CSF for luminance images

[13] is given by

H( f ) = 2.6(0.0192 + 0.114 f )e−(0.114 f )1.1 (1)

where spatial frequency is f = ( f 2x + f 2y )1/2 with units

of cycles/degree ( fx and fy are the horizontal and vertical

spatial frequencies, respectively). The frequency is usually

measured in cycles per optical degree, which makes the

CSF independent of the viewing distance.

Figure 1 depicts the CSF curve obtained with

Equation 1, and it characterizes luminance sensitivity as

a function of normalized spatial frequency (CSF =
1/Contrast threshold). As shown, CSF is a band-pass

filter, which is most sensitive to normalized spatial fre-

quencies between 0.025 and 0.125 and less sensitive to

very low and very high frequencies. The reason why we

cannot distinguish patterns with high frequencies is the

limited number of photoreceptors in our eyes. CSF curves

exist for chrominance as well. However, unlike luminance

stimuli, human sensitivity to chrominance stimuli is

relatively uniform across spatial frequency.

One of the first works that demonstrate that the MSE

cannot reliably predict the difference of the perceived

quality of two images can be found in [13]. They propose,

by way of psychovisual experiments, the aforementioned

model of the CSF, which is well suited and widely used

[6,14-16] for wavelet-based codecs; therefore, we adopt

this model.

2.3 Using the CSF

In [9], the authors explained how the CSF can be imple-

mented in wavelet-based codecs. Some codecs, like the

JPEG2000 standard Part II, introduce the CSF as a visual

progressive single factor weighting, replacing the MSE by

the CSF-weighted MSE (WMSE) and optimizing system

parameters to minimize WMSE for a given bitrate. This

is done in the post-compression rate-distortion optimiza-

tion algorithm where the WMSE replaces the MSE as

the cost function which drives the formation of quality

layers [6].

CSF weights can be obtained also by applying to each

frequency subband the appropriate contrast detection

threshold. In [15], subjective experiments were performed

to obtain a model that expresses the threshold DWT

noise as a function of spatial frequency. Using this model,

the authors obtained a perceptually lossless quantization

matrix for the linear phase 9/7 DWT. By the use of

this quantization matrix, each subband is quantized by a

value that weights the overall resulting quantized image

at the threshold of artifacts visibility. For suprathreshold

quantization, a uniform quantization stage is afterward

performed.

However, we introduce the CSF in the encoder using

the ISFW strategy proposed also in [9]. So from the CSF

curve, we obtain the weights for scaling the wavelet coeffi-

cients. This weighting can be introduced after the wavelet

filtering stage and before the uniform quantization stage

Table 1 Proposed CSF weightingmatrix

LL LH HH HL

L1 1.0 1.1795 1.0000 1.7873

L2 1.0 3.4678 2.4457 4.8524

L3 1.0 6.2038 5.5841 6.4957

L4 1.0 6.4177 6.4964 6.1187

L5 1.0 5.1014 5.5254 4.5678

L6 1.0 3.5546 3.9300 3.1580
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Figure 2 Shared memory for the Daubechies 9/7 filter. (a) Shared memory for the row filter. (b) Shared memory for the column filter.

is applied. The weighting is a simple multiplication of

the wavelet coefficients in each frequency subband by the

corresponding weight. At the decoder, the inverse of this

weight is applied. The CSF weights do not need to be

explicitly transmitted to the decoder. This stage is inde-

pendent to the other encoder modules (wavelet filtering,

quantization, etc).

The granularity of the correspondence between

frequency and weighting value is a key issue. As

wavelet-based codecs obtain a multiresolution signal

decomposition, the easiest association is to find a unique

weighting value (or contrast detection threshold) for each

wavelet frequency subband. If further decompositions

of the frequency domain are done, for example, a finer

association could be done between frequency and weights

using packet wavelets [17].

We perform the ISFW implementation based on [18]

but increasing the granularity at the subband level. This

is done in the wavelet transform stage of the PE-LTW

encoder multiplying each coefficient in a wavelet sub-

band by its corresponding weighting factor. In spite of the

fact that CSF (Equation 1) is independent of the view-

ing distance, in order to introduce it as a scaling factor,

the resolution and the viewing distance must be fixed.

