
Universidad Miguel Herńandez de Elche

Departamento de Ciencia de Materiales,Óptica y Tecnoloǵıa
Electŕonica

Design and implementation of FPGA-based
video encoding accelerators

PhD Thesis

A dissertation for the degree
of Doctor in Industrial and Telecommunication

Technologies by:
Estefańıa F́atima Alcocer Espinosa

Advisors:
Otoniel Mario Ĺopez Granado

Roberto Gutíerrez Maźon

Universidad Miguel Herńandez de Elche

Departamento de Ciencia de Materiales,Óptica y Tecnoloǵıa
Electŕonica

Design and implementation of FPGA-based
video encoding accelerators

Tesis Doctoral

Memoria presentada para optar al grado de Doctora en
Tecnologı́as Industriales y de Telecomunicación por:

Estefańıa F́atima Alcocer Espinosa

Dirigida por:
Otoniel Mario Ĺopez Granado

Roberto Gutíerrez Maźon

D. OTONIEL MARIO LÓPEZ GRANADO, Profesor Contratado Doctor
de la Universidad Miguel Herńandez de Elche y D. ROBERTO GUTIÉRREZ
MAZÓN, Profesor Contratado Doctor de la Universidad Miguel Hernández de
Elche,

CERTIFICAN:

Que la presente memoriaDesign and implementation of FPGA-based video
encoding accelerators, ha sido realizada bajo su dirección, en el Departamento
de Ciencia de Materiales,́Optica y Tecnoloǵıa Electŕonica de la Universidad
Miguel Herńandez de Elche, por la Ingeniera Dña. Estefańıa F́atima Alcocer
Espinosa, y constituye su tesis para optar al grado de Doctora.

Para que conste, en cumplimiento de la legislación vigente, autorizan la
presentacíon de la referida tesis doctoral ante la Comisión de Doctorado de la
Universidad Miguel Herńandez de Elche, firmando el presente certificado.

Elche, 12 de Junio de 2017

Fdo. D. Otoniel M. Ĺopez Granado Fdo. D. Roberto Gutiérrez Maźon

D. PIEDAD NIEVES DE AZA MOYA, Catedŕatica de Universidad y
directora del Departamento de Ciencia de Materiales,Óptica y Tecnoloǵıa
Electŕonica de la Universidad Miguel Hernández de Elche,

CERTIFICA:

Que la presente memoriaDesign and implementation of FPGA-based
video encoding accelerators, realizada bajo la dirección de D. OTONIEL
MARIO LÓPEZ GRANADO y D. ROBERTO GUTÍERREZ MAZÓN, en el
Departamento de Ciencia de Materiales,Óptica y Tecnoloǵıa Electŕonica de la
Universidad Miguel Herńandez de Elche, por la Ingeniera Dña. Estefańıa
Fátima Alcocer Espinosa, constituye su tesis para optar al grado de Doctora.

Para que conste, en cumplimiento de la legislación vigente, autoriza la
presentacíon de la referida tesis doctoral ante la Comisión de Doctorado de la
Universidad Miguel Herńandez de Elche, firmando el presente certificado.

Elche, 12 de Junio de 2017

Fdo. D. Piedad Nieves De Aza Moya

Acknowledgements

“Los dioses se han marchado, nos queda la televisión”.
Manuel Vázquez Montalbán

A mis personas favoritas en el mundo.

Gracias a mi familia. A mis padres, hermana y abuelos por ser los
impulsores de todos mis sueños, donantes de inspiración. A Andŕes por ser mi
mitad y estar incondicionalmente a mi lado cuando más lo he necesitado. Sois
mis personas favoritas en el mundo. Esto es por y para vosotros.

Gracias a mis directores de tesis. A Otoniel y Roberto porque nunca me
han dejado sola durante este proceso, porque me han animado, ayudadoy
aguantado, y sobre todo, porque han demostrado ser mis amigos. También sois
mis preferidos, no os cambiarı́a nunca.

Gracias a mis compañeros de GATCom. Al boss Mels, Pablo, Miguel,
Héctor, Vicente y Oto again, por tratarme desde el primer dı́a como una ḿas,
por las comilonas, partidas y risas que hemos compartido, porque os habéis
convertido en unos amigos auténticos. Porque sois como de mi familia,
concretamente como mis tı́os, y a la familia hay que quererla.

Gracias a los compañeros de la Universidad de Gent que me acogieron con
los brazos abiertos. A Jan, Glenn, Ruben, Niels, Tom y Johan por ser tan
amables durante mi estancia.

Gracias a todos los que han escuchado la palabra tesis salir de mi boca,
aunque fuera por un segundo. A mis tı́os, amigas y medio Bigastro.

Mil gracias.

I

II

Abstract

Nowadays, having the latest image and video gadgets is trendy. Commercially,
high performance multimedia devices are offered and/or demanded
increasingly, such as very high-resolution TVs with high quality of image
(Ultra High Definition (UHD)), video cameras that capture at very high frame
rates, etc. Every day, millions of “selfies”, “gifs”, “boomerangs”’ are
immediately uploaded to social networks such as Instagram, Facebook or
Twitter, and even we broadcast live our experiences with applications such as
PeriScope. We are also spectators in first person of the most extreme sports
which are recorded with Go-Pro cameras or similar. This is the reason why,in
the field of image and video, many innovations and improvements will
continue to be brought about due to the trend of high consumption on
commercial multimedia devices.

Although nowadays we can find devices capable of reproducing and
capturing very high resolution videos at high frame rates, this involves higher
complexity in video data processing. Videos with previous requirements
contain such a high amount of data that entails some problems such as the
difficulty for video transmition in real time, the need for a large bandwidth that
is almost unacceptable, the limited memory storage, and high power
consumption, among others.

In order to overcome the above limitations, different coding standards have
been developed over the years, trying to adapt to the market needs on each
moment. As overview, video encoders compress the information so that it can
be stored or transmitted occupying as little space as possible. As an example,
platforms like Netflix use Google’s VP9 compression codec to allow users
download movies and series not needing too much storage space in order to
watch them offline on any device. In order to achieve this compression, it is
taken advantage of the huge redundancy of video sequences in both spatial and
temporal domains. Thus, by removing such redundant information, it is
possible to optimally encode video contents.

Therefore, due to the resource requirements, and the consequent increase in
the complexity, and the processing time, this dissertation investigates the use of
hardware accelerators based on Field Programmable Gate Array (FPGA)s on

III

IV

the most complex parts that require more processing time in the video encoders.
Firstly, a hardware accelerator has been designed for the computation of

the Motion Estimation (ME) of a High Efficiency Video Coding (HEVC)
video encoder. In this case, the work has been focused on the latest video
coding standard HEVC, which achieves the best compression efficiency in
relation with its predecessors. As in previous standards, the removal of
temporal redundancy demands an overwhelming computational cost,
especially in high resolution video sequences. Therefore, the ME block (Inter
prediction) of an encoder is one of the most critical modules in video
compression. Based on this context, our design is based on the
implementation of the ME block of a HEVC encoder on a FPGA, proposing
two new and innovative techniques in both the tree adder for Sum of Absolute
Differences (SAD) computation and the memory reading order. The results
show that using our hardware ME module, a HEVC encoder is capable of
encoding very high resolution video sequences faster than in real time.

Secondly, we present a FPGA-based hardware implementation of a very
simple codec called Module Pulse Code Modulation (MPCM) based on the
elimination of spatial redundancy (Intra prediction). This codec has the same
advantages as Pulse Code Modulation (PCM) coding, reducing considerably
the required bandwidth and maintaining the same image quality. The
experimental results obtained demonstrate that our hardware implementation
allows the continuous recording of a nowadays high-speed camera at a good
quality image resolution.

This dissertation has been done under the modality of presentation of
doctoral thesis with a set of publications, included in the regulations of the
Miguel Herńandez University of Elche. In compliance with these regulations,
the publications that compose this dissertation have been included as an
annex, and the sections corresponding to the research general description, the
overall summary of the results obtained, and the final conclusions have been
developed.

Resumen

Hoy en d́ıa poseer eĺultimo grito en dispositivos de vı́deo e imagen no es nada
sorprendente, de hecho, es la tendencia actual. Comercialmente, los
dispositivos de altas prestaciones como televisores de muy alta resolución con
una gran calidad de imagen o videocamáras que capturan a muy altas tasas de
frames se ofertan y demandan cada vez más. Todos los d́ıas, se realizan
millones de “selfies”, “gifs”, “boomerangs” que son inmediatamente subidos a
redes sociales como Instagram, Facebook o Twitter; incluso transmitimos
nuestra vida en directo con aplicaciones como PeriScope. También somo
espectadores en primera persona de los deportes más extremos que son
grabados en directo con cámaras del tipo Go-Pro. Es por ello, que elámbito de
la imagen y v́ıdeo es un campo con futuro, en el cual cada dı́a se aportan
innumerables innovaciones y mejoras debido al consumo actual de dichos
dispositivos comerciales.

Aunque cada vez es ḿas f́acil encontrar dispositivos capaces de reproducir
y capturar v́ıdeos de muy alta resolución a altas tasas de frame, estas altas
prestaciones suponen una mayor complejidad en los procesos de tratamiento
de v́ıdeo debido a la gran cantidad de datos que contienen. En este contexto,
nos encontramos con varios problemas como son la imposibilidad de transmitir
vı́deo en tiempo real ya que se necesitarı́a un ancho de banda inasumible y la
dificultad de almacenamiento en memoria que siempre es limitada.

Con el fin de superar las limitaciones anteriores, se han desarrollado a lo
largo de los ãnos diferentes estándares de codificación de v́ıdeo que tratan de
adaptarse a las necesidades de cada momento. De manera muy general, los
codificadores de v́ıdeo comprimen la información para que pueda ser
almacenada o transmitida ocupando el mı́nimo espacio posible. Como
ejemplo, plataformas como Netflix utilizan el códec de compresión VP9 de
Google para descargar pelı́culas y series que no ocupen demasiado y poder
visualizarlas offline en cualquier dispositivo. Para conseguir dicha
compresíon, los codificadores aprovechan la alta redundancia de las
secuencias de vı́deo tanto en el dominio espacial como temporal, de manera
que eliminando dicha información redundante, se consigue codificar de
maneráoptima el contenido de vı́deo.

V

VI

Por tanto, debido a la gran cantidad de recursos requeridos y el
consecuente aumento en la complejidad y el tiempo de procesado, en esta tesis
se investiga el uso de aceleradores hardware basados en FPGAs sobre las
partes ḿas complejas y que requieren más tiempo de procesado en los
codificadores de v́ıdeo.

En primer lugar, se ha diseñado un acelerador hardware para el cómputo
de la estimacíon de movimento de un codificador de video HEVC. En este
caso, el trabajo se ha centrado en elúltimo est́andar de codificación de v́ıdeo
HEVC, el cual muestra la mejor eficiencia de compresión respecto a sus
predecesores. Al igual que en estándares anteriores, la eliminación de la
redundancia temporal demanda un coste computacional abrumador,
especialmente en secuencias de video de alta resolución. Por ello, el bloque de
estimacíon de movimiento del codificador (predicción Inter) es uno de los
módulos ḿas cŕıticos en la compresión de v́ıdeo. Partiendo de este contexto,
nuestro disẽno se basa en la implementación de la estimación de movimiento
de un codificador HEVC sobre FPGA, proponiendo dos técnicas novedosas,
tanto en eĺarbol de sumadores para el cálculo de la estimación, como en el
orden de lectura de memoria. Los resultados muestran que utilizando nuestro
módulo hardware de estimación de movimiento, un codificador HEVC es
capaz de codificar secuencias de muy alta resolución a tasas de frame más
altas que las que se requieren a tiempo real.

En segundo lugar, se presenta una implentación hardware sobre FPGA de
un codec muy sencillo llamado MPCM basado en la eliminación de la
redundancia espacial (predicción Intra). Este codec presenta las mismas
ventajas que la codificación PCM, reduciendo considerablemente el ancho de
banda necesario y manteniendo la misma calidad de imagen. Los resultados
experimentales obtenidos demuestran que nuestra implementación hardware
permite la grabación continua a muy buena calidad en cámaras actuales de alta
velocidad.

Esta tesis se ha realizado bajo la modalidad de presentación de tesis
doctorales con un conjunto de publicaciones recogida en la normativa de la
Universidad Miguel Herńandez de Elche. En cumplimiento de dicha
normativa se han incorporado las publicaciones que la componen como anexo
y se han inclúıdo las secciones correspondientes a la descripción general de la
investigacíon, el resumen global de los resultados obtenidos y las conclusiones
finales.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 7
1.3 Articles . 8

1.3.1 Design and implementation of an efficient hardware
integer motion estimator for an HEVC video encoder. 10

1.3.2 MPCM: a hardware coder for super slow motion video
sequences. 13

2 Research results 15
2.1 Materials and methods . 16
2.2 Results . 19

2.2.1 Video coding acceleration 19
2.2.1.1 Prototype implementation 27

2.2.2 Image coding acceleration 32

3 Conclusions and future work 39
3.1 Conclusions and future research lines 40
3.2 Conclusiones y futuras lı́neas de investigación 41
3.3 Other publications . 43

Bibliography 45

I Acronyms 49

II Articles 53

VII

VIII Contents

List of Figures

1.1 Simplified view of a Xilinx logic cell 6
1.2 Architecture of a typical FPGA 7
1.3 CU splitting modes into Prediction Units in inter prediction . . 11
1.4 HEVC quad-tree structure: CUs and Prediction Units relationship 11
1.5 HEVC Prediction Units in a frame 12

2.1 General structure IME architecture 20
2.2 Scan order of the search area 21
2.3 Structure of SAD Tree Block 21
2.4 Pipeline process of the proposed architecture 22
2.5 R/D performance for different CTU and search area sizes for

the RaceHorses sequence . 26
2.6 Top-level hardware architecture 28
2.7 Percentage of software reference encoding time required for

SAD module with a FS strategy. 28
2.8 BD-Rate values with (a) 32x32, and (b) 64x64 CTU sizes . . . 29
2.9 CUs per second processed for each DMA burst size with our

proposed SAD HEVC module 30
2.10 Hardware Processing Time for different DMA burst sizes . . . 31
2.11 Hardware gain (x times) facing software FS and software DS

strategies . 31
2.12 Block diagram of MPCM coding algorithm 32
2.13 Samples inS0 required to predict samples inS1 whenN = 4.

PCM ∈ S0; MPCM1,MPCM2,MPCM3 ∈ S1 33
2.14 PSNR as a function of bitrate using image Tractor encoded with

MPCM and PCM. 35
2.16 Maximum encoded frames per second for different monochro-

matic image resolutions . 37
2.17 Maximum decoder frames per second for different image reso-

lutions . 37

IX

X LIST OF FIGURES

List of Tables

2.1 Video sequences used during the research 17
2.2 Images used during the research 18
2.3 FPGAs Feature Summary . 18
2.4 Throughput for different configurations in Virtex-7 22
2.5 Utilization resources for 64x64 CTU implementation in Virtex-7 23
2.6 Utilization resources for 32x32 CTU implementation in Virtex-7 23
2.7 Comparison of the proposed architecture with state-of-the-art

works . 24
2.8 Time profile of the IME HEVC for a 64x64 CTU with video

sequencesRace Horses(s1), Basketball Drive(s2), andPeople
On Street(s3) . 25

2.9 Time profile of the IME HEVC for a 32x32 CTU with video
sequencesRace Horses(s1), Basketball Drive(s2), andPeople
On Street(s3) . 26

2.10 Average CTU IME time with 2xCTU search area size 27
2.11 PSNR values for all tested images for a given bit-rate 34

XI

XII LIST OF TABLES

Chapter 1

Introduction

Contents
1.1 Motivation . 2

1.2 Objectives . 7

1.3 Articles . 8

1.3.1 Design and implementation of an efficient
hardware integer motion estimator for an HEVC
video encoder. 10

1.3.2 MPCM: a hardware coder for super slow motion
video sequences. 13

1

2 Chapter 1. Introduction

1.1 Motivation

Activities carried out in this dissertation are directly related with the design
of efficient image and video coders. These research activities are motivated
by the interest and impact of the latest new video compression standards to
meet the market multimedia trends, such as very high definition video content
(resolutions 4K and 8K). Therefore, this work has been focused on the FPGA
hardware implementations of image and video coders that are able to operate
at very high-speeds with High Definition (HD) and UHD formats.

A video signal is represented as a sequence of frames of pixels. There
exists a vast amount of redundant information that can be eliminated with
video compression technology so that transmission and storage becomes more
efficient. The similarity among different frames is called temporal redundancy,
whereas the homogeneity inside single frames is know as spatial redundancy.
Most video codecs use both spatial and temporal compression. In orderto
facilitate interoperability between compression at the video producing source
and decompression at the consumption end, several generations of video
coding standards have been defined and adapted. In this way, big companies
use these video coding standards since they can give a significant technical
and commercial edge to a product, by providing better image quality, greater
reliability and/or more flexibility than competing solutions. At the moment,
for low-end applications, software solutions are enough, but for high-end
applications, dedicated hardware solutions are needed. [1]

Taking into account this scenario, the need to design hardware
architectures that accelerate video coding arises in order to alleviate the
computational complexity of current encoders, reaching high frame ratesat
ultra high resolutions. Therefore, now we will explain in a more detailed way,
the most relevant aspects of both video coding and hardware design with
FPGAs.