Although an observer can look at the images from any

distance, as stated in [9], the assumption of ‘worst case
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Table 2 GPU vs. SEQ PE_LTW speedup and total encoding time comparison with SPIHT and Kakadu

Rates PE_LTW SPIHT Kakadu

(bpp) SEQ-DWT GPU-DWT Rate & Coder T.SEQ T.GPU Speedup Total Total

Lena 1.00 17.08 0.85 31.80 48.88 32.65 1.50 93.04 13.00

0.5 17.23 0.86 16.15 33.38 17.01 1.96 185.74 9.00

0.25 17.17 0.86 10.39 27.56 11.25 2.45 198.64 8.00

0.125 17.57 0.88 7.73 25.30 8.61 2.94 220.15 7.00

Barbara 1.00 17.89 0.89 27.26 45.15 28.16 1.60 77.80 15.00

0.5 17.42 0.87 17.04 34.46 17.91 1.92 72.37 9.00

0.25 17.45 0.87 11.53 28.98 12.40 2.34 42.59 8.00

0.125 17.49 0.87 8.38 25.87 9.25 2.79 35.04 7.00

Goldhill 1.00 17.61 0.88 30.62 48.23 31.50 1.53 99.46 12.00

0.5 18.13 0.91 18.21 36.34 19.12 1.90 52.72 24.00

0.25 17.30 0.86 11.51 28.81 12.38 2.33 45.51 8.00

0.125 17.42 0.87 7.97 25.39 8.84 2.87 28.86 7.00

Boat 1.00 17.02 0.85 27.44 44.46 28.29 1.57 79.05 11.00

0.5 17.35 0.87 17.13 34.49 18.00 1.92 51.22 9.00

0.25 17.03 0.85 11.35 28.37 12.20 2.33 41.98 7.00

0.125 17.13 0.86 7.95 25.07 8.80 2.85 59.12 8.00

Mandrill 1.00 17.99 0.90 32.85 50.84 33.75 1.51 94.06 19.00

0.5 17.89 0.89 19.98 37.87 20.87 1.81 51.86 11.00

0.25 17.59 0.88 13.11 30.69 13.99 2.19 40.83 8.00

0.125 17.87 0.89 8.59 26.46 9.48 2.79 47.26 8.00

Balloon 1.00 16.89 0.84 26.86 43.75 27.71 1.58 104.25 12.00

0.5 17.27 0.86 16.39 33.67 17.26 1.95 45.25 9.00

0.25 16.89 0.84 10.92 27.81 11.77 2.36 36.91 8.00

0.125 16.89 0.84 8.06 24.95 8.90 2.80 29.03 7.00

Horse 1.00 17.60 0.88 31.81 49.42 32.69 1.51 86.45 13.00

0.5 17.34 0.87 18.49 35.83 19.36 1.85 56.35 9.00

0.25 17.33 0.87 11.38 28.71 12.25 2.34 36.74 9.00

0.125 17.55 0.88 8.25 25.80 9.12 2.83 43.10 8.00

Zelda 1.00 17.11 0.86 35.36 52.48 36.22 1.45 57.56 11.00

0.5 17.08 0.85 16.58 33.65 17.43 1.93 34.68 9.00

0.25 17.39 0.87 10.48 27.87 11.35 2.46 25.36 8.00

0.125 17.25 0.86 7.40 24.65 8.26 2.98 26.44 7.00

Cafe 1.00 419.10 20.95 521.75 940.85 542.71 1.73 719.54 197.00

0.5 418.50 20.92 325.41 743.91 346.34 2.15 1,854.99 129.00

0.25 418.97 20.95 217.20 636.17 238.15 2.67 1,104.76 105.00

0.125 418.73 20.94 150.93 569.66 171.86 3.31 733.09 90.00

Bike 1.00 412.87 20.64 508.61 921.48 529.26 1.74 1265.46 171.00

0.5 413.13 20.66 296.34 709.47 317.00 2.24 1867.98 121.00

0.25 415.15 20.76 191.44 606.59 212.20 2.86 943.82 101.00

0.125 414.18 20.71 134.58 548.76 155.29 3.53 762.22 88.00

Woman 1.00 414.49 20.72 527.83 942.31 548.55 1.72 819.65 169.00

0.5 414.12 20.71 321.25 735.36 341.95 2.15 1,528.94 137.00

0.25 418.81 20.94 215.76 634.57 236.70 2.68 913.84 95.00

0.125 417.78 20.89 151.65 569.43 172.54 3.30 699.80 89.00
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viewing conditions’ can produce CSF weighting factors

that work properly for all different viewing distances and

media resolutions. So after fixing viewing conditions, we

obtain the weighting matrix, presented in Table 1. For

each wavelet decomposition level and frequency orien-

tation, the weights are directly obtained from the CSF

curve, by normalizing the corresponding values so that the

most perceptually important frequencies are scaled with

higher values, while the less important are preserved. This

scaling process augments the magnitude of all wavelet

coefficients, except for those in the LL subband that are

neither scaled nor quantized in our coding algorithm. Our

tests reveal that, thanks to the weighting process, the uni-

form quantization stage preserves a very good balance

between bitrate and perceptual quality in all the quanti-

zation range, from under-threshold (perceptually lossless)

to suprathreshold quantization (lossy).

2.4 GPU 2D-DWT optimization

In order to develop the 2D-DWT-optimized version, we

will use an NVIDIA GTX 280 GPU that contains 30 mul-

tiprocessors with eight cores in each multiprocessor, 1 GB

of global memory, and 16 kB of shared memory (SM) by

block.

Firstly, we will define our GPU-based 2D-DWT algo-

rithm, named as CUDA Conv 9/7, as the reference algo-

rithm. It will only use the GPU shared memory space

to store the buffer that will contain a copy of the work-

ing row/column data. The constant memory space is

used to store the filter taps. We call each CUDA ker-

nel with a one-dimensional number of thread blocks,

NBLOCKS, and a one-dimensional number of threads by

block, NTHREADS.

In the horizontal DWT filtering process, each image

row is stored in the threads shared memory. After that, in

the vertical filtering, each column is processed in the same

way. The row or column size determines the NBLOCKS

parameter, which must be greater or equal to the image

width in the horizontal step or the image height in the ver-

tical step. One of the goals in the proposed CUDA-based

methods is not to increase memory requirements, so we

will store the resulting wavelet coefficients in the original

image memory space.

For computing the DWT, the threads use the shared

memory space, where latency access is extremely low. The

CUDA-Sep 9/7 algorithm stores the original image in the

GPU global memory but computes the filtering steps from

the shared memory.

Execution in the GPU is composed by threads grouped

in a number of 32 threads called warp. Each warp must

load a block of the image from the global memory into

a shared memory array with BLOCKSIZE pixels. As it

can be seen in Figure 2, the number of thread blocks,

NBLOCKS, or tiles depends on BLOCKSIZE and image

dimensions. Moreover, pixels located in the border of the

block also need neighbor pixels from other blocks to com-

pute the convolution. These regions are called apron and

are shadowed in the last row and column of Figure 2a, b.

The size of the apron region depends on the filter radius

(the filter radius being the half of the filter lengthminus 1).

In both figure panels, the values of the filter radius and the

filter length corresponding to the Daubechies 9/7 filter are

presented.

We can reduce the number of idle threads by reducing

the total number of threads per block and also using each

thread to load multiple pixels into the shared memory.

This ensures that all threads of each warp are active during

the computation stage. Note that the number of threads in

a block must be a multiple of the warp size (32 threads on

GTX 280) for optimal efficiency.

To achieve higher efficiency and higher memory

throughput, the GPU attempts to coalesce accesses from

multiple threads into a single memory transaction. If all

threads within a warp (32 threads) simultaneously read

consecutive words, then a single large read of the 32 values

can be performed at optimum speed. In the CUDA-Sep

Table 3 Speedup comparison by target bitrate

Rates PE_LTWmean times SPIHT Kakadu Speedup comparison

(bpp) T.GPU Total Total vs. SPIHT vs. Kakadu

512 × 512 1 31.4 86.5 13.3 2.76 0.42

0.5 18.4 68.8 11.1 3.74 0.61

0.25 12.2 58.6 8.0 4.80 0.66

0.125 8.9 61.1 7.4 6.86 0.83

2, 048 × 2, 560 1 540.2 934.9 179.0 1.73 0.33

0.5 335.1 1,750.6 129.0 5.22 0.38

0.25 229.0 987.5 100.3 4.31 0.44

0.125 166.6 731.7 89.0 4.39 0.53
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Figure 3 PSNR R/D comparison of the Woman image encoded

with PE_LTW, SPIHT, and Kakadu. Rates are in bits per pixel.

9/7 algorithm, the convolution process is separated in two

stages:

1. The row filtering stage
2. The column filtering stage

Each row/column filtering stage is separated into two

substages: (a) the threads load a block of pixels of one

row/column from the global memory into the shared

memory, and (b) each thread computes the filter over the

data stored in the shared memory and the result is sent to

the global memory. For the column filtering, the resulting

coefficient is stored in the global memory after perform-

ing the perceptual weighting, i.e., multiplying the final

coefficient by the perceptual weight corresponding to the

wavelet subband of the coefficient.

In the row or column filtering, the pixels located in the

image block borders also need adjacent pixels from other

thread blocks to compute the DWT. The apron region

must also be loaded in the shared memory, but only for

reading purposes, because the filtered value of the pixels

located there is computed by other thread blocks.