On the one hand, regarding video coding standards, video coding standards
are mainly developed by two world organizations ISO/IEC MPEG and ITU-T
VCEG [2, 3].

Three of the ITU-T VCEG video coding standards are the following:

• ITU-T H.120 Codecs for videoconferencing using primary digital group
transmission was the first international standard for digital video
compression. It was originally developed in 1984 and substantially revised
in 1988, including such pioneering developments as motion-compensated
inter-frame coding.

1.1. Motivation 3

• ITU-T H.261 Video codec for audiovisual services at p x 64 kbit/s was the
first commercially-successful digital video coding standard, and introduced
the modern architecture of hybrid block-based video coding technology.

• ITU-T H.263 Video coding for low bit rate communicationprovided
substantial improvements for real-time video coding communication, and
was deployed in mobile devices as well as video conferencing systems.

Anothers video coding standards have been developed by ISO/IEC (also
known as MPEG), such as:

• MPEG-1Coding reasonable quality images and sound at low bit rateswas
established in 1992. MPEG-1 can be encoded at bit rates as high as
4-5Mbits/sec, but the strength of MPEG-1 is its high compression ratio with
relatively high quality. MPEG-1 is also used to transmit video over digital
telephone networks. MPEG-1 audio compression is more popularly known
as MP3 and has revolutionized the digital music domain.

• MPEG-2Higher quality images at higher bit rateswas developed in 1994.
MPEG-2 is the standard specified for DVD. The primary users of MPEG-
2 are broadcast and cable companies who demand broadcast quality digital
video and utilize satellite transponders and cable networks for delivery of
cable television and direct broadcast satellite.

• MPEG-4Coding of audio-visual objectswas introduced in 1998. MPEG-4
include compression of Audio and Visual (AV) data for web (streaming
media) and CD distribution, voice (telephone, videophone) and broadcast
television applications. MPEG-4 absorbs many of the features of MPEG-1
and MPEG-2 and other related standards, adding new features such as
extended Virtual Reality Modeling Language (VRML) support for 3D
rendering, object-oriented composite files (including audio, video and
VRML objects), support for externally specified Digital Rights
Management and various types of interactivity. Initially, MPEG-4 was
aimed primarily at low bit-rate video communications; however, its scope as
a multimedia coding standard was later expanded. MPEG-4 is efficient
across a variety of bit-rates ranging from a few kilobits per second to tensof
megabits per second. MPEG-4 provides the following functions: improved
coding efficiency over MPEG-2, ability to encode mixed media data (video,
audio, speech), error resilience to enable robust transmission, and ability to
interact with the audio-visual scene generated at the receiver.

• MPEG-7Multimedia Content Description Interface.MPEG-7 is the latest
proposal in the family of MPEG standards and will be formalized into a

4 Chapter 1. Introduction

standard by September 2000. MPEG-7 will be a standardized description of
various types of multimedia information. MPEG-7 will not replace
MPEG-1, MPEG-2 or MPEG-4. It is intended to provide complementary
functionality to these other MPEG standards, representing information
about the content, not the content itself (the bits about the bits). This
functionality is the standardization of multimedia content descriptions.

Three other video coding have been developed collaboratively by both
ISO/IEC MPEG and ITU-T VCEG:

• ITU-T H.262 — ISO/IEC 13818-2Generic coding of moving pictures and
associated audio information.Video is the result of the development under
the collaborative team of the ITU-T advanced video coding rapporteur group
and MPEG. It ushered in the era of digital television as it is known today.

• ITU-T H.264 — ISO/IEC 14496-10Advanced video coding for generic
audiovisual servicesis the result of the development under the collaborative
team known as the JVT. It has become the dominant video coding
technology world-wide and now accounts for roughly half of all
communication network traffic world-wide (and over 80% of Internet
video).

• ITU-T H.265 — ISO/IEC 23008-2 High efficiency video coding (HEVC)
is the result of the development under the collaborative team known as the
JCT-VC. It is now emerging as a substantial advance over prior designsto
ease pressure on global networks and usher in an era of ultra-high definition
television.

Any codec that is compatible with H.261/263/264/265 or MPEGs (1/2/4)
has to implement a similar set of basic coding and decoding functions
(although there are many differences of detail between the standards and their
actual implementations). The model that these standards have in common, is
often described as a hybrid DPCM/DCT codec.

Hybrid video coding is a scheme used by many videocodecs
(coder-decoder) that includes bothpredictive codingand transform codingin
the compression and decompression processes. A hybrid video coding scheme
consists of several stages. First, it makes use of the temporal or spatial
redundancy present in a video sequence in order topredicta region of a frame,
and this prediction is subtracted from the region that is currently being
encoded. Then the residuum of this subtraction istransformed into the
frequency domain and the resulting coefficients are quantized (lossy
compression). Finally, the quantized coefficients are ordered and entropy
coded.

1.1. Motivation 5

In the encoding process, each frame is divided into small square regions or
blocks. These blocks can be encoded using one of three modes: (a) without
any prediction, (b) using spatial prediction, or (c) using temporal prediction.
Spatial predictionexploits redundancy within a frame. In order to encode a
block, it uses previously encoded regions of the same frame to search for pixel
information that is similar to that block in order to create a candidate. Then, this
candidate is subtracted from the current block and thus we obtain the residuum
of the prediction. This method is also calledintra-frame prediction. The article
MPCM: a hardware coder for super slow motion video sequencesshows the
hardware design of an MPCM encoding that addresses the elimination of spatial
redundancy in an image or frame in an efficient way to achieve very high frame
rates.

Temporal predictionuses previously encoded frames to estimate a block
candidate by means of the search of a similar block in other frames (called
reference frames), which have been previously encoded, decoded, and stored
in a buffer. It exploits temporal redundancy, taking advantage of the fact that
nearby frames usually contain blocks that are very similar to the current block
and so the residuum of the compensation is close to zero. This method is also
called inter-frame prediction. The articleDesign and implementation of an
efficient hardware integer motion estimator for an HEVC video encodershows
the implementation of the HEVC motion estimator block in hardware which
deals with the inter-frame prediction.

On the other hand, we have used FPGA technology, since it encourages
design reuse and can greatly enhance the upgradability of digital systems.A
FPGA is a semiconductor device that can be programmed after manufacture to
perform a specific application design, typically specified as a digital logic
system [4]. They are being used for many real-life applications including
communications, encryption, video image processing, medical imaging,
network security and numerical computations. Specifically, the
programmability of FPGAs is particularly useful for highly flexible encoding
systems that can accommodate a multitude of existing standards as well as the
emergence of new ones.

FPGAs can potentially approach the execution speed of application specific
hardware with the rapid programming time of microprocessors. In recent years,
the size of FPGAs has followed Moore’s law: the number of logic gate doubles
every 18 months. FPGAs can exploit improvements following Moore’s law
better than microprocessors because of their simpler and more regular structure.

The two major FPGA vendors are Altera and Xilinx. The fundamental
building block of Xilinx FPGAs is the logic cell. In current Xilinx FPGA
families, a logic cell comprises a 6-input Look-up table (LUT), two

6 Chapter 1. Introduction

6-input

LUT

A1

A2

A4

A3

A6

A5 O6

O5

Cin

Cout

AX

S

SQ

SMUX

XORCY

MUXCY

F.F D

type

F.F D

type

Figure 1.1. Simplified view of a Xilinx logic cell

multiplexers, and two registers. LUTs can be configured as either one 6-input
LUT (64-bit Read Only Memorys (ROMs)) with one output, or as two 5-input
LUTs (32-bit ROMs) with separate outputs but common addresses or logic
inputs. Each LUT output can optionally be registered in a flip-flop. A
simplified view of a logic cell is depicted in Figure 1.1.

Four LUTs and their eight flip-flops as well as multiplexers and arithmetic
carry logic form a slice, and two slices form a Configurable Logic
Block (CLB). Four of the eight flip-flops per slice (one flip-flop per LUT) can
optionally be configured as latches. Between 25-50% of all slices can alsouse
their LUTs as distributed 64-bit RAM or as 32-bit shift registers (SRL32)or as
two SRL16s. Modern synthesis tools take advantage of these highly efficient
logic, arithmetic, and memory features. Futhermore, recent generation
reconfigurable hardware has a large amount of resources, for instance, the
Xilinx Virtex UltraScale XCVU440 has 5,065,920 Flip-Flops and 2,532,960
LUTs.

The architecture of a typical FPGA is illustrated in Figure 1.2. In general,
an FPGA will have an array CLBs, programmable wires, and programmable
switches to realize any function out of the logic blocks and implement any
interconnection topology. Programming is done using of the many popular
technologies such as SRAM cells, antifuses, EPROM transistors and EEPROM
transistors. In addition to logic blocks, nowadays FPGAs such as Xilinx Virtex-
7 devices contain embedded hardware elements for memory, multiplication,
multiply-and-add and a number of hard microprocessor cores (such as ARM
Cortex-9 or the IBM PowerPC), and even, they are part of a System-On-Chip
(SoC) embedded with external memory and hard peripherals such as Xilinx
Zynq-7000 families.

The long IC fabrication time is completely eliminated for these devices
and design realization times are only a few hours. The idea of

1.2. Objectives 7

CLB
I/O

Block

Programmable

Interconnect

Figure 1.2. Architecture of a typical FPGA

user-programmability is very exciting, most ASIC vendors now prefer FPGAs
for low cost prototyping for fine tuning of designs before fabrication. Also,
from a marketing point of view, the FPGA technology allows quick product
announcements, which is commercially attractive [5].

During the development of this thesis, several FPGAs and SoCs of Xilinx
have been used. Xilinx devices are now much larger and come with a variety
of new technology, including 144 kb UltraRAM, DSP48E2, high-speed
transceivers up to 28 Gigabits (Gbs) Input-Output (I/O) interfaces, hardened
microprocessors and peripherals, analog mixed signal, and more. Theselarger
and more complex devices create multidimensional design challenges, but
handled correctly, they can achieve faster time-to-market and increase
productivity.

1.2 Objectives

The general objectives of this thesis have been the following:

• Design of efficient hardware image and video encoders.

• Develop prototypes of FPGA accelerators that allows high-speed video
coding at high-definition formats.

8 Chapter 1. Introduction

Based on the previous general objectives, the specific objectives of this
work are detailed below:

• Study, design and implementation of a fast and simple hardware encoder
that allows continuous capture and coding in real time with ultra high-speed
cameras.

• Analysis of the computational complexity of nowadays video encoders.

• Design and implementation of a hardware integer motion estimation
module for HEVC video encoder. This new hardware module will speed up
its coding process and eliminate its high computational cost.

• Study and evaluation of the balance between the throughput, compression
rates, image quality, the hardware complexity and the FPGA usage.

1.3 Articles

This dissertation has been carried out in the modality of a doctoral thesis
presented with a set of publications. According to the Internal Regulationsof
the Miguel Hernandez University for the presentation of doctoral theses with a
set of publications, this dissertation includes a general introduction wherethe
work done is presented and justified. It also incorporates a global summary
with the results obtained, their discussion and the final conclusions, in both
languages English and Spanish. Finally, an annex with the publications
presented in their original language is attached.

The publications presented in this thesis are:

• Design and implementation of an efficient hardware integer motion
estimator for an HEVC video encoder
Estefania Alcocer, Roberto Gutierrez, Otoniel Lopez-Granado, and Manuel
P. Malumbres
Journal of Real-Time Image Processing. Springer Verlag Berlin Heidelberg
2016
Impact factor: 1.564
Category Name: ENGINEERING, ELECTRICAL & ELECTRONIC
Quartile in Category:Q2

1.3. Articles 9

ISSN 1861-8219
http://dx.doi.org/10.1007/s11554-016-0572-4

• MPCM: a hardware coder for super slow motion video sequences
Estefania Alcocer, Otoniel Lopez-Granado, Roberto Gutierrez, and Manuel
P. Malumbres
EURASIP Journal on Advances in Signal Processing 2013. SpringerOpen
Journal
Impact factor: 0.808
Category Name: ENGINEERING, ELECTRICAL & ELECTRONIC
Quartile in Category:Q3
ISSN 1687-6180
http://dx.doi.org/10.1186/1687-6180-2013-142

The publications explained below focus on the design of hardware systems
that perform the computationally costliest parts of a codec in both video and
image video coding in order to achive ultra-fast encoding at high frame rates
for high-resolution formats.

On the one hand, the first publication deals with hardware Integer Motion
Estimation (IME) for an HEVC video encoder. HEVC standard is the most
recent joint video project of the ITU-T VCEG and ISO/IEC MPEG
standardization organizations, working together in a partnership known as the
Joint Collaborative Team on Video Coding (JCT-VC) [6]. HEVC has been
designed to cope with new video services, working with higher video
resolutions and adapting its design to allow the use of parallel processing
techniques. It can compress video about twice as much as its predecessor,
H264/Advanced Video Coding (AVC), without sacrificing quality, but
increasing the computational complexity. As in previous standards, ME is one
of the encoder critical blocks to achieve significant compression gains, but it
demands an overwhelming complexity cost to accurately remove video
temporal redundancy. The purpose of this work is the implementation of a
HEVC ME block in hardware in order to reduce the overall video encoding
time and to achieve real-time encoding for high-resolution videos.

On the other hand, the second article is based on the hardware
implementation of a very simple codec called MPCM, whose coding/decoding
process of each pixel is based on the prediction and interpolation of
neighboring pixels of the same frame. The purpose of this work is to take
advantage of a codification as simple as possible to capture high resolution
videos at ultra high frame rates.

10 Chapter 1. Introduction

1.3.1 Design and implementation of an efficient hardware integer
motion estimator for an HEVC video encoder

In this work, a design of a new hardware architecture which perform IME
computation in a fast and accurate way is proposed, in order to significantly
reduce the computation cost of the overall encoder.

The ME technique is based on the similarity between adjacent video
frames, predicting the current frame based on a previous or subsequent
reference frame in order of appearance. The Motion Vector (MV) represents
the translational movement of a picture area in the current frame compared to
its position in the reference frame.

In the HEVC video coding standard, each frame is partitioned into Coding
Tree Units (CTUs) which cover a rectangular picture area ofLxL samples.
The value ofL may be equal to 16, 32, or 64 as determined by an encoded
syntax element specified in the Sequence Parameter Set (SPS). The larger size
typically enables better compression, particularly beneficial when encoding
high-resolution video content. The CTU is the basic processing unit used in
the standard that can be directly used Coding Units (CUs) or can be further
partitioned into multiple CUs. The partitioning is achieved using tree
structures. The CTU contains a quadtree syntax that allows for splitting the
CUs to a selected appropriate size based on the signal characteristics of the
region that is covered by the CTU. The quadtree splitting process can be
iterated until the size reaches the minimum allowed that is selected by the
encoder using syntax in the SPS and is always 8x8 samples or larger. The
prediction mode for the CU is signaled as being intra or inter, according to
whether it uses intra-picture (spatial) prediction or inter-picture (temporal)
prediction. When the prediction mode is signaled as intra, the CU can be split
into four quadrants that each have their own intra prediction mode, from the
CU size until 4x4 blocks. When the prediction mode is signaled as inter, that
is the case which concerns us, it is specified whether CUs are split into one,
two, or four prediction units. When a CU is split into four prediction units,
each one covers a quadrant of the CU. When a CU is split into two prediction
units, various types of this splitting are possible. The partitioning possibilities
for inter-predicted CUs are depicted in Figure 1.3.

The first four partitions illustrate the cases of not splitting the CU of size
2Nx2N, of splitting the CU into two prediction units of size 2NxN or Nx2N,
or splitting it into four of size NxN. The next four partition types in Figure 1.3
are referred to as Asymmetric Motion Partitions (AMPs). One prediction unit
of the asymmetric partition has the height or width 2N/4 and width or height
2N, respectively, and the other prediction unit fills the rest of the CU by

1.3. Articles 11

CU

2Nx2N 2NxN Nx2N NxN 2NxnU 2NxnD nLx2N nRx2N

Prediction Units

CUCTUFigure 1.3. CU splitting modes into Prediction Units in inter prediction

CU

Prediction Unit

Depth 0

(64x64)

Depth 1

(32x32)

Depth 2

(16x16)

Depth 3

(8x8)

2Nx2N

Nx2N 2NxnD

2Nx2N NxN

2NxN Nx2N

2Nx2N

2Nx2N 2Nx2N 2Nx2N 2Nx2N 2Nx2N

CTU

Figure 1.4. HEVC quad-tree structure: CUs and Prediction Units relation-
ship

having a height or width of 3x(2N)/4 and width or height 2N. Each inter-coded
prediction unit is assigned one or two motion vectors and reference picture
indices. To minimize worst-case memory bandwidth, the minimum prediction
unit size is restricted to 4x8 or 8x4. The quadtree syntax of the CTU, in which
CUs and prediction units relationship is shown, is represented in Figure 1.4.In
addition, as a real example, the Figure 1.5 shows the partitioning that is
performed in a frame of the video sequence RaceHorses during the HEVC
Motion Estimation.