The speedup achieved by the DWT GPU-based algo-

rithm is up to 20 times relative to the sequential imple-

mentation in one core. Note that wavelet transform is only

a single first step in an image/video encoder.

3 Performance evaluation
All evaluated encoders have been tested on an Intel Pen-

tium Core 2 CPU at 1.8 GHz with 6 GB of RAMmemory.

We use an NVIDIA GTX 280 GPU that contains 30 mul-

tiprocessors with eight cores in each multiprocessor, 1 GB

of global memory, and 16 kB of shared memory by block

(or SM).

The proposed encoder is compared with Kakadu 5.2.5

and SPIHT (Sphit 8.01) encoders with two sets of test

images: (a) a 512 × 512 image resolution set including

(a)

(b)

(c)

Figure 4 Subjective comparison of the Woman image encoded

at 0.25 bpp. (a) SPIHT (PSNR = 29.95 dB). (b) Kakadu
(PSNR = 30.01 dB). (c) PE_LTW (PSNR = 29.11 dB).



Martínez-Rach et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:141 Page 8 of 10
http://asp.eurasipjournals.com/content/2013/1/141

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3

V
IF

 v
al

u
es

Rate (bpp)

SPIHT
Kakadu
PE_LTW
Kakadu_csf

(a)

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3

V
IF

 v
al

u
es

Rate (bpp)

SPIHT
Kakadu
PE_LTW
Kakadu_csf

(b)

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3

V
IF

 v
al

u
es

Rate (bpp)

SPIHT
Kakadu
PE_LTW
Kakadu_csf

(c)

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 1,1 1,2 1,3

V
IF

 v
al

u
es

Rate (bpp)

SPIHT
KKDU
PE_LTW
KKDU_CSF

(d)

Figure 5 VIF R/D comparisons for different images from the test

set. (a) Lena. (b) Barbara. (c) Zelda. (d)Woman.

Lena, Barbara, Balloon, Horse, Goldhill, Boat, Mandrill,

and Zelda, and (b) a 2, 048 × 2, 560 image resolution

set including Cafe, Bike, and Woman. When comparing

with Kakadu, we perform two comparisons: one labeled

as Kakadu_csf, which has enabled its perceptual weight-

ing mode (with the perceptual weights presented in [6]),

and the other one, labeled as Kakadu, without perceptual

weights.

First, we analyze the speedup of the GPU-based encoder

using 2D-DWT described in the previous section with

respect to the traditional convolution algorithm running

in a single core processor.

In Table 2, we show for each test image, at different

bitrates, the encoding times for SPIHT, Kakadu, and our

proposal in milliseconds. The first six columns are related

to our proposal: The SEQ-DWT column shows the time

required by the DWT when running on a single core. The

GPU-DWT column shows the time of the CUDA-Sep 9/7

DWT version when running on GPU. The Rate & Coder
column shows the time required by the rate control and

the encoding stage, this time being common for both the

sequential and GPU 2D-DWT versions. The T.SEQ col-

umn shows the total time for the sequential version and

the T.GPU the total time for the GPU version. Finally, the

Speedup column shows the speedup of the GPU version

compared to the sequential version. The last two columns

are the total execution time, also in milliseconds, for the

other encoders, SPIHT and Kakadu.

When the target bitrate is low, i.e., high compression

rate, the uniform quantization of the wavelet coefficients

produces a great number of nonsignificant coefficients in

low decomposition levels, the root of the zero tree being

located at higher decomposition levels. This fact reduces

the computation cost because only the root of a zero

tree needs to be encoded. As a consequence, the over-

all number of operations is reduced and the gain of GPU

optimized version is reduced too.

Table 3 shows the comparison of the average execu-

tion times (milliseconds) of each image in the test set

at different compression rates. The PE_LTW is faster

than SPIHT regardless of the target rate for any image

size. However, the Kakadu encoder is still faster than the

PE_LTW. Although the PE_LTW runs its DWT stage

over the GPU, it is the only optimized stage in the whole

encoder. By contrast, all encoding stages in the Kakadu

5.2.5 are fully optimized. Besides the use of multithread

and multicore hardware capabilities, Kakadu uses pro-

cessor intrinsics capabilities like MMX/SSE/SSE2/SIMD

and uses a very fast multicomponent transform, i.e., block

transform, which is well suited for parallelization.