Finally, in the HEVC inter-prediction process, the total number of different
partitions for a 64x64 CTU is more than 600, and for each of these partitions,
the HEVC encoder performs one ME process to determine the best CU
partitions in terms of bit rate and video quality. In this way, in this publication
a high-performance IME hardware unit in HEVC that provides the minimum
SADs and associated MVs of all possible partitions from a 64x64 CTU for
inter-prediction is presented, exploiting parallelism in an efficient way, by

12 Chapter 1. Introduction

Figure 1.5. HEVC Prediction Units in a frame

means of a Full Search (FS) algorithm which exhaustively finds motion for all
prediction unit blocks at every single point of the established search area since
provides computational regularity and excellent video quality. In order to
perform this implementation, the Xilinx FPGA Virtex-7 was used.

Focusing on the computation blocks of the hardware ME proposal, we
present both innovative techniques: a new SAD adder tree structure, and a new
memory scan order. Firstly, we designed a new SAD adder tree structure to
perform the additions at the first level of the tree, starting from the maximum
size of the CTU, and halving the amount of additions at the next tree levels.
With our proposal, we took advantage of the resources provided by the FPGA,
obtaining the minimum possible latency when calculating SADs of all levels
and partitions for a CTU. Secondly, regarding the new memory scan order, a
series of reconfigurable shift registers and processing elements are responsible
for storing the necessary pixels of both reference and current frames, keeping
them always available for calculating the SADs and MVs of a CTU. With our
system, we avoid external memory accesses since available data are highly
reused by reconfiguring the displacement in a more efficient way.

The architecture described above was modeled in VHDL, and was
synthesized, simulated, and implemented on the Xilinx FPGA, Virtex-7
XC7VX550T-3FFG1158 [7]. The experiments were performed using different
configurations of both search area sizes (128x128, 104x104, 64x64, 52x52,

1.3. Articles 13

and 32x32) and CTU sizes (64x64 and 32x32). The correctness of this design
was tested and verified with the HEVC HM 14 reference model [8] working
with the main profile and low-delay configuration mode, using three video
sequences from the HEVC common conditions video set with different
resolutions and frame rates.

First, the throughput for different configurations of CTU and search area
sizes in the Virtex 7 FPGA technology was assessed, showing frequency
(clock), latency, and the system throughput in terms of the maximum frame
rate under different video formats (1080p, 2K, and 4K). For these
configurations, the resources used on the Virtex-7 FPGA were also shown.
Futhermore, our hardware design was compared with other state-of-art
architectures which perform the same functionality under FPGA technology.
Finally, the integration of our IME FPGA-based accelerator was analyzedin
terms of speed-up and was observed how the different CTU and search area
size configurations impact on the R/D performance of the HEVC encoder,
with regard to the HEVC reference software. The results of this research are
detailed in section 2.2.1.

1.3.2 MPCM: a hardware coder for super slow motion video
sequences

In this work, a fast FPGA implementation of a simple codec called MPCM is
proposed. This hardware codec is intended to allow current high-speed cameras
to capture in a continuous manner.

Source coding algorithms must be extremely simple for new comercial
high-speed cameras that capture high-resolution videos at frame rates up to
10,000 frames/second. Most of ultahigh-speed cameras store the captured
images in a fast Synchronous Dynamic Random Access Memory (SDRAM)
module of up to 64 GB [9, 10, 11, 12]. This approach of using fast SDRAM
memory as video storage is feasible since the memory bandwidth is high
enough, but when memory is run out, the camera stops recording and needs to
save the stored video to a secondary storage in raw or compressed format.
This is a limitation because depending on the capturing resolution of the
camera, only a few seconds could be recorded in the Random Access
Memory (RAM) module, and so continuous capturing is not possible. For
these reasons, many times high-resolution videos at high frame rates are
recorded or transmitted using PCM (raw video) since is the simplest technique
[13]. PCM coding presents several advantageous properties, for instance,
direct processing, random access, and rate scalability. However, thehigh bit
rate of raw video can make its transmission or storage difficult. The huge

14 Chapter 1. Introduction

amount of data of the resulting uncompressed image/video needs to be
processed to guarantee its transmission or storage, being a really challenging
task. Thus, the internal communication bus may not be fast enough to transfer
the video out of the camera, or the writing speed of the storage device may not
be high enough to save the video [14]. So as to overcome these restrictions, it
would be of interest both, to reduce the video storage requirements by means
of hardware encoders that fulfill the application requirements such as high
frame rate and ultra-high-definition video formats, and to consider a coding
algorithm which had properties similar to those of PCM (low complexity,
random access, and scalability) with a better coding efficiency.

MPCM [15] image coder is able to reduce the rate of the PCM signal in a
very simple way without losing the advantages provided by PCM coding, as
prososed in [16]. In this algorithm, MPCM encoder removes certain bits from
each pixel value which represents a very simple processing, in order to encode
an image. At the decoder side, where the bits that were removed from each
pixel will be predicted by using its codeword (remaining bits of a pixel) and
Side Information (SI) that the decoder computes by interpolating the
previously decoded pixels. In this work, a hardware codec based on MPCM on
a XC7Z020-1CLG484CES Xilinx FPGA device was implemented. Both
encoder and decoder architecture designs were tested and validated.

Regarding results, an evaluation of the complete system was performed in
terms of Peak Signal-to-Noise Ratio (PSNR), encoding/decoding times, board
area usage, maximum frame rate, and resulting speed-ups when comparedto a
CPU sequential algorithm. The results of this research are detailed in section
2.2.2.

Chapter 2

Research results

Contents
2.1 Materials and methods 16

2.2 Results . 19

2.2.1 Video coding acceleration 19

2.2.1.1 Prototype implementation 27

2.2.2 Image coding acceleration 32

15

16 Chapter 2. Research results

2.1 Materials and methods

The resources described below are those used to carry out the research of this
thesis:

• Vivado Design Suite of Xilinx
This tool suite is intended to increase the overall productivity for designing,
integrating, and implementing systems using the Xilinx UltraScale and 7
series devices, Zynq UltraScale+ MPSoC device, and Zynq-7000 All
Programmable (AP) SoC [17]. It includes place and route tools that
analytically optimize multiple and concurrent design metrics, such as
timing, congestion, total wire length, utilization and power. It replaces all of
the ISE Design Suite point tools. Vivado introduces the concept of opening
designs in memory. Opening a design effectively loads the design netlist at
that particular stage of the design flow, assigns the constraints to the design,
and applies the design to the target device. This allows to visualize and
interact with the design at each design stage and it enables to open designs
after Register-Transfer Level (RTL) elaboration, synthesis, and
implementation. It can be made changes to constraints, logic or device
configuration, and implementation results, as well using design checkpoints
to save the current state of any design. A design checkpoint is a snapshot of
the design at any stage of the design process that includes the netlist,
constraints, and implementation results. Vivado automatically creates
design checkpoints at each stage of the flow that can be opened and
analyzed.

• ISE Design Suite 14 of Xilinx
This tool is a predecessor development environment of Vivado Design Suite.
Now, Vivavo has replaced this solution. With performances lower than those
currently provided by Vivado, ISE supplies a complete solution for logic and
connectivity design encompassing the front-to-back base methodology and
Intellectual Property (IP).

• HEVC reference software
The reference software for HEVC is called HEVC Test Model (HM). This
software has been used for the coding of video sequences, specifically the
HM-14 version [8]. In the software repository, the configuration files are also
included, which have been modified to obtain the different configurations we
needed in this work (search algorithm, block sizes, search area, etc.)

• Matlab /Simulink
Matlab is a program widely used in engineering to perform technical,

2.1. Materials and methods 17

scientific and general purpose calculations. It integrates calculation
operations, visualization and programming. In the case of this research,
Matlab, with the help of the Simulink application, has been used for the
development, modeling, simulation and prototyping of the mathematical
algorithms that have been implemented in both image and video coding, in
order to verify the reliability of the model implemented in hardware.

• Software platform
All software tests have been run over an Intel Core i7-3770 CPU 3.40 GHz
with 16 GB RAM.

• Video sequences
The video sequences used for coding shown at Table 2.1 have been selected
from the HEVC common conditions [18].

Table 2.1.Video sequences used during the research

Video sequence Resolution (pixels) Frame-rate (fps)

Racehorses 832x480 30

ParkScene 1920x1080 24

Basketball Drive 1920x1080 50

People On Street 2560x1600 30

Traffic 2560x1600 30

• Images
In Table 2.2 we find the set of gray-scale images that have been used in
this work, in order to test the image codec. In all of them, each pixel is
represented with 8 bits.

• Virtex-7 FPGA of Xilinx
Virtex-7 FPGAs are optimized for system performance and integration at
28nm and bring best-in-class performance/watt fabric, DSP performance,
and I/O bandwidth to your designs. The family is used in an array of
applications such as 10G to 100G networking, portable radar, and ASIC
Prototyping [7]. At the present work, the XC7VX550T-3FFG1158 device
has been used.

• Zynq-7000 SoC 7Z020 of Xilinx
This product integrates a feature-rich dual-core ARM Cortex-A9 based
Processing System (PS) and 28 nm Xilinx Programmable Logic (PL) in a
single device. The FPGA included in this device is the

18 Chapter 2. Research results

Table 2.2. Images used during the research

Image Resolution (pixels)

Zelda 512x512

Lena 512x512

Peppers 512x512

Barbara 512x512

Baboon 512x512

Tractor 1920x1080

Woman 2048x2560

Ducks 3840x2160

XC7Z020-1CLG484CES. The ARM Cortex-A9 CPUs are the heart of the
PS and includes 1GB DDR3 memory, 16MB Quad SPI Flash, HDMI Video
OUT and a rich set of peripheral connectivity interfaces [19].

• Avnet Zynq-7000 SoC Mini-ITX of Xilinx
It is a complete development platform for designing and verifying
applications based on the Xilinx Zynq-7000 All Programmable SoC family.
In addition to the Xilinx Zynq-7000 AP SoC XC7Z100 device
(XC7Z100-2FFG900), the Zynq Mini-ITX development board features2
GB DDR3 SDRAM, PCIe Gen2 x16 Root Complex slot (x4 electrical),
SATA-III interface, SFP interface, QSPI Flash memory, HDMI interface,
LVDS touch panel interface, Audio Codec, a 10/100/1000 Ethernet PHY, a
USB 2.0 4-port hub, a microSD card interface, and a USB-UART port [20].

The main features of the 3 FPGAs used (Virtex-7 and the corresponding ones
to the two evaluation boards) are detailed in the Table 2.3

Table 2.3.FPGAs Feature Summary

FPGA Virtex-7 XC7VX550T Z-7020 XC7Z020 Z-7100 XC7Z100

LUTs 346400 53200 277400

Flip-flops 692800 106400 554800

BRAM (36Kb Blocks) 1180 140 755

DSP 2880 220 2020

Speed Grade -3 -1 -2

2.2. Results 19

2.2 Results

In this section an overall summary of the results obtained from research on
both video and image accelerators has been presented. Implementations of
these accelerators have been analyzed in terms of R/D, processing time, board
area usage, maximum frame rate, and speed-ups when compared to software
algorithms.

2.2.1 Video coding acceleration

As described in Section 1.3.1, a high-performance IME hardware unit in
HEVC that provides the minimum SADs and associated MVs has been
implemented. The architecture is based on both a new memory scan order and
a new adder tree structure, which supports all partitioning modes and allows
different configurations, such as (a) the maximum CTU size with values of
64x64 and 32x32, and (b) the size of the search area of the reference frame
with values defined as the double size of the CTU, 80% of the double size of
the CTU, and the same size as a CTU.

The system is composed of memory areas for current CU and reference
search area pixels, 64 Processing Units (PUs), one SAD Adder Tree Block
(SATB), and one comparison block that saves the minimum SAD values and
their corresponding MVs for all CU partitions. Figure 2.1 shows the structure
of hardware IME architecture.

Regarding our new innovative technique about memory scan order, a
snake scan order and a reconfigurable data path with 64 propagation registers
were adopted in order to provide high data reuse. The snake scan order visits
all positions of the search area following a Hamiltonian path composed by
consecutive vertical scans with alternating scan directions (the first vertical
scan begins from top to bottom, then moves one pixel to the right and starts
the next vertical scan in a bottom to up direction, and so on) as illustrated in
Figure 2.2.

There are three scanning directions U (upward), D (downward), andR
(rightward). The current 64x64 CTU pixels are stored in the Processing
Element (PE)s only once (at the beginning). The reference pixels will also be
loaded to the PEs but instead of loading from Block Random Access
Memory (BRAM), where the pixels belonging to a reference frame area are
stored, will be loaded from the shift registers, since they will help us to
perform the snake scan order and as a consequence a huge reduction of
memory load operations will be achieved.

20 Chapter 2. Research results

PU1
64 PEs (Column1)

PU2
64 PEs (Column2)

PU63
64 PEs (Column63)

PU64
64 PEs (Column64)

…

CU

Search Area

Reference Block

512 bits

64 pixels

512 bits

64 pixels

SAD Adder Tree Block

Comparison Block

SADs & MVs

(a) Hardware blocks

Search area

reference block
CU

4096PEs

64

64

Adder Tree

PU1
PU2

PU64

512 bits

64 pixels
512 bits

64 pixels

PU63

PU3

…

Comparison Block

SADs & MVs

(b) SAD unit concept

Figure 2.1. General structure IME architecture

2.2. Results 21

CTU

(64x64)

Search area

(128x128)

(191x191)

D

R

U D

R

R

Figure 2.2. Scan order of the search area

…

64x64

…

64x32
32x32 32x16

16x16

8x16

128 SADs of 8x8 (Nx2N)

16 x 8

128 SADs of 8x8 (2NxN)

4x16

8x8

64 SADs of 8x8 (2Nx2N)

64 SADs of 16x16 (NxN)

16x4

4x8

32 SADs of 16x16 (Nx2N)

8x4

32 SADs of 16x16 (2NxN)

32 SADs of 16x16 (nLx2N)

32 SADs of 16x16 (nRx2N)

32 SADs of 16x16 (2NxnU)

32 SADs of 16x16 (2NxnD)

2x8

8x2

4x4

16 SADs of 16x16 (2Nx2N)

16 SADs of 32x32 (NxN)

2x4

8 SADs of 32x32 (Nx2N)

4x2

8 SADs of 32x32 (2NxN)

8 SADs of 32x32 (nLx2N)

8 SADs of 32x32 (nRx2N)

8 SADs of 32x32 (2NxnU)

8 SADs of 32x32 (2NxnD)

1x4

4x1

2x2

4 SADs of 32x32 (2Nx2N)

4 SADs of 64x64 (NxN)

2 SADs of 64x64 (nLx2N)

2 SADs of 64x64 (nRx2N)

1x2

2 SADs of 64x64 (Nx2N)

2 SADs of 64x64 (Nx2N)

2x1

2 SADs of 64x64 (2NxnU)

2 SADs of 64x64 (2NxnD)

1x1

1 SAD of 64x64 (2Nx2N)

Figure 2.3. Structure of SAD Tree Block

Regarding the second new method, a SATB block which computes the
SAD values for all partitions of each 64x64 CTU at every clock cycle hasbeen
developed. After receiving the 64x64 distortions from PUs associated tothe
current search area position, a succession of aggregation stages are performed
in this block to compute the corresponding SAD values for all the CTU
partitions (a total number of 677), as shown in Figure 2.3.

22 Chapter 2. Research results

…

16462 clock cycles

Memory read

Shift registers

load

64 PUs

SAD Adder Tree
Comparison

block

1 clock 1 clock 12 clock 1 clock

Memory read

Shift registers

load

 PUs

SAD Adder Tree
Comparison

block

16384

times Memory read

Shift registers

load

64 PUs

SAD Adder Tree
Comparison

block

Shift registers

initial preload

63 clock

Figure 2.4. Pipeline process of the proposed architecture

Table 2.4.Throughput for different configurations in Virtex-7

CTU size 64x64 64x64 64x64 32x32 32x32 32x32

Search area 128x128 104x104 64x64 64x64 52x52 32x32

Clock (MHz) 247 247 247 318 318 318

Latency 16462 10894 4174 4142 2750 1070

Fps at 1080p 32 48 124 39 59 151

Fps at 2K 30 45 116 37 55 141

Fps at 4K 8 12 30 10 15 37

At each stage, all pairs of consecutive columns/rows are added, reducing to
half the width/height of the resulting partition. This SAD aggregation process is
followed until the last partition size is reached (1x1), ie. the SAD corresponding
to the 64x64 partition. At intermediate stages, the SADs of the rest of partitions
are stored. Finally, in the proposed architecture, the SATB module delivers 677
SADs of the current CTU block every single clock cycle to the next module,
the comparison block.

This work was modeled in VHDL, and it was synthesized and simulated
on the Xilinx FPGA, Virtex-7 XC7VX550T-3FFG1158. In Figure 2.4, and
Tables 2.4, 2.5 and 2.6 the pipeline process with the total latency, the
throughput, and the resources used for different configurations are shown,
repectively, when our hardware architecture is implemented on the Virtex-7
FPGA described above.

2.2. Results 23

Table 2.5.Utilization resources for 64x64 CTU implementation in Virtex-7

Resources Flip-Flops LUTs Memory (kB)

Memory Read Controller Block 36657 (25.40%) 36413 (19.30%) 36 (100%)

PUs (Distortion computation) 32768 (22.71%) 94208 (49.93%) -

SAD Adder Tree Block (SATB) 58727 (40.70%) 47063 (24.95%) -

Comparison Block 16150 (11.19%) 10980 (5.82%) -

TOTAL 144302 188664 36

Table 2.6.Utilization resources for 32x32 CTU implementation in Virtex-7

Resources Flip-Flops LUTs Memory (kB)

Memory Read Controller Block 10155 (27.55%) 9812 (20.22%) 9 (100%)

PUs (Distortion computation) 8192 (22.22%) 24541 (50.57%) -

SAD Adder Tree Block (SATB) 14580 (39.55%) 11445 (23.58%) -

Comparison Block 3937 (10.68%) 2733 (5.63%) -

TOTAL 36864 48531 9

As shown, in our architecture, with a configuration of a 64x64 CTU size
and a search area of 128x128 pixels, the memory reading process and shift
registers propagation require only one clock cycle. The PUs use one cycle, the
SATB requires twelve additional clock cycles, and the comparison block
needs one additional clock cycle. So, the proposed architecture requires 63
clock cycles to perform the initial load of the shift registers, 15 clock cycles to
load the pipeline, and then as many clock cycles as positions the search area
has. Finally, te whole process is done in 16462 clock cycles, that is, 63 clock
cycles for the initial load, plus 15 clock cycles for the full processing in one
pixel position, plus 16384 times to repeat the whole process of motion
estimation (search window 128x128 pixels= 16384 pixels), with only one
delay clock cycle in the pipeline. As can be seen in Table 2.4, our design can
operate at the frequency of 247 and 318 MHz for a 64x64 CTU and a 32x32
CTU, respectively. Regarding the configuration with maximum sizes, whose
latency is 16462 clock cycles, and taking into account the frequency obtained,
the encoder carry out the IME process in 66.65µ seconds, obtaining a
throughput of 30 frames per second (fps) at 2K video formats (2K@30fps).
The encoder is able to process video in real time for both 1080p and 2K
resolutions in all tested configurations, and also with 4K video formats if the
search area size is the same as the CTU size. In terms of resources used,the

24 Chapter 2. Research results

64x64 CTU size requires near four times more resources, which implies that
the use of more resources in the design provides higher throughput, in this
case, with a 4:3 relationship, as shown in Tables 2.5 and 2.6.

Futhermore, in Table 2.7, our hardware architecture is compared with
other comparable state-of-art architectures implemented on different FPGA
platforms for both the 64x64 CTU and the 32x32 CTU size, and different
search area sizes.

Table 2.7. Comparison of the proposed architecture with state-of-the-art
works

Design Medhat [21] Proposal 1 D’huys [22] Proposal 2 Yuan [23] Proposal 3

CTU size 64x64 64x64 64x64 64x64 32x32 32x32

Search area 104x104 104x104 64x64 64x64 48x48 48x48

Technology Virtex-7 Virtex-7 Virtex-5 Virtex-5 Virtex-6 Virtex-6

Clock (MHz) 458.7 247 150 159 110 200

AMP No Yes No Yes Yes Yes

Throughput 2K@30fps 2K@45fps 720p@57fps 720p@173fps 1080p@30fps 1080p@43fps

Flip-Flops 39901 144302 199682 178620 19744 43531

LUTs 24957 188664 210158 184288 55346 45752

Memory (kB) 44 36 1229 36 148 9

Regarding results for the 64x64 CTU size, Medhat et al. [21] presenta
parallel SAD block for the HEVC integer-pel FS architecture without
supporting AMP modes with a search area of 104x104 pixels. They used the
Virtex-7 technology, and their design can operate at the frequency of 458.7
MHz. The operating frequency of our design with the same technology and
configurations is almost two times lower. However, our architecture is capable
of processing 45 fps at 2K video formats instead of 30 fps as obtained bythe
proposed design in [21]. Therefore, our proposed architecture is 1.5x as fast as
the one proposed in [21] using the same search area size and considering all
the AMP partition modes, contrary to [21], where AMP partitions are not
calculated. This is due to the fact that our design takes advantage of the
minimal latency to perform the same operations as we have an efficient
pipeline design. Therefore, our system achieves higher throughput, reaching
real-time processing for 2K video resolutions at 45 fps, and being on the way
to accomplishing the same goal for 4K video formats, where 12 fps were
obtained.

On the other hand, D’huys [22] proposes a reconfigurable design for
HEVC motion estimation which can operate at the frequency of 150 MHz. His

2.2. Results 25

architecture is compared with our proposal, setting a common search area size
to 64x64 pixels and the Virtex-5 technology. The operation frequency ofour
proposal is 159 MHz, achieving system throughput of 20 fps at 4K and75 fps
at 2K video formats. Our design significantly improves the performance of the
architecture presented in [22], which is able to process a lower resolution
video (720p) at 57 fps. If the video resolution is set to 720p, our architecture is
capable of processing 173 fps. So, our architecture presents good balance
between the maximum frequency and pipeline processing design, taking
advantage of the low latency by leveraging all available resources.

Regarding results for the 32x32 CTU size, we show the comparison results
between our proposal (implemented on a Virtex-6 FPGA) and the IME design
found in [23], both with a search area size of 48x48 pixels. The most significant
feature, worthy of attention, is that our proposal can provide a higher operation
frequency, achieving throughput of 43 fps at 1080p and 40 fps at 2K resolution,
whereas the architecture presented in [23] is able to achieve 30 fps at 1080p
video formats, using a similar amount of FPGA resources.

Considering the presented results, our architecture shows an efficient
implementation of available resources in FPGA, overcoming the performance
of previous state-of-the-art architectures.

Table 2.8. Time profile of the IME HEVC for a 64x64 CTU with video
sequencesRace Horses(s1),Basketball Drive(s2), andPeople On Street(s3)

Search area 128x128 104x104 64x64

Video sequences s1 s2 s3 s1 s2 s3 s1 s2 s3

Encoding Time SW (s) 13670 61602 135970 9392 42050 92863 4117 17881 39933

% IME Time SW 95 96 95 90 94 93 83 86 85

CTU/s SW 0.24 0.26 0.23 0.38 0.39 0.35 0.91 1.00 0.89

CTU/s HW 14993 14993 14993 22625 22625 22625 59172 59172 59172

HW gain 62260 57767 64800 59621 58312 65384 64856 59115 66477

Regarding the time profile of the HEVC IME module, a comparison
between software and hardware executions has been performed. Tables 2.8
and 2.9 show the following information for different configurations allowed:
The total time required to encode 10 frames of each video sequence with the
software reference model, the percentage of the total time needed by the IME
software module using a FS algorithm, the number of CTUs per second that
can be computed by software and by hardware versions of the IME module,
and finally, the gain obtained with the inclusion of our IME hardware module
instead of the software one. These values depend on the size configurations,

26 Chapter 2. Research results

Table 2.9. Time profile of the IME HEVC for a 32x32 CTU with video
sequencesRace Horses(s1),Basketball Drive(s2), andPeople On Street(s3)

Search area 64x64 52x52 32x32

Video sequences s1 s2 s3 s1 s2 s3 s1 s2 s3

Encoding Time SW (s) 3652 15892 35295 2634 11303 25293 1378 5748 12911

% IME Time SW 85 87 86 79 81 81 60 63 62

CTU/s SW 4 5 4 6 7 6 14 17 15

CTU/s HW 76923 76923 76923 115607 115607 115607 297619 297619 297619

HW gain 20383 17293 19457 20654 17384 19675 21096 17664 19912

29

31

33

35

37

39

41

22 27 32 37

P
S

N
R

 (
d

B
)

QP step size

CTU_64_SearchWindow_128x128

CTU_64_SearchWindow_104x104

CTU_64_SearchWindow_64x64

CTU_32_SearchWindow_64x64

CTU_32_SearchWindow_52x52

CTU_32_SearchWindow_32x32

Figure 2.5.R/D performance for different CTU and search area sizes for the
RaceHorses sequence

and in the case of the IME software module, also depend on the video
sequence. Regarding these results, it could be conclude that the IME module
is a bottleneck in the HEVC reference software, and if the IME software
module is replaced by our FPGA-based device, the overall encoding time will
be significantly reduced. In order to reduce the hardware complexity, allowing
faster versions with reduced power consumption, the CTU size and the search
area must be reduced as much as possible, without causing degradation inthe
encoding process, neither decreasing the overall video quality nor reducing the
compression rate, as can be seen in Figure 2.5. In Figure 2.5, we show the
video quality of the test video sequence RaceHorses (s1) for each CTUand

2.2. Results 27

Table 2.10.Average CTU IME time with 2xCTU search area size

CTU Full Diamond Full

size search SW search SW search HW

64x64 4.11 s 4.65E-02 s 6.67E-05 s

32x32 2.48E-01 s 3.05E-03 s 1.30E-05 s

search area sizes at different compression levels (QP values). As can be seen,
there are negligible differences in terms of R/D between the CTU size and
search area size. Although R/D differences may depend on the video content,
similar results were obtained for the other two video sequences tested.

The Diamond Search (DS) algorithm is used by default in the HM
reference software due to this is about 90 times as fast as the FS algorithm in
software, with the disadvantage that it does not guarantee finding optimal
MVs, and as consequence video quality could be affected. Finally, as can be
seen in Table 2.10, the inclusion of our IME hardware module, using FS
algorithm, will speed up the IME computation of diamond-like search
algorithm 230 times and 700 times for 32x32 and 64x64 CTU sizes,
respectively. Therefore, as conclusion, the use of our IME hardware
accelerator designed in a FPGA platforms are mandatory when real-time UHD
video encoding is the objective.

2.2.1.1 Prototype implementation

Following the same research line about video coding acceleration, the
previous hardware HEVC IME design has been evaluated when applied toa
SoC platform. In this case, the Xilinx SoC, Zynq-7 Mini-ITX Motherboard
XC7Z100 (xc7z100ffg900-2) has been used, as hardware platform.

A SoC consist of two well-defined parts, a PS based on an ARM processor
and several hard peripherals like Ethernet, USB, etc., and a PL been made up
of a FPGA. In Figure 2.6 the top-level hardware architecture is showed,where
an ARM processor manages the transfer between the IME SAD module and a
Double Data Rate (DDR) memory which stores both reference and current
frames, by a Direct Memory Access (DMA) module. With this hardware
platform, ARM processor works at 666.66 MHz, and the DDR at 533.33
MHz, whereas the clock frequency of the PL is restricted by the maximum
frequency of the SAD HEVC module which is the responsible for the IME
calculation. In the case of 64x64 CTU size, the PL can work at 220 MHz

28 Chapter 2. Research results

SAD HEVC

Module

DMA

DDR

533 33MHz

ARM

Processor

666 66MHz

Peripheral

Frequency

PS

PL

BLOCK

DESIGN

Figure 2.6. Top-level hardware architecture

CTU 32x32

CTU 64x64

63%

85%

81%

93%

86%

95%

SR = 100% CTU

SR = 80% CTU

SR= 50% CTU

Figure 2.7. Percentage of software reference encoding time required for
SAD module with a FS strategy.

whereas with a 32x32 CTU size the PL clock frequency is fixed as maximum
in the evaluation board used, 250 MHz.

In order to perform several experiments with the HEVC IME and to
observe how the different parameters impact on the Rate Distortion (R/D)
performance and coding complexity of the HEVC encoder, the same
configurations and models than in the previous section have been choosen(for
instance, CTU sizes of 64x64 and 32x32, and their corresponding Search
Range (SR) sizes as 100%, 80%, and 50% of the CTU size, and HEVC HM 14
software reference model). In this approach, another two video sequences
from the HEVC common conditions video set were selected: ParkScene at
1920x1080 resolution (24 fps) and Traffic 2560x1600 (30 fps).

2.2. Results 29

0

0 5

1

1 5

2

2 5

3

3 5

1920x1080 2560x1600

B
D

-r
a
te

 (
%

)

 SR = 50% CTU

 SR = 80% CTU

 SR = 100% CTU

(a) BD-Rate obtained with a 32x32 CTU size and several SR sizes

0

0 02

0 04

0 06

0 08

0 1

0 12

1920x1080 2560x1600

B
D

-R
a
te

 (
%

)

 SR = 50% CTU

 SR = 80% CTU

(b) BD-Rate obtained with a 64x64 CTU size and several SR sizes

Figure 2.8. BD-Rate values with (a) 32x32, and (b) 64x64 CTU sizes

In Figure 2.7, the percentage of the overall encoding time that was spent
by HEVC reference software using the FS algorithm is shown. Generally,the
encoder spends more time in the IME module when both the CTU size and
Search Range (SR) are higher, as expected. The time spent by HEVC encoder
to perform the ME ranges between 63% to 95% of the time required to encode
the whole video sequence.

In addition, the impact of the previous parameters on the R/D performance
have been analyzed, using the Bjontegaard metric (BD-rate) [24] which allows
to compute the average per cent of bitrate overhead/saving between two rate-
distortion curves.

30 Chapter 2. Research results

0

2000

4000

6000

8000

10000

12000

16 32 64 128 256

C
U

s
 p

e
r

s
e
c
o

n
d

 p
ro

c
e
s
s
e
d

DMA Burst Size

SR = 100% CTU

SR = 80% CTU

SR = 50% CTU

(a) CUs per second processed for a 32x32 CTU size

0

500

1000

1500

2000

2500

16 32 64 128 256

C
U

s
 p

e
r

s
e
c
o

n
d

 p
ro

c
e
s
s
e
d

DMA Burst Size

SR = 100% CTU

SR = 80% CTU

SR = 50% CTU

(b) CUs per second processed for a 64x64 CTU size

Figure 2.9. CUs per second processed for each DMA burst size with our
proposed SAD HEVC module

In Figure 2.8, it can be observed the BD-rate obtained with different CTU
and SR sizes for the two video sequences selected. In order to obtain the
percentage of BD-Rate, each R/D curve with its corresponding configuration
is compared with a reference R/D curve whose configuration corresponds to a
64x64 CTU size and a search range of±64 (128x128 search area size). As can
be seen, there are slight differences between the SR sizes for a given CTU
size, especially for a CTU size of 64x64 where the bitrate penalty is up to
0.1% (see Figure 2.8(b)). In the case of 32x32 CTU size, we obtain higher
bitrate overheads, up to 2.7% (see Figure 2.8(a)).

2.2. Results 31

P
ro

c
e
s
s
in

g
 T

im
e

DMA Burst Size

Figure 2.10.Hardware Processing Time for different DMA burst sizes

Full Search

Diamond
Search

588

55

593

59

1920x1080

2560x1600

Figure 2.11. Hardware gain (x times) facing software FS and software DS
strategies

In Figure 2.9 the number of CUs per second (DMA throughput) transfered
for different DMA burst sizes is shown. Note that DMA operations are
responsible for transfer data from/to DDR memory and our SAD IME module.
In this design, the DMA word size (transfer unit) is set as 32 bits and the burst
size can be configured from 16 to 256 words. As can be seen, the throughput
increases as the DMA burst size does. That increment is exponential because
the time required for the DMA burst initialization is constant and independent
on the DMA burst size. Therefore, the maximum burst size of 256, a CTU size
of 32x32, and a SR size of 16 is the candidate configuration to achieve the
highest DMA transfer throughput in our system.

32 Chapter 2. Research results

Taking into account the previous configuration, in Figure 2.10 we show the
total DMA time, SAD HEVC module time, and total time to process a CU
for different DMA burst sizes. As expected, the maximum DMA burst size
provides the best results, requiring the least time to process a CU. Furthermore,
depending on the DMA burst size, the differences between DMA transfers and
SAD HEVC module processing time vary, being the SAD HEVC module 21x
faster with a burst size of 256 and 146x faster with a burst size of 16.

After performing the whole analysis, it can be concluded that the hardware
configuration which better adapts to the application requirements (low power
consumption, lowest encoding time, reduced video quality loses) is the one that
uses a 32x32 CTU size, a SR of 16, and a DMA burst size of 256.

Finally, for a 2560x1600 video resolution, the inclusion of our IME
hardware module will speed up the IME computation 55 times and 588 times
faster than DS and FS algorithms, respectively, as can be seen in Figure 2.11.

2.2.2 Image coding acceleration

As described in Section 1.3.2, a hardware MPCM codec has been implemented.

Q

-l0
LSB

-l1
LSB

-m1
MSB

Decision Reconstruction

Reconstruction

Side

informacion

generation(SI)

ENCODER DECODERA/D

Figure 2.12.Block diagram of MPCM coding algorithm

In Figure 2.12, the MPCM-based coding algorithm is showed. The samples
of a continuous-amplitude discrete-time signal (x̃n) are divided into setsS0 =

{x2n|n ∈ i = 0,1,2, . . .} andS1 = {x2n+1|n = 0,1,2, . . .}, that are encoded with
different accuracies. As shown in Figure 2.12, each sample inS0 is encoded by
removing thel0-LSBs of its codeword (PCM signal) whereas each sample inS1

is encoded by removing them1-MSBs (Most Significant Bits) andl1-LSBs of
its codeword (MPCM signal). The algorithm implemented in this work divides
an image intoN decimated images, and then it encodes one of the resulting

2.2. Results 33

PCM MPCM
1

PCM MPCM
1

PCM

MPCM
2

MPCM
3

MPCM
2

MPCM
3

MPCM
2

PCM MPCM
1

PCM MPCM
1

PCM

MPCM
2

MPCM
3

MPCM
2

MPCM
3

MPCM
2

PCM MPCM
1

PCM MPCM
1

PCM

Figure 2.13. Samples inS0 required to predict samples inS1 whenN = 4.
PCM ∈ S0; MPCM1,MPCM2,MPCM3 ∈ S1

images as sample inS0 using PCM and encondes the rest of them as samples
in S1 using MPCM.