4 R/D evaluation
For evaluating image encoders, the most common per-

formance metric is the well-known R/D, the trade-off
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between encoder bitrate (bpp) and the reconstructed

quality typically measured in decibels through the PSNR

of luminance color plane. However, it is also well known

that the PSNR quality measurement is not close to the

human perception of quality and sometimes it gives wrong

quality scores, leading to erroneous conclusions when

evaluating different encoding strategies.

Figure 3 shows the R/D comparison of the Woman

(2, 048 × 2, 560) image compressed with the PE_LTW

encoder, SPIHT, Kakadu, and Kadadu_csf, using PSNR as

quality metric. A misleading conclusion after looking at

R/D curves for the PE_LTW and Kakadu_csf is that the

encoding strategy of those proposals are inappropriate,

since their quality results are always lower than those of

the other encoders, specially at high bitrates.

There are several studies about the convenience of

using other image quality assessment metrics than PSNR

that better fit to human perceptual quality assessment

(i.e., subjective test results) [14,17,19,20]. One of the best

behaving objective quality assessment metrics is visual

information fidelity (VIF) [7], which has been proven

[17,19] to have a better correlation with subjective per-

ception than other metrics that are commonly used for

encoder comparisons [14,20]. The VIF metric uses statis-

tic models of natural scenes in conjunction with distortion

models in order to quantify the statistical information

shared between the test and reference images.

As an example of how measuring the perceptual quality

of images with PSNR is misleading, we show in Figure 4

a subjective comparison of the three encoders with a

cropped region of the Woman test image compressed

at 0.25 bpp. In this case the third image, encoded with

PE_LTW, seems to have better subjective quality than

the other two. This observation contradicts the conclu-

sion obtained from Figure 3 that suggests that at this rate

PE_LTW is worse than SPIHT and Kakadu. The same

behavior can be observed as well with the other test

images. So it is better not to trust on how PNSR ranks

quality and use instead a perceptually inspired quality

assessment metric like VIF that, as stated in [17,19], has

a better correlation with the human perception of image

quality.

So we will use the VIF metric in our R/D compar-

isons. Figure 5 shows some of the R/D results for some

test images. As shown, the PE_LTW encoder can achieve

higher compression rates while maintaining the same per-

ceptual quality than the other encoders, i.e., a bitrate

saving is obtained while using the PE_LTW instead of

Kakadu or SPIHT at a desired quality.

Table 4 shows the rate savings obtained with PE_LTW

vs. Kakadu, SPIHT, and Kakadu_csf. The VIF interval

varies from 0.1 to 0.95 VIF quality units, 0.1 being the

worst quality. This table groups the results by image reso-

lution. Results are expressed as percentages of saved rate

in the aforementioned VIF interval.

5 Conclusions
We have presented a perceptual image wavelet encoder

whose 2D-DWT stage is implemented using CUDA

running on a GPU. Our proposed perceptual encoder

reveals the importance of exploiting the contrast sensitiv-

ity function behavior of the HVS by means of an accurate

Table 4 Rate savings of PE_LTW vs. Kakadu, SPIHT, and Kakadu with perceptual weightsKakadu_csf
P_ELTW vs. Kakadu vs. SPIHT vs. Kakadu_csf

images (% rate saved, mean) (% rate saved, mean) (% rate saved, mean)

512 × 512

Lena 13.87 16.83 5.23

Barbara 11.39 17.44 −2.61

Goldhill 7.76 13.07 0.09

Boat 8.58 12.02 0.47

Mandrill 19.13 22.01 3.08

Balloon 10.45 10.75 2.16

Horse 14.96 14.91 3.74

Zelda 17.22 20.43 8.46

Mean 512 × 512 12.92 15.93 2.58

2, 048 × 2, 560

Cafe 9.63 12.34 1.43

Bike 9.24 15.57 −0.80

Woman 5.21 11.46 3.75

Mean 2, 048 × 2, 560 8.03 13.12 1.46
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perceptual weighting of wavelet coefficients. PE_LTW is

very competitive in terms of perceptual quality, being able

to obtain important bitrate savings regardless of the image

resolution and at any bitrate when compared with SPIHT

and Kakadu with and without its perceptual weighting

mode enabled. The PE_LTW encoder is able to produce

a quality-equivalent image with respect to the other two

encoders with a reduced rate.

As the 2D-DWT transform runs on a GPU, the overall

encoding time is highly reduced compared to the sequen-

tial version of the same encoder, obtaining maximum

speedups of 6.86 for 512×512 images and 4.39 for 2, 048×
2, 560 images. Compared with SPIHT and Kakadu, our

proposal is clearly faster than SPIHT but needs additional

optimizations to outperform Kakadu times.
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