As the encoding ofx2n is equivalent to a PCM signal, the decoder can
directly reconstruct the samples ofS0 from their codewords. With respect to
the encoded samples inS1, the decoder follows two steps: decision and
reconstruction. First, in order to decide MPCM decoders exploit the
correlation between the signal samples by furnishing a prediction for each
sample inS1 based on previously decoded samples inS0. The Figure 2.13
shows the samples inS0 required to perform the prediction of each of the
samples belonging toS1, whenN = 4. The accuracy of the SI depends on the
degree of correlation between the samples and the distortion introduced in the
encoding ofS0. Furthermore the larger them1, the shorter the minimum
distance between the codewords of the same set 2m1, hence, the higher the
probability of decision error. As a result, in order to limit these impacts in the
encoding algorithml0 must be lower than or equal tol1 (l0 ≤ l1) andm1 must
be the minimum possible.

Once the decoder has estimated them1-MSBs, in the reconstruction step, it
tries to recover itsl1-LSBs which finally provides a estimated signal ˆx2n+1.
This reconstruction is done by taking the closest value of the chosen interval
to the prediction. Notably if the coding parameters accomplish the following
characteristicsl0=l1 andm1=0, the MPCM encoder/decoder will act as a PCM

34 Chapter 2. Research results

Table 2.11.PSNR values for all tested images for a given bit-rate

PSNR (dB)

R=4bpp R=4.5bpp R=5bpp R=5.5bpp R=6bpp

Imagen (l0,l1,m1) (l0,l1,m1) (l0,l1,m1) (l0,l1,m1) (l0,l1,m1)

(1,4,1) (2,4,0) (3,3,0) (1,3,0) (2,2,0)

Zelda (512x512) 39.00 38.90 40.15 41.51 45.04

Lena (512x512) 37.74 37.77 39.82 41.06 44.96

Peppers (512x512) 33.70 36.92 39.32 40.29 44.62

Barbara (512x512) 26.06 35.27 38.91 39.83 44.56

Baboon (512x512) 24.45 33.02 37.61 38.20 43.85

Tractor (1920x1080) 38.01 39.67 40.22 42.15 44.73

Woman (2048x2560) 30.53 36.47 39.52 40.70 44.95

Ducks (3840x2160) 35.09 35.00 38.14 38.88 43.72

coding system, since in such cases the help provided by the SI does not
compensate the loss suffered by encoding each MPCM signal with fewer bits
than the PCM signal. In fact, in these cases, midpoint reconstruction perfoms
better than MPCM reconstruction. Nevertheless, in most cases MPCM
performs better than or the same as PCM, with great gains at 1, 2, 3 and 4 bpp.

The hardware implementation of both MPCM encoder and decoder was
developed over a Zynq-7000 FPGA of Xilinx family, specifically over the
ZC702 model which includes the XC7Z020-1CLG484CES SoC
(System-on-Chip) [25].

Regarding results, an evaluation of the complete system was performed in
terms of PSNR, encoding/decoding times, board area usage, maximum frame
rate, and speed-ups comparing results with the one obtained with a CPU
sequential algorithm. In these experiments, the results were assessed with
eight grayscale images of 8 bits per sample, five of which (Zelda, Lena,
Peppers, Barbara, and Baboon) with a resolution of 512x512 pixels, one
full-HD (1080p) image, a 2048x2560 image, and finally, a 4K UHD image.
Furthermore, the values to the coding/decoding parameters (withN = 4,
l1 = l2 = l3 andm1 = m2 = m3) were assigned so as to obtain the best result on
average of PSNR for a given bit-rate, although there may be other
combinations of parameters that would optimize a particular image [16].

In Table 2.11 the PSNR obtained for all tested images as a function of the
bit-rate (R) is presented. As expected, for higher rates (R), which means
removing few bits in the encoding process, MPCM algorithm generally

2.2. Results 35

provides good PSNR due to the fact that no significant loss occurs in the
coding process, and consequently, not big errors are introduced in the
decoding process. Therefore, the lower rate (R), the lower PSNR value.

15

20

25

30

35

40

45

0 1 2 3 4 5 6

P
S

N
R

 (
d

B
)

Bit-rate (bpp)

Tractor_PCM

Tractor_MPCM

Figure 2.14. PSNR as a function of bitrate using image Tractor encoded
with MPCM and PCM.

In Figure 2.14 the comparison between MPCM and PCM coding is shown.
PSNR values are represented as function of the rate for the image Full-HD
(1080p), Tractor. As can be seen, MPCM obtains the same quality than PCM
at low compression rates. However, at high compression rates, MPCM obtains
a PSNR improvement up to 15 dB, when compared to PCM. When the
previous image is compressed with MPCM, at 6 bpp and 5 bpp non perceptual
inequality is observed regarding the original image, as can be seen in
Figure 2.15. However, some differences begin to be appreciated at a rate of
4bpp.

In Figure 2.16, the maximum frame rate achievable for the proposed
architecture is presented. As shown, the hardware implementation of the
MPCM encoder is able to compress up to 3558 frames per second for
HD-Ready resolution (720p) or up to 1581 frames per second for Full-HD
resolution (1080p). The high speed encoding process makes high speed
cameras be able to capture continuously and grab without the restrictions of
the internal RAM size. Futhermore, this hardware encoder only uses 1% of all
the available area of the FPGA, so it could be used to deploy multiple identical
encoders that could run concurrently incrementing the available recording
time of a high-speed camera.

36 Chapter 2. Research results

(a) Image Full-HD 1920x1080

(b) Decoded Image at 6bpp (44.73dB)

(c) Decoded Image at 5bpp (40.22dB)

(d) Decoded Image at 4bpp (35.44dB)

Figure 2.15. A set of four monochromatic images (Tractor 1920x1080) de-
coded with MPCM: (a) Original image; (b) At 6pp; (c) At 5pp; (d) At 4pp.

2.2. Results 37

3558

1581

395

99

0

500

1000

1500

2000

2500

3000

3500

4000

1280x720 1920x1080 3840x2160 7680X4320

F
ra

m
e
s
/s

Image resolution

Figure 2.16.Maximum encoded frames per second for different monochro-
matic image resolutions

As far as the decoder is concerned, in Figure 2.17 the maximum decoding
frame rate achievable for the hardware architecture is shown. As can beseen,
the hardware implementation of the MPCM decoder is able to recover up to
434 frames per second for HD-Ready (720p) resolution or up to 193 frames
per second for Full-HD (1080p) resolution, which corresponds to a throughput
of 50 MBytes/s, making available to reproduce high definition cinema at high
frame rates. As in encoder, the hardware resources required by the decoder is
less than a 1%.

434

193

48

12

0

50

100

150

200

250

300

350

400

450

500

1280x720 1920x1080 3840x2160 7680X4320

F
ra

m
e
s
/s

Image resolution

Figure 2.17.Maximum decoder frames per second for different image reso-
lutions

38 Chapter 2. Research results

Regarding coding speed, the results show that the MPCM hardware
implementation is able to compress a full-HD (1080p) resolution picture at
1581 fps. Indeed, the maximum achievable throughput bandwidth is 409.84
MBytes/s which permits the continuous grabbing of a nowadays high-speed
camera at an image resolution of HD-ready and a reasonable good quality.
Regarding decoding process, the decoder design is able to recover images at
193 fps for full-HD resolution, with an occupied board area of less than 1%, as
in encoder system.

Chapter 3

Conclusions and future work

Contents
3.1 Conclusions and future research lines 40

3.2 Conclusiones y futuras ĺıneas de investigacíon 41

3.3 Other publications . 43

39

40 Chapter 3. Conclusions and future work

3.1 Conclusions and future research lines

In this thesis, the topic of high-resolution video encoding in real-time and even
at ultra-high frame rates has been dealt. However, data storage capability,
communication bandwidth, processing time and power consumption are
critical parameters that should be carefully considered. In order to overcome
these limitations, the use of encoders with the best coding efficiency is
advisable, such as, in this case, MPCM which has properties similar to those
of PCM (low complexity, random access, and scalability) but with a better
coding efficiency, or the lastest video coding standard HEVC which improves
its predecessor standard H264/AVC by doubling its compression efficiency.
Nevertheless, these codecs demand an overwhelming computational cost,
especially when removing temporal and spatial redundancy. In order to
overcome the previous drawbacks and reduce overall video encodingtime, we
have worked in the hardware implementation on FPGAs of several codecs’
modules. The analysis and assessment of the results described previously in
Section 2.2, shows that the proposed solutions obtain a good balance between
acceleration of enconding process (complexity reduction) and coding
performance.

Firstly, regarding the IME hardware unit for the HEVC video encoder
implemented on a Virtex-7 FPGA, this FPGA-based design is able to process
video sequences of 2K resolution at 116 fps and 4K video sequences at 30 fps,
which represents a huge acceleration of the HEVC video encoding process,
achieving real-time encoding for high-definition video contents and beyond.
Futhermore, the impact of the configuration parameters, such as maximum
CTU and search area sizes, over the encoder complexity and the resulting
video quality has been analyzed. The results show that both encoder
complexity and encoding time decreases as both the maximum CTU size and
the search area do, having a negligible impact in terms of R/D. Differences in
R/D are negligible for all configurations, being 2.7% the maximum BD-rate
increment for a CTU size of 32x32 and 0.1% for a CTU size of 64x64. In
addition, the complete hardware ME architecture including DMA transfers has
been evaluated when the previous hardware IME design is applied to a SoC
platform Zynq-7 Mini-ITX Motherboard. The results show that throughput
increases as the DMA transfer does, being 10,626 the maximum number of
CUs per second processed with the fastest configuration (32x32 CTU size, and
a SR of 50% of the CTU size). Also, it can be observed that the system
bottleneck resides in the DMA transfer process, requiring the 95% of the total
processing time of a single CTU. The best DMA burst size in order to obtain
the least encoding time is 256 32-bit words. To sum up, with the inclusion of
our hardware IME design, the encoding time can be speed-up 558 times when

3.2. Conclusiones y futuras lı́neas de investigación 41

compared with the software reference HM version.

Secondly, with regard to image coding, the hardware implementation of the
MPCM codec is able to compress Full-HD (1080p) resolution images at 1,581
fps. The maximum achievable throughput bandwidth is 409.84 MBytes/s which
permits the continuous capturing of a nowadays high-speed camera at an image
resolution of HD-ready (1280x720p) and at reasonable good quality.If the
final application required a higher image quality, this hardware encoder would
be able to give up to 1,640 MBytes/s at a 2:1 compression rate, incrementing
the grabbing time over the high-speed camera. Regarding the decoder side, this
design is able to recover images at 193 fps of a Full-HD resolution.

Therefore, based on the results obtained and the conclusions of this work,
the initial objectives of the thesis have been reached.

Future research lines, which are already underway, will continue in the field
of video coding, specifically based on the HEVC standard. In more detail, the
following future work is proposed:

• To create a complete application that incorporates our hardware IME
architecture as an own IP to the HEVC encoder, using the DMA module
and its corresponding drivers, which will be executed on a linux system
embedded in the evaluation platform Zynq-7 Mini-ITX Motherboard
XC7Z100 (xc7z100ffg900-2).

• To study the different configurations of the DMA module and extend this
study to perform an efficient parallel processing that optimizes the whole
IME design, trying to eliminate the bottleneck generated by the DMA.

• To include several optimizations to the motion estimator, such as adding the
R/D computation.

• To study the next most computationally complex modules of the HEVC en-
coder, such as Intra prediction (removal of spatial redundancy), and create a
new hardware module that implements these functions.

3.2 Conclusiones y futuras ĺıneas de investigacíon

En esta tesis, se ha tratado el tema de la codificación de v́ıdeo de alta
resolucíon en tiempo real e incluso a velocidades de frame ultra-altas. Sin
embargo, la capacidad de almacenamiento de datos, el ancho de banda de
comunicacíon, el tiempo de procesamiento y el consumo de energı́a son
paŕametros cŕıticos que deben ser cuidadosamente considerados. Con el fin de

42 Chapter 3. Conclusions and future work

superar estas limitaciones, es aconsejable el uso de codificadores con lamejor
eficiencia de codificación posible, tal como, en este caso, el códec MPCM y el
est́andar HEVC. El ćodec MPCM tiene propiedades similares a las del
codificador PCM (baja complejidad, acceso aleatorio y escalabilidad) perocon
una mejor eficiencia de codificación, y el último est́andar de codificación de
vı́deo HEVC que mejora al estándar previo, H264/AVC, duplicando su
eficiencia de compresión. Sin embargo, estos códecs tienen una complejidad y
un coste computacional abrumador, especialmente en los bloques responsables
de eliminar la redundancia temporal y espacial. Con el fin de superar los
inconvenientes anteriores y reducir el tiempo total de codificación de v́ıdeo, en
la presente investigación se ha trabajado en la implementación hardware sobre
FPGAs de varios ḿodulos de estos códecs. El ańalisis y la evaluacíon de los
resultados obtenidos y descritos anteriormente en la Sección 2.2 muestran que
las soluciones propuestas son muy ventajosas, obteniendo una considerable
aceleracíon en la codificacíon de imagen y v́ıdeo.

En primer lugar, se ha presentado una unidad IME hardware del
codificador de v́ıdeo HEVC implementado en un FPGA Virtex-7. Este diseño
basado en FPGA es capaz de procesar formatos de vı́deo 2K a 116 fps y
secuencias de vı́deo 4K a 30 fps, lo que representa una enorme aceleración del
proceso de codificación de v́ıdeo con HEVC, logrando codificar en tiempo real
contenidos de v́ıdeo de alta definición y más. Adeḿas, se ha analizado el
impacto de los parámetros de configuración sobre la complejidad del
codificador y la calidad de vı́deo resultante, tales como los tamaños del CTU
máximo y del área de b́usqueda. Los resultados muestran que tanto la
complejidad del codificador como el tiempo de codificación disminuyen seǵun
lo hacen los tamãnos del CTU y deĺarea de b́usqueda, teniendo un mı́nimo
impacto en t́erminos de R/D. Las diferencias en R/D son insignificantes para
todas las configuraciones, siendo el incremento máximo de BD-rate un 2,7%
para un tamãno de CTU de 32x32 y un 0,1% para un tamaño de CTU de
64x64. Adeḿas, tambíen se ha evaluado la arquitectura hardware del IME
completo, incluyendo las transferencias DMA, cuando el diseño IME
hardware se implementa sobre una placa de evaluación Zynq-7 Mini-ITX
SoC. Los resultados muestran que el rendimiento aumenta a medida que el
tamãno de la ŕafaga de transferencia lo hace, siendo 10.626 los CUs por
segundo ḿaximos procesados, con la configuración más ŕapida (CTU de
32x32 ṕıxeles, y un SR del 50% del tamaño del CTU). Asimismo, se puede
observar que el cuello de botella del sistema reside en el proceso de
transferencia del DMA, requiriendo el 95% del tiempo total de procesamiento
de un CTU. El mejor tamãno de ŕafaga del DMA para obtener el menor
tiempo de codificación es de 256 palabras de 32 bits. En resumen, con la
inclusión de nuestro diseño hardware del IME, el tiempo de codificación

3.3. Other publications 43

puede acelerarse 558 veces en comparación con la versíon software del IME.

En segundo lugar, con respecto a la codificación de iḿagenes, la
implementacíon hardware del ćodec MPCM es capaz de comprimir una
imagen de resolución full-HD (1080p) a 1.581 fps. El ancho de banda máximo
que se alcanza es de 409,84 MBytes/s, lo que permite la captura continua de
una ćamara de alta velocidad con una resolución de imagen de 1280x720p y
una calidad razonable. Si la aplicación final requiriese una calidad de imagen
superior, este codificador hardware podrı́a alcanzar hasta 1.640 MBytes/s a
una tasa de compresión de 2:1, incrementando el tiempo posible de grabación
en la ćamara de alta velocidad. Con respecto al bloque del decodificador, este
disẽno es capaz de recuperar imágenes a 193 fps a una resolución full-HD.

Por tanto, en base a los resultados obtenidos y las conclusiones de este
trabajo, podemos asegurar que se han alcanzado los objetivos iniciales de la
presente tesis.

Las ĺıneas de investigación futuras, que ya están en marcha, continuarán
en el campo de la codificación de v́ıdeo, en concreto, basándose en el estándar
HEVC. En concreto, se proponen los siguientes trabajos futuros:

• Crear una aplicación completa que incorpore nuestra arquitectura hardware
IME como un IP intŕınseco al codificador HEVC, mediante el módulo DMA
y sus drivers correspondientes, que será ejecutado sobre un sistema linux
embebido en la plataforma de evaluación Zynq-7 Mini-ITX Motherboard
XC7Z100 (xc7z100ffg900-2).

• Estudiar las diferentes configuraciones del módulo DMA y extender este
estudio para realizar un procesamiento en paralelo más eficiente que
optimice el disẽno completo del IME, intentando eliminar el cuello de
botella que el DMA genera.

• Incluir diversas optimizaciones al estimador de movimiento, como por
ejemplo, ãnadir el ćalculo del R/D.

• Estudiar el resto de los ḿodulos ḿas costosos computacionalmente del
codificador HEVC, como puede ser la predicción Intra (eliminacíon de la
redundancia espacial), y crear nuevos módulos hardware que implementen
dichas funciones.

3.3 Other publications

The author of the present thesis has participated in the following additional
publications, related to the implementation of image/video codecs on FPGAs:

44 Chapter 3. Conclusions and future work

• Estefania Alcocer, Otoniel Lopez-Granado, Roberto Gutierrez, and Manuel
P. Malumbres, “Evaluation of HEVC hardware IME using SoC platform”,
XXXI Edition of Design of Circuits and Integrated Systems Conference
(DCIS2016), Granada, Noviembre 2016.

• Estefania Alcocer, Otoniel Lopez-Granado, Roberto Gutierrez, and Manuel
P. Malumbres, “Implementation of a low latency motion estimator for
HEVC encoder on FPGA”, 3rd International Conference on Advances in
Information Processing and Communication Technology (IPCT15), the
IRED, Roma, December 2015.

Bibliography

[1] Youn-Long Steve Lin, Chao-Yang Kao, Hung-Chih Kuo, and Jian-Wen
Chen, editors.VLSI Design for Video Coding. Springer, 2010.

[2] Mpeg the moving picture experts group. http://mpeg.chiariglione.org/.
Accessed 28 April 2017.

[3] Itu-t standardization on visual coding - the video cod-
ing experts group vceg. http://www.itu.int/en/ITU-
T/studygroups/com16/video/Pages/default.aspx. Accessed 28 April
2017.

[4] S. M. Trimberger and J. J. Moore. Fpga security: Motivations, features,
and applications.Proceedings of the IEEE, 102(8):1248–1265, Aug 2014.

[5] Dong-U Lee.Hardware Designs for Function Evaluation and LDPC Cod-
ing. PhD thesis, Imperial College, London, 2004.

[6] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand. Overview of the
high efficiency video coding (hevc) standard.IEEE Transactions on Cir-
cuits and Systems for Video Technology, 22(12):1649–1668, Dec 2012.

[7] Xilinx 7 Series FPGAs. Virtex-7 t and xt fpgas data sheet.
https://www.xilinx.com/support/documentation/datasheets/ds183Virtex
7 DataSheet.pdf. Accessed 2 May 2017.

[8] Hevc software repository hm–14.0 reference model.
https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-14.0. Accessed
26 April 2017.

[9] Vision Research and Ametek Materials Analy-
sis Division. Phantom ultrahigh-speed cameras.
http://http://www.phantomhighspeed.com/products/ultrahigh-speed-
cameras. Accessed 28 March 2017.

[10] Photron. Fastcam sa series. https://photron.com/product-
category/cameras/sa-series/. Accessed 28 March 2017.

45

46 Bibliography

[11] Fastec Imaging. Hispec 5. http://www.fastecimaging.com/products/tethered-
cameras/hispec-5. Accessed 28 March 2017.

[12] ix Cameras. i-speed 3 series. http://www.ix-cameras.com/3-Series/. Ac-
cessed 28 March 2017.

[13] Nuggehally S Jayant and Peter Noll, editors.Digital Coding of Wave-
forms: Principles and Applications to Speech and Video. Prentice-Hall,
Englewood Cliffs, 1984.

[14] Peter Gemeiner, Wolfgang Ponweiser, Peter Einramhof, and Markus
Vincze. Real-time slam with a high-speed cmos camera. In14th In-
ternational Conference on Image Analysis and Processing (ICIAP 2007),
pages 297–302, Sept 2007.

[15] J. Prades-Nebot, A. Roca, and E. Delp. Modulo-pcm based encoding for
high speed video cameras. InImage Processing, 2008. ICIP 2008. 15th
IEEE International Conference on, pages 153–156, oct. 2008.

[16] Marleen Morbee. Optimized information processing in resource-
constrained vision systems. PhD thesis, Universidad PolitÃ©cnica de
Valencia, Universiteit Gent, 2011.

[17] Xilinx. Vivado design suite user guide.
https://www.xilinx.com/support/documentation/sw manuals/xilinx2017 1/
ug910-vivado-getting-started.pdf. Accessed 9 May 2017.

[18] Frank Bossen. Common test conditions and software reference config-
urations. Technical report, Joint Collaborative Team on Video Coding
(JCT-VC), Geneva (Switzerland), January 2013.

[19] Xilinx. Xilinx zynq-7000 all programmable soc zc702 evalua-
tion kit. https://www.xilinx.com/products/boards-and-kits/ek-z7-zc702-
g.html. Accessed 9 May 2017.

[20] Xilinx. Avnet zynq-7000 all programmable soc mini-itx develop-
ment. https://www.xilinx.com/products/boards-and-kits/1-4b47l9.html.
Accessed 9 May 2017.

[21] A. Medhat, A. Shalaby, M. S. Sayed, M. Elsabrouty, and F. Mehdipour. A
highly parallel sad architecture for motion estimation in hevc encoder. In
2014 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS),
pages 280–283, Nov 2014.

[22] T. D’huys, S. Momcilovic, F. Pratas, and L. Sousa. Reconfigurable data
flow engine for hevc motion estimation. In2014 IEEE International Con-
ference on Image Processing (ICIP), pages 1223–1227, Oct 2014.

Bibliography 47

[23] Xu Yuan, Liu Jinsong, Gong Liwei, Zhang Zhi, and R. K. F. Teng. Ahigh
performance vlsi architecture for integer motion estimation in hevc. In
2013 IEEE 10th International Conference on ASIC, pages 1–4, Oct 2013.

[24] G. Bjontegaard. Document vceg-m33: Calculation of average psnrdif-
ferences between rd-curves. Technical report, ITU-T VCEG Meeting,
Austin, Texas, USA, Tech. Rep, 2001.

[25] Xilinx Zynq-7000. Zynq-7000 all programmable soc
overview, advance product specification - ds190 (v1.2).
http://www.xilinx.com/support/documentation/datasheets/ds190-Zynq-
7000-Overview.pdf. Accessed 26 April 2017.

48 Bibliography

Appendix I

Acronyms

49

50 Appendix I. Acronyms

AMP Asymmetric Motion Partition

AP All Programmable

AV Audio and Visual

AVC Advanced Video Coding

BRAM Block Random Access Memory

CLB Configurable Logic Block

CTU Coding Tree Unit

CU Coding Unit

DDR Double Data Rate

DMA Direct Memory Access

DS Diamond Search

fps frames per second

FPGA Field Programmable Gate Array

FS Full Search

Gb Gigabit

HD High Definition

HEVC High Efficiency Video Coding

HM HEVC Test Model

IME Integer Motion Estimation

IP Intellectual Property

I /O Input-Output

LUT Look-up table

ME Motion Estimation

MPCM Module Pulse Code Modulation

MV Motion Vector

PCM Pulse Code Modulation

51

PE Processing Element

PL Programmable Logic

PS Processing System

PSNR Peak Signal-to-Noise Ratio

PU Processing Unit

R/D Rate Distortion

RAM Random Access Memory

ROM Read Only Memory

RTL Register-Transfer Level

SAD Sum of Absolute Differences

SATB SAD Adder Tree Block

SI Side Information

SDRAM Synchronous Dynamic Random Access Memory

SoC System-On-Chip

SPS Sequence Parameter Set

SR Search Range

UHD Ultra High Definition

VRML Virtual Reality Modeling Language

52 Appendix I. Acronyms

Appendix II

Articles

53

54 Appendix II. Articles

This dissertation has been carried out in the modality of a doctoral thesis
presented with a set of publications. According to the Internal Regulationsof
the Miguel Hernandez University for the presentation of doctoral theses with a
set of publications, the articles presented in their original language are attached
in this appendix.

• Design and implementation of an efficient hardware integer motion
estimator for an HEVC video encoder
Estefania Alcocer, Roberto Gutierrez, Otoniel Lopez-Granado, and Manuel
P. Malumbres
Journal of Real-Time Image Processing. Springer Verlag Berlin Heidelberg
2016
ISSN 1861-8219
http://dx.doi.org/10.1007/s11554-016-0572-4

• MPCM: a hardware coder for super slow motion video sequences
Estefania Alcocer, Otoniel Lopez-Granado, Roberto Gutierrez, and Manuel
P. Malumbres
EURASIP Journal on Advances in Signal Processing 2013. SpringerOpen
Journal
ISSN 1687-6180
http://dx.doi.org/10.1186/1687-6180-2013-142

Next, the classification of the journals where the articles are published
within the Journal Citation Reports index.

• Journal of Real-Time Image Processing
Impact factor: 1.564
Category Name: ENGINEERING, ELECTRICAL & ELECTRONIC
Total Journals in Category: 257
Journal Rank in Category: 104
Quartile in Category:Q2
Year: 2015

• EURASIP Journal on Advances in Signal Processing
Impact factor: 0.808
Category Name: ENGINEERING, ELECTRICAL & ELECTRONIC
Total Journals in Category: 248
Journal Rank in Category: 164
Quartile in Category:Q3
Year: 2013

55

The following list indicates the affiliation of the articles’ coauthors
presented in this thesis.

• Estefańıa Fátima Alcocer Espinosa
ealcocer@umh.es
Materials Science, Optics and Electronic Technology department
Miguel Herńandez University
03202, Elche, Alicante, Spain

• Roberto Gutiérrez Mazón
roberto.gutierrez@umh.es
Communication Engineering department
Miguel Herńandez University
03202, Elche, Alicante, Spain

• Otoniel Mario L ópez Granado
otoniel@umh.es
Physics and Computer Architecture department
Miguel Herńandez University
03202, Elche, Alicante, Spain

• Manuel Jośe Ṕerez Malumbres
mels@umh.es
Physics and Computer Architecture department
Miguel Herńandez University
03202, Elche, Alicante, Spain

ORIGINAL RESEARCH PAPER

Design and implementation of an efficient hardware integer
motion estimator for an HEVC video encoder

Estefania Alcocer1 • Roberto Gutierrez2 • Otoniel Lopez-Granado1 •

Manuel P. Malumbres1

Received: 30 September 2015 / Accepted: 26 February 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract High-Efficiency Video Coding (HEVC) was

developed to improve its predecessor standard, H264/AVC,

by doubling its compression efficiency. As in previous

standards, Motion Estimation (ME) is one of the encoder

critical blocks to achieve significant compression gains.

However, it demands an overwhelming complexity cost to

accurately remove video temporal redundancy, especially

when encoding very high-resolution video sequences. To

reduce the overall video encoding time, we propose the

implementation of the HEVC ME block in hardware. The

proposed architecture is based on (a) a new memory scan

order, and (b) a new adder tree structure, which supports

asymmetric partitioning modes in a fast and efficient way.

The proposed system has been designed in VHDL (VHSIC

Hardware Description Language), synthesized and imple-

mented by means of the Xilinx FPGA, Virtex-7

XC7VX550T-3FFG1158. Our design achieves encoding

frame rates up to 116 and 30 fps at 2 and 4K video formats,

respectively.

Keywords HEVC � FPGA � Integer motion estimation �
Inter-prediction � SAD architecture

1 Introduction

The High-Efficiency Video Coding (HEVC) standard is the

most recent joint video project of the ITU-T VCEG and

ISO/IEC MPEG standardization organizations, working

together in a partnership known as the Joint Collaborative

Team on Video Coding (JCT-VC) [1]. Previous video

coding standards are currently used for many applications

such as broadcast of High-Definition (HD) TV, video

content acquisition, Internet and mobile video streaming,

and real-time conversational applications. However, new

video services with UltraHigh-Definition (UHD) formats

are emerging, which need higher coding efficiency than

previous standards. HEVC has been designed to deal with

these demands, working with higher video resolutions and

adapting its design to allow the use of parallel processing

techniques. It can compress video about twice as much as

its predecessor, H264/AVC, without sacrificing quality,

providing video delivery with higher resolutions and frame

rates, higher dynamic range, and a wider color gamut.

Furthermore, HEVC contains new key features that are

friendly with the use of parallel processing techniques [2].

As in previous video standards, Motion Estimation (ME)

is one of the most critical modules in the video encoding

process since it is able to efficiently remove the temporal

redundancy between successive frames. However, the ME

module is by far the most complex task of the encoder,

requiring more than 90 % of the encoding time [3].

In HEVC, the complexity is even more critical due to

several issues such as (a) a large set of Coding Tree Unit

(CTU) partitioning modes, (b) the presence of multiple

reference frames, and (c) the varying size of Coding Units

(CU) in comparison with its predecessor H264/AVC. In

addition, HEVC adopts Variable Block Size Motion Esti-

mation (VBSME) to obtain advanced coding efficiency,

& Estefania Alcocer

ealcocer@umh.es

1 Physics and Computer Architecture department, Miguel

Hernandez University of Elche, Alicante, Spain

2 Communication Engineering department, Miguel Hernandez

University of Elche, Alicante, Spain

123

J Real-Time Image Proc

DOI 10.1007/s11554-016-0572-4

which comes at the expense of a huge increase of com-

putational complexity.

For these reasons, several hardware architectures have

been proposed to speed up the HEVCME module, reducing

the overall encoder complexity as much as possible. The

Integer-pel Motion Estimation (IME) block is in charge of

motion estimation and it is composed of (a) an integermotion

search algorithm, and (b) a Rate/Distortion (R/D) opti-

mization procedure that optimally reduces the temporal

redundancy found at the video sequence. In most of the

works found in the literature, the proposed IME hardware

architectures are only focused on the motion search algo-

rithm since it takes most of the computational complexity of

the IME block. There are a lot of motion search algorithms

that can be used to find the motion in video sequences. The

most popular in hardware implementations is the Full Search

(FS) algorithm. It follows greedy behavior by searching for

motion at all points of the established search area of a ref-

erence frame, and, as a consequence, it is able to provide an

optimal result (i.e., a motion vector that minimizes the

residual error of the actual CTU).

The architecture proposals in [3, 4, 6, 7, 9] present an IME

hardware block using FS strategy. In [3], a Sum of Absolute

Differences (SAD) unit on a Field-Programmable Gate

Array (FPGA) is proposed that is able to test all partition

modes of a CTU except the set of asymmetric partition

modes. Authors fixed a search area size lower than the one

established by the standard, being able to run as fast as 30 fps

at 2k video resolutions. The work presented in [4] proposes a

SAD unit that computes all CTU partitions, achieving the

same frame rates as previous work at 4k video formats. In

their proposal, the search area has the same size as the

maximum CTU, being implemented on an Application-

Specific Integrated Circuit (ASIC). In [6], the maximum

CTU size is reduced to 32� 32with a search area size of�23

pixels. This architecture is implemented on an FPGA device

and achieves 30 fps at 1080p video resolutions. Different

configurable search areas are studied in [7], achieving a

maximum frame rate of 57 fps for a 720p video resolution.

Several SAD units implemented on FPGA are described in

[9], with different levels of parallelization, but no data about

search area size, memory management, or how they obtain

the minimum SAD are included.

On the other hand, [5, 8, 15] have proposed architectures

which increase the throughput by limiting the number of

searches in the reference frame. In [15], a motion estima-

tion system for the HEVC encoder is presented. This

design includes both integer-pel and fractional-pel motion

estimation, achieving video encoding speeds of

1080p@60fps and 2160p@30fps when implemented over

FPGA and ASIC technologies, respectively. The process in

[15] is interrupted when the number of motion searches

arrives at a limit fixed for a given resolution.

In addition, in [5] and [8], different implementations of

suboptimal motion search strategies called fast ME algo-

rithms, such as new Diamond Search (DS) or new Three Step

Search (TSS), are shown. Similar hardware ME architectures

have alsobeen studied for the previousH264/AVCstandard in

[10–14], which are of interest for our work due to the high

similarity of the IME block architecture in both standards.

Therefore, our purpose is to design a new hardware

architecture that may perform IME computation in a fast

and accurate way to significantly reduce the computation

cost of the overall encoder. We will use FPGA technology,

since it encourages design reuse and can greatly enhance

the upgradability of digital systems. The programmability

of FPGAs is particularly useful for highly flexible encoding

systems that can accommodate a multitude of existing

standards as well as the emergence of new ones [12].

Regarding the novelty of the proposed architecture, we

present both innovative techniques: (a) a new SAD adder

tree structure, and (b) a new memory scan order.

Firstly, we designed a new SAD adder tree structure to

perform the additions at the first level of the tree, starting from

the maximum size of the CTU, and halving the amount of

additions at the next tree levels. This approach is different from

the rest of state-of-the-art works, which divide a CTU into

smaller blocks for consecutive accumulations, keeping the

same additions in each step and thus requiring a higher number

of steps to acquire all SADs. With our proposal, we took

advantageof the resources providedby theFPGA,obtaining the

minimum possible latency when calculating SADs of all levels

and partitions for a CTU. In this way, SADs corresponding to

asymmetric partitions are obtained in a fast and efficient way.

Secondly, regarding the new memory scan order, a

series of reconfigurable shift registers and processing ele-

ments are responsible for storing the necessary pixels of

both reference and current frames, keeping them always

available for calculating the SADs and MVs of a CTU.

With our system, we avoid external memory accesses since

available data are highly reused by reconfiguring the dis-

placement in a more efficient way.

The rest of the paper is organized as follows. Section 2

describes the HEVC ME module. Section 3 presents the

architecture design of the proposed ME system while in

Sect. 4, implementation results are provided in terms of

hardware resources, time encoding, and R/D performance.

Finally, in Sect. 5 some conclusions are drawn.

2 HEVC motion estimation

The motion estimation technique is based on the similarity

between adjacent video frames, predicting the current

frame based on a previous or subsequent reference frame in

order of appearance.

J Real-Time Image Proc

123

The Motion Vector (MV) represents the translational

movement of a picture area in the current frame compared

to its position in the reference frame. This movement is

found inside a defined search area to bound the overall

motion search complexity, as shown in Fig. 1.

In the ME process, each video frame is subdivided and

partitioned into basic coding units called CTUs. The coding

structure in HEVC consists of CUs with a maximum size of

64 � 64 pixels, as large as that of CTUs, which can be

recursively divided into picture squares until achieving a

block size of 8 � 8 pixels. Each CU consists of prediction

units (Intra- or Inter-) and its size can vary from the

maximum size of the CU to 4 � 4 pixels for Intra pre-

diction, or to 4 � 8 or 8 � 4 for inter-prediction, supporting

8 partitioning modes as shown in Fig. 2. Prediction units of

sizes 2N � 2N and N � N are called square motion par-

titions (square); 2N � N and N � 2N as Symmetric Motion

Partitions (SMP); and 2N � nU, 2N � nD, nL � 2N, and

nR � 2N as Asymmetric Motion Partitions (AMP). The

total number of different partitions for a 64 � 64 CTU is

more than 600, and for each of these partitions, the HEVC

encoder performs one ME process to determine the best

CTU partitions in terms of bit rate and video quality.

There are many kinds of algorithms for block-based

IME. The most accurate strategy is the FS algorithm, which

exhaustively finds motion for all prediction unit blocks at

every single point of the established search area. Due to

computational regularity and excellent video quality, FS

motion estimation is commonly employed in hardware

implementations [16]. Therefore, we will focus our work

towards the design and hardware implementation of an FS

algorithm that is able to significantly speed up the motion

estimation process of the HEVC encoder without losing

R/D performance.

3 Hardware architecture

In this section, we present a high-performance IME hard-

ware unit in HEVC that provides the minimum SADs and

associated MVs of all possible partitions from a 64 � 64

CTU for inter-prediction, exploiting parallelism in an

efficient way. The system is composed of memory areas for

current CU and reference search area pixels, 64 Processing

Units (PU), one SAD Adder Tree Block (SATB), and one

comparison block that saves the minimum SAD values and

their corresponding MVs for all CU partitions. Figure 3a

shows the proposed hardware architecture.

As shown in Fig. 3b, one PU consists of 64 Processing

Elements (PEs), where each PE computes the difference of

both the current and the reference pixel (see Fig. 3c). So

each PU calculates the distortion values of a column of 64

pixels. At each clock cycle, current and reference pixel

columns are delivered to the 64 PUs, being able to compute

the pixel distortion values of a 64 � 64 block (maximum

CU size) just in one clock cycle, that is, all distortions

needed to obtain the SAD of a 64 � 64 CU in a particular

position of the search area are calculated in just one clock

cycle. The next block in our system, SATB, computes the

SADs for all the possible prediction units (more than 600)

by properly grouping the 64 � 64 pixel distortions obtained

before.

The process described above is performed for each of

the positions of the search area, delivering the SADs to the

comparison block, which is in charge of storing the mini-

mum SADs with their corresponding MVs for each pre-

diction unit of current CU. Table 1 lists the total number of

different SAD partitions for a 64 � 64 CU.

3.1 Memory read controller block

The memory read controller block is composed of a Block-

RAM (BRAM) memory and a set of shift registers.

(a) Current and reference frames

(b) Obtaining motion vector

Fig. 1 Motion estimation

Fig. 2 Predictions units within a CU

J Real-Time Image Proc

123

A BRAM consists on an embedded memory block within

the FPGA. Pixels belonging to the search area of the ref-

erence frame are stored in the BRAM and current CTU

pixels are saved in each PE. The reference pixels are spread

from BRAM to the set of shift registers that are responsible

for feeding PEs to calculate the distortion of the current

CTU in a particular search area position.

The search area is just centered on the location of cur-

rent CTU and the default search window spans �64 pixels

from the current CTU position, which defines a 128 � 128

search area as shown in Fig. 4, that is, the current CTU will

be matched in 128 � 128 different pixel positions, being

necessary to load on BRAM memory the pixels belonging

to a reference frame area of 191 � 191 pixels.

To provide high data reuse, a snake scan order and a

reconfigurable data path with 64 propagation registers are

adopted. The snake scan order visits all positions of the

search area following a Hamiltonian path composed by

consecutive vertical scans with alternating directions (the

first vertical scan begins from top to bottom, then moves

one pixel to the right and starts the next vertical scan in a

bottom to up direction, and so on) as illustrated in Fig. 4.

So, there are three scanning directions U (upward), D

(downward), and R (rightward).

The current 64 � 64 CTU pixels are stored in the PEs

only once (at the beginning). The reference pixels will also

be loaded to the PEs but instead of loading from BRAM

will be loaded from the shift registers, since they will help

us to perform the snake scan order and as a consequence a

huge reduction of memory load operations will be

achieved.

So, the memory controller will be the one that manages

the shift registers set by loading rows of 64 pixels from the

reference frame area (BRAM) and performing the shift

register operations to cope with the snake scan order.

In Fig. 5, a diagram with the shift register set and the

loading and shifting operations is shown. At the begin-

ning, the register set is empty, so we have to perform

several (64) load and shift operations before calculating

the first SAD. As can be seen in Fig. 5, the first 64 clock

cycles are dedicated to load the first 64-pixel rows start-

ing from the left most upper position of the search area,

following a downward (D) scan direction. In this figure,

each 64-pixel row is labeled with the (x,y) pixel locations

of the reference frame area. After loading the 64x64

reference frame block, all the pixels are sent to the PEs to

compute the SAD in just one cycle (remember that the

actual 64 � 64 CU pixels are already stored in the PEs

waiting for this operation). At this point, the first SAD is

computed. After that, we proceed in the D scan direction

to compute the SAD of the next search area position. For

this purpose, we only need to load an additional 64-pixel

row in the D scan direction. So, in one clock cycle, (a) a

right-shift operation takes place, discarding the first pixel

row stored in the shift register 63, and (b) the new pixel

row is loaded from BRAM in shift register 0. Then, the

64 � 64 pixels stored in the shift registers are sent to the

PEs to compute a new SAD.

After computing the last SAD in the downward scanning

direction, we have to change the scan direction from D to

R, following the snake pattern described before. Moving

the search area position one pixel to the right could be easy

if we simply shift to the left one pixel in all shift registers

(see Fig. 5 at the R scan direction). So, shift registers will

(a) Hardware block architecture

(b) Processing Unit (PU)

(c) Processing Element (PE)

Fig. 3 Proposed IME architecture

J Real-Time Image Proc

123

contain the 64 � 64 search area block corresponding to the

new position, and ready for the corresponding SAD

computation.

After computing this SAD, we again change the scan

direction from R to U, so we need to load a new 64-pixel

row from BRAM, but now the loading is performed in the

last shift register (63) and the register shift operation will

be set to the left, discarding the contents of the first shift

register (0).

The new SAD may now be computed, and as the scan

direction is upwards, loading and shifting operations will

be performed in the same way until a new change in scan

direction is found.

This procedure will iterate until all searching area

positions have been processed, providing one SAD at every

clock cycle to the next module in the proposed architecture,

the SATB.

3.2 SAD adder tree block

The SATB block is in charge of computing the SAD values

for all partitions of each 64 � 64 CTU at every clock cycle.

For inter-prediction, the HEVC standard proposes a parti-

tion size that ranges from 64 � 64 (maximum CU size) to 4

� 8/8 � 4 with different shapes—square, symmetric, and

asymmetric partitions. After receiving the 64 � 64 dis-

tortions associated to the current search area position, a

succession of aggregation stages are performed in this

block to compute the corresponding SAD values for all the

CTU partitions (a total number of 677), as shown in Fig. 6.

At the first stage, Fig. 6a, all pairs of consecutive dis-

tortion columns/rows of the input 64 � 64 SAD block (M =

64) are added, reducing the width/height of the resulting

partition by one-half, until the block size of these added

distortions is reduced to 16 � 16, from which the first

SADs are obtained.

At the next three intermediate stages, a similar process

to the one described above is followed. The successive

Table 1 Total number of SADs

for each partition in a 64 � 64

CU

Block size No. of SADs Block size No. of SADs

64 � 64 (2N � 2N) 1 32 � 32 (2N � nU) 8

64 � 64 (2N � N) 2 32 � 32 (2N � nD) 8

64 � 64 (N � 2N) 2 16 � 16 (2N � 2N) 16

64 � 64 (N � N) 4 16 � 16 (2N � N) 32

64 � 64 (nL � 2N) 2 16 � 16 (N � 2N) 32

64 � 64 (nR � 2N) 2 16 � 16 (N � N) 64

64 � 64 (2N � nU) 2 16 � 16 (nL � 2N) 32

64 � 64 (2N � nD) 2 16 � 16 (nR � 2N) 32

32 � 32 (2N � 2N) 4 16 � 16 (2N � nU) 32

32 � 32 (2N � N) 8 16 � 16 (2N � nD) 32

32 � 32 (N � 2N) 8 8 � 8 (2N � 2N) 64

32 � 32 (N � N) 16 8 � 8 (2N � N) 128

32 � 32 (nL � 2N) 8 8 � 8 (N �2 N) 128

32 � 32 (nR � 2N) 8 Total 677

Fig. 4 Scan order of the search area

Fig. 5 Shift registers set: loading and shifting operations

J Real-Time Image Proc

123

sums of different configurations (row–column, column–

column, row–row) are performed to get the SADs of all

partitions of a 64 � 64 CTU. For instance, in the first

intermediate stage, starting with a 16 � 16 block of

intermediate values (M = 16), all pairs of consecutive

values for columns/rows are added as shown in Fig. 6b. So,

both the 16 � 8 (M � M/2) and the 8 � 16 (M/2 � M)

intermediate blocks, each one with 128 SADs, correspond

to 2N � N and N � 2N symmetric partitions of all possible

8 � 8 CUs contained in the current 64 � 64 CTU. This

SAD aggregation process is followed until the last partition

size is reached (1 � 1), i.e., the SAD in the last stage

corresponding to the 2N � 2N partition of 64 � 64 CU (see

Fig. 6c).

A particular case is the way asymmetric partitions are

obtained from SADs corresponding to symmetric parti-

tions. The idea is to repeat the same type of aggregation as

the last one performed. If the start block has been obtained

by the sum of consecutive columns, then the resulting

consecutive columns are added again. The obtained values

are SADs corresponding to asymmetric partitioning (left,

right, up, and down) of the next size of CUs. For instance,

in the last intermediate stage (M = 4, N = 16), after a sum of

consecutive columns, we start with a 4 � 2 block of 8

SADs values corresponding to the 2N � N symmetric

partition of the 4 32 � 32 CUs contained in the current 64

� 64 CTU. Then, all pairs of consecutive columns are

added again as shown in Fig. 6b. Thus, a 4 � 1 block of

SAD values are obtained corresponding to 2N � nU and

2N � nD asymmetric partitions of the current 64 � 64

CTU.

Thus, in the proposed architecture, the SATB module

delivers 677 SADs of the current CTU block every single

clock cycle to the next module, the comparison block.

3.3 Comparison block

The comparison block should keep the minimum SAD

values for each CU partition with their corresponding

motion vectors (search area positions). So, it will compare

all incoming SADs from the SATB with the minimum

SADs previously found. In a clock cycle, the comparison

block receives 677 SADs corresponding to all partitions of

all CUs contained in the current CTU, which is located in a

particular position of the search area. So, in the next cycle,

this module again receives 677 SADs corresponding to the

next position of the search area. Therefore, this block

compares SADs partition by partition, keeping the mini-

mum SADs and the positions of the search area corre-

sponding to those minimums. After comparing the SADs

from the last search area location, the minimum SADs for

each partition and the associated motion vectors are

obtained.

4 Implementation results

The proposed architecture is designed as a pipeline process

shown in Fig. 7. The memory reading process and shift

registers propagation require only one clock cycle. The

PUs use one cycle, the SATB requires twelve additional

clock cycles, and the comparison block needs one addi-

tional clock cycle. So, the proposed architecture requires

63 clock cycles to perform the initial load of the shift

registers, 15 clock cycles to load the pipeline, and then as

many clock cycles as positions the search area has.

Our proposal has been modeled in VHDL, and it has

been synthesized, simulated, and implemented on the Xil-

inx FPGA, Virtex-7 XC7VX550T-3FFG1158. The cor-

rectness of our design was tested and verified with the

HEVC HM 14 reference model [17].

To evaluate the performance and efficiency of our

design, we have parametrized our IME architecture to

(a) First stage: M=64

(b) Three intermediate stages: M=16 and N=4; M=8 and
N=8; M=4 and N=16

(c) Last stage: M=2 and N=32

Fig. 6 Structure of the SAD adder tree block

J Real-Time Image Proc

123

allow different configurations, such as (a) the maximum

CTU size with values of 64 � 64 and 32 � 32, and (b) the

size of the search area of the reference frame with values

defined as the double size of the CTU, 80 % of the double

size of the CTU, and the same size as a CTU.

Firstly, we proceed to test our proposal with the Virtex 7

FPGA technology. In Table 2, we show (a) the resulting

operating frequency (clock), (b) the number of clock cycles

for each CTU (latency), and (c) the system throughput in

terms of the maximum frame rate under different video

formats (1080p, 2K, and 4K), for different configurations

of CTU and search area sizes. Our design can operate at the

frequency of 247 and 318 MHz for a 64 � 64 CTU and a

32 � 32 CTU, respectively. It enables the encoder to carry

out the IME process with a 64 � 64 CTU size and a search

area of 128 � 128 pixels (as the HM14 reference model

[17] establishes), obtaining a throughput of 30 fps at 2K

video formats (2K@30fps). Our proposal is able to process

video in real time for both 1080p and 2K resolutions in all

tested configurations, and also with 4K video formats if the

search area size is the same as the CTU size, as can be seen

in Table 2.

In Tables 3 and 4, we show the resources used to

implement our proposal for maximum CTU sizes of 64 �
64 and 32 � 32, respectively, on a Virtex-7 FPGA. In both

tables, we show the resource usage of each block of the

proposed architecture, as a resource usage profile. As can

be seen, the slice area required by flip-flops and LUTs

increases (�94) linearly with the increase of the maximum

CTU size, as expected. In terms of flip-flops, the SATB is

the block that uses the most amount of them (around 40 %

of the total) in both configurations. This is due to the 12-

stage pipeline design of the SATB. Moreover, calculating

the distortion among pixels needs 50 % of the LUTs, due to

the amount of subtractions in absolute value required in

this process, being 1024 operations performed at each

clock cycle. Regarding the required memory for storing the

search area reference pixels, 36 and 9 kB memories are

used in the case of a 64 � 64 CTU and a 32 � 32 CTU,

respectively. On a Virtex-7, a BRAM block has a capacity

of 36 kb. So, the slice area demanded by the used BRAMs

also increases (�94) when going from 32 � 32 to the 64 �
64 maximum CU size.

An interesting analysis of our design can be observed at

Table 2 when comparing the results of the 64 � 64 search

area size with both CTU sizes. As can be seen, the latency

is nearly the same but the throughput of the 64 � 64 CTU

size is more than triple than the one obtained with the 32 �
32 CTU size. In terms of resource usage, the 64 � 64 CTU

size requires near four times more resources, as shown in

Tables 3 and 4. This implies that the use of more resources

in the design provides higher throughput in a 4:3

relationship.

4.1 Systems evaluation

In Table 5, we compare our proposal with previous state-

of-art architectures implemented on different FPGA plat-

forms for both the 64 � 64 CTU and the 32 � 32 CTU size,

and different search area sizes. We have chosen those

works whose architectures are comparable to our proposal

(i.e., perform the same functionality) and were imple-

mented under FPGA technology. To make the comparison

as fair as possible, we have obtained the performance

results of our proposal with the same technologies, CTU

sizes, and search area sizes as the ones used by the selected

candidates. We will consider the system throughput as the

main performance result of every proposal under

comparison.

Regarding results for the 64 � 64 CTU size, Medhat

et al. [3] present a parallel SAD block for the HEVC

Fig. 7 Pipeline process of the proposed architecture

Table 2 Throughput for

different configurations in

Virtex-7

CTU size 64 � 64 64 � 64 64 � 64 32 � 32 32 � 32 32 � 32

Search area 128 � 128 104 � 104 64 � 64 64 � 64 52 � 52 32 � 32

Clock (MHz) 247 247 247 318 318 318

Latency 16,462 10,894 4174 4142 2750 1070

Fps at 1080p 32 48 124 39 59 151

Fps at 2K 30 45 116 37 55 141

Fps at 4K 8 12 30 10 15 37

J Real-Time Image Proc

123

integer-pel full search architecture without supporting

AMP modes with a search area of 104 � 104 pixels. They

used the Virtex-7 technology, and their design can operate

at the frequency of 458.7 MHz. The operating frequency of

our proposal with the same technology and configurations

is almost two times lower. However, our architecture is

capable of processing 45 fps at 2K video formats instead of

30 fps as obtained by the proposed design in [3]. Therefore,

our proposed architecture is 1.5� as fast as the one pro-

posed in [3] using the same search area size and consid-

ering all the AMP partition modes, contrary to [3], where

AMP partitions are not calculated. This is due to the fact

that our design takes advantage of the minimal latency to

perform the same operations as we have an efficient

pipeline design. Therefore, our system achieves higher

throughput, reaching real-time processing for 2K video

resolutions at 45 fps, and being on the way to accom-

plishing the same goal for 4K video formats, where 12 fps

were obtained.

On the other hand, D’huys [7] proposes a reconfigurable

design for HEVC motion estimation which can operate at

the frequency of 150 MHz. His architecture is compared

with our proposal, setting a common search area size to 64

� 64 pixels and the Virtex-5 technology. The operation

frequency of our proposal is 159 MHz, achieving system

throughput of 20 fps at 4K and 75 fps at 2K video formats.

Our design significantly improves the performance of the

architecture presented in [7], which is able to process a

lower resolution video (720p) at 57 fps. If the video reso-

lution is set to 720p, our architecture is capable of pro-

cessing 173 fps. So, our architecture presents good balance

between the maximum frequency and pipeline processing

design, taking advantage of the low latency by leveraging

all available resources.

Regarding results for the 32 � 32 CTU size, in Table 5,

we show the comparison results between our proposal

(implemented on a Virtex-6 FPGA) and the integer motion

estimation design found in [6], both with a search area size

of 48 � 48 pixels. The most significant feature, worthy of

attention, is that our proposal can provide a higher opera-

tion frequency, achieving throughput of 43 fps at 1080p

and 40 fps at 2K resolution, whereas the architecture pre-

sented in [6] is able to achieve 30 fps at 1080p video

formats, using a similar amount of FPGA resources.

Considering the presented results, our architecture

shows an efficient implementation of available resources in

Table 3 Utilization resources

for 64 � 64 CTU

implementation in Virtex-7

Resources Flip-flops LUTs Memory (kB)

Memory read controller block 36,657 (25.40 %) 36,413 (19.30 %) 36 (100 %)

PUs (distortion computation) 32,768 (22.71 %) 94,208 (49.93 %) –

SAD adder tree block (SATB) 58,727 (40.70 %) 47,063 (24.95 %) –

Comparison block 16,150 (11.19 %) 10,980 (5.82 %) –

Total 144,302 188,664 36

Table 4 Utilization resources

for 32 � 32 CTU

implementation in Virtex-7

Resources Flip-flops LUTs Memory (kB)

Memory read controller block 10,155 (27.55 %) 9812 (20.22 %) 9 (100 %)

PUs (distortion computation) 8192 (22.22 %) 24,541 (50.57 %) –

SAD adder tree block (SATB) 14,580 (39.55 %) 11,445 (23.58 %) –

Comparison block 3937 (10.68 %) 2733 (5.63 %) –

Total 36,864 48,531 9

Table 5 Comparison of the

proposed architecture with

state-of-the-art works

Design Medhat [3] Proposal 1 D’huys [7] Proposal 2 Yuan [6] Proposal 3

CTU size 64 � 64 64 � 64 64 � 64 64 � 64 32 � 32 32 � 32

Search area 104 � 104 104 � 104 64 � 64 64 � 64 48 � 48 48 � 48

Technology Virtex-7 Virtex-7 Virtex-5 Virtex-5 Virtex-6 Virtex-6

Clock (MHz) 458.7 247 150 159 110 200

AMP No Yes No Yes Yes Yes

Throughput 2K@30fps 2K@45fps 720p@57fps 720p@173fps 1080p@30fps 1080p@43fps

Flip-Flops 39,901 144,302 199,682 178,620 19,744 43,531

LUTs 24,957 188,664 210,158 184,288 55,346 45,752

Memory (kB) 44 36 1229 36 148 9

J Real-Time Image Proc

123

FPGA, overcoming the performance of previous state-of-

the-art architectures.

4.2 HEVC R/D performance and time profiling

To better understand the capabilities of IME hardware

devices, we have performed a set of tests to analyze the

benefits of including an IME FPGA-based accelerator, like

the one proposed here, in the HEVC reference software in

terms of speedup and observe how both parameters, the

CTU size, and the search area size impact on the R/D

performance of the HEVC encoder. To perform these tests,

we have used the HEVC HM 14 reference model [17]

working with the main profile and low-delay configuration

mode. The HEVC reference software was compiled with

Visual Studio 2010 with the default compiler options and

run over a PC platform with an Intel Core i7-3770 CPU

3.40 GHz with 16 GB RAM. Three video sequences from

the HEVC common conditions video set were selected:

(s1) Racehorses at 832 � 480 resolution (30 fps), (s2)

Basketball Drive at 1920 � 1080 (50 fps), and (s3) People

On Street at 2560 � 1600 (30 fps).

The experiments were performed using different search

area sizes (128 � 128, 104 � 104, 64 � 64, 52 � 52, and

32 � 32) and CTU sizes (64 � 64 and 32 � 32).

Tables 6 and 7 show all data gathered for CTU sizes of

64 � 64 and 32 � 32, respectively. The first row shows

the total time (in seconds) required to encode each video

sequence (10 frames). The second row shows the per-

centage of the total time needed by the IME software

module using a full search algorithm (% IME time SW).

These percentages vary from 62 to 96 % depending on

the video sequence, the search area size, and the CTU

size. As was expected, the time required by the IME

software module decreases as both the search area size

and the CTU size do. Rows three and four show the

number of CTUs per second that can be computed by

software (CTU/s SW) and hardware (CTU/s HW) ver-

sions of the IME module. As can be seen, these values

also depend on the search area size and maximum CTU

size, and in the case of the IME software module, also

depend on the video sequence.

So by looking at the information provided in Tables 6

and 7, we could assess that the IME module is a bottleneck

in the HEVC reference software. Therefore, if the IME

software module is replaced by our FPGA-based device,

the overall encoding time will be significantly reduced. For

example, for a high-resolution video sequence like Peo-

pleOnStreet (s3) and setting the CTU size to 64 � 64 and

the search area size to 128 � 128 (default values in the

HEVC reference software), the total encoding time (10

frames) will be reduced from 38 h to 2 s, since the motion

estimation module takes around 95 % of the overall

encoding time.

To reduce the hardware complexity, allowing faster

versions with reduced power consumption, the CTU size

and the search area must be reduced as much as possible.

However, this may cause performance degradation in the

encoding process, decreasing the overall video quality and/

or reducing the compression rate. To evaluate this aspect,

we will analyze the impact of these parameters on the R/D

(rate/distortion) performance. In Fig. 8, we show the video

quality of the test video sequence RaceHorses (s1) for each

CTU and search area sizes at different compression levels

(QP values). As can be seen, there are slight differences

between the CTU size, being greater the difference as the

compression rate increases. Differences between search

areas are negligible. Although R/D differences may depend

on the video content, similar results were obtained for the

other two video sequences tested.

Finally, we also have performed a profile of the IME

HEVC with another motion search algorithm, which is

available in the HEVC reference software (diamond-like

search). This algorithm is used by default in the reference

software and it is about 90 times as fast as the full search

algorithm, with the disadvantage that it does not guarantee

finding optimal MVs, and as consequence video quality

could be affected. As can be seen in Table 8, the inclusion

of our IME hardware module will speed up the IME

computation of diamond-like search algorithm 230 and 700

times for 32 � 32 and 64 � 64 CTU sizes, respectively.

After performing the whole analysis, a trade-off should

be taken to determine which configuration better adapts to

the application requirements (low power consumption,

Table 6 Time profile of the IME HEVC for a 64 � 64 CTU

Search area 128 � 128 104 � 104 64 � 64

Video sequences s1 s2 s3 s1 s2 s3 s1 s2 s3

Encoding time SW (s) 13,670 61,602 135,970 9392 42,050 92,863 4117 17,881 39,933

% IME time SW 95 96 95 90 94 93 83 86 85

CTU/s SW 0.24 0.26 0.23 0.38 0.39 0.35 0.91 1.00 0.89

CTU/s HW 14,993 14,993 14,993 22,625 22,625 22,625 59,172 59,172 59,172

HW gain 62,260 57,767 64,800 59,621 58,312 65,384 64,856 59,115 66,477

J Real-Time Image Proc

123

encoding time, compressed video quality). The use of

hardware accelerators designed in FPGA platforms like the

one proposed here are mandatory when real-time UHD

video encoding is the objective.

5 Conclusion

In this work, we have presented a fast and efficient IME

hardware unit for the HEVC video encoder which (a) sup-

ports AMP modes, (b) both CTU and search area sizes are

configurable, and (c) is implemented on a Virtex-7 FPGA.

The suitability of using FPGAs for implementing the

HEVC IME module has been demonstrated in this paper,

proposing a design that improves the previous results of

other IME hardware systems.

Our FPGA-based design is able to process 2K video

formats at 116 frames per second and 4K video sequences

at 30 fps, which represents a huge complexity reduction of

the HEVC video encoding process, achieving real-time

encoding for high-definition video contents and beyond.

We have also analyzed the impact of the maximum CTU

and the search area sizes over the encoder complexity and

the resulting video quality, showing that the encoder

complexity decreases as both the maximum CTU size and

the search area do. Furthermore, the maximum CTU size

has a minimum impact over the R/D, being more notice-

able at high compression rates. In the test video sequences

analyzed, the impact over the quality of the search are size

is negligible, but it will depend on the video content.

In future work, we are working to include our IME

hardware module in the HEVC reference software and

perform a complete test over an evaluation platform such

as ZYNQ of Xilinx. In addition, we intend to expand the

hardware module to perform the fractional-pel motion

estimation, or even the SAD unit for intra-mode coding.

Acknowledgments This research was supported by the Spanish

Ministry of Economy and Competitiveness under Grant TIN2015-

66972-C5-4-R.

References

1. Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of

the high efficiency video coding (HEVC) standard. IEEE Trans.

Circuits Syst. Video Technol. 22, 1649–1668 (2012)

2. Sze, V., Budagavi, M., Sullivan, G.J.: High Efficiency Video

Coding (HEVC) Algorithms and Architectures. Springer,

Switzerland (2014)

3. Medhat, A., Shalaby, A., Sayed, M.S., Elsabrouty, M.: A Highly

Parallel SAD Architecture for Motion Estimation in HEVC

Encoder. In: IEEE Asia Pacific Conf. Circuits Syst. (APCCAS),

pp. 280–283. Ishigaki (2014)

4. Byun, J., Jung, Y., Kim, J.: Design of integer motion estimator of

HEVC for asymmetric motion-partitioning mode and 4K-UHD.

Electron. Lett. 49(18), 1142–1143 (2013)

5. Vidyalekshmi V.G., Yagain D., Ganesh Rao K.: Motion estima-

tion block for HEVC encoder on FPGA. In: IEEE Int. Conf.

Table 7 Time profile of the IME HEVC for a 32 � 32 CTU

Search area 64 � 64 52 � 52 32 � 32

Video sequences s1 s2 s3 s1 s2 s3 s1 s2 s3

Encoding time SW (s) 3652 15,892 35,295 2634 11,303 25,293 1378 5748 12,911

% IME time SW 85 87 86 79 81 81 60 63 62

CTU/s SW 4 5 4 6 7 6 14 17 15

CTU/s HW 76,923 76,923 76,923 115,607 115,607 115,607 297,619 297,619 297,619

HW gain 20,383 17,293 19,457 20,654 17,384 19,675 21,096 17,664 19,912

Fig. 8 R/D performance for different CTU and search area sizes for

the RaceHorses sequence

Table 8 Average CTU IME time with 2 � CTU search area size

CTU size Full search SW Diamond search SW Full search HW

64 � 64 4.11 s 4.65E�02 s 6.67E�05 s

32 � 32 2.48E�01 s 3.05E�403 s 1.30E�05 s

J Real-Time Image Proc

123

Recent Advances and Innovations in Engineering (ICRAIE),

pp. 1–5. Jaipur, (2014)

6. Yuan, X., Jinsong, L., Liwei, G., Zhi, Z., Teng, R.K.F.: A high per-

formance VLSI architecture for integer motion estimation in HEVC.

In: IEEE 10th Int. Conf. ASIC (ASICON), pp. 1–4. Shenzhen (2013)

7. D’huys, T.: Reconfigurable data flow engine for HEVC motion

estimation. In: IEEE Int. Conf. Image Processing (ICIP),

pp. 1223–1227. Paris (2014)

8. Davis, P., Sangeetha, M.: Implementation of motion estimation

algorithm for H.265/HEVC. Int. J. Adv. Res. Elect. Electron.

Instrum. Eng. 3(3), 122–126 (2014)

9. Nalluri, P., Alves, L.N., Navarro, A.: High speed SAD architec-

tures for variable block size motion estimation in HEVC video

coding. In: IEEE Int. Conf. Image Processing (ICIP),

pp. 1233–1237. Paris (2014)

10. Chen, C.Y., Chien, S.Y., Huang, Y.W., Chen, T.C., Wang, T.C.,

Chen, L.G.: Analysis and architecture design of variable block-

size motion estimation for H.264/AVC. IEEE Trans. Circuits Syst

I: Reg. Papers 53(3), 578–893 (2006)

11. Elhamzi, W., Dubois, J., Miteran, J.: An efficient low-cost FPGA

implementation of a configurable motion estimation for H.264

video coding. Springer J. Real-Time Process. 9(1), 19–30 (2014)

12. Moorthy, T., Ye, A.: A scalable architecture for variable block

size motion estimation on field-programmable gate arrays. In:

IEEE Canadian Conf. Electrical and Computer Engineering

(CCECE), pp. 1303–1308. Niagara Falls (2008)

13. Kthiri, M., Kadionik, P., Levi, H., Loukil, H., Atitallah,,B.,

Masmoudi, N.: An FPGA implementation of motion estimation

algorithm for H.264/AVC. In: IEEE 5th Int. Symp. I/V Com-

munications and Mobile Network (ISVC), pp. 1–4. Rabat (2010)

14. Pastuszak, G., Jakubowski, M.: Adaptive computationally scal-

able motion estimation for the hardware H.264/AVC encoder.

IEEE Trans. Circuits Syst. Video Technol. 23(5), 802–812 (2013)
15. Pastuszak, G., Trochimiuk, M.: Algorithm and architecture

design of the motion estimation for the H.265/HEVC 4K-UHD

encoder. J. Real Time Image Process (2015)

16. Lin, Y.L.S., Kao, C.Y., Kuo, H.C., Hen, J.W.: VLSI Design for

Video Coding-H.264/AVC Encoding from Standard Specification

to Chip. Springer, New York (2010)

17. HEVC software repository HM–14.0 reference model. https://

hevc.hhi.fraunhofer.de/trac/hevc/browser/tags/HM-14.0. Acces-

sed 2 May 2014 (2014)

Estefania Alcocer was born in Bigastro, Spain, in 1986. She received

her M.S. degree in telecommunication engineering in 2010 from the

Miguel Hernandez University, Elche, Spain, and she joined the

GATCOM research group as Ph.D. student in 2012. Currently, she is

an assistant professor in the Department of Physics and Computer

Architecture at Miguel Hernandez University, Elche since 2012. Her

current research activities are related to image processing, the design

of FPGA-based systems and video coding.

Roberto Gutierrez was born in Orihuela, Spain, in 1977. He received
his M.Sc. degree in telecommunication engineering in 2003, and the

Ph.D. degree in electronic engineering in 2011, both from the

Universidad Politecnica de Valencia, Spain. He is an associate

professor in the Department of Communication engineering at

Universidad Miguel Hernandez, Elche since 2003. His current

research interests include the design of FPGA-based systems,

computer arithmetic, VLSI signal processing and digital

communications.

Otoniel Lopez-Granado received his M.S. in Computer Science

from the University of Alicante (Spain) in 1996. Between 1997 and

2003 he worked as programmer analyst in an important industrial

informatics firm. In 2003, he joined to the Computer Engineering

Department at Miguel Hernandez University (UMH), Spain, as an

assistant professor. Then, he received the Ph.D. degree in Computer

Science in 2010. In 2012, he was promoted to associate professor.

Currently, he leads the GATCOM research group (atc.umh.es) at

Miguel Hernandez University. His research and teaching activities are

related to multimedia networking (audio/video coding and network

delivery).

Manuel P. Malumbres received his B.Sc. in Computer Science from

the University of Oviedo (Spain) in 1986. In 1989, he joined to the

Computer Engineering Department (DISCA) at Technical University

of Valencia (UPV), Spain, as an assistant professor. Then, he received

M.S. and Ph.D. degrees in Computer Science from UPV, in 1991 and

1996, respectively. He is a TC member of IEEE Multimedia

Communications Group and associate editor of the Signal, Image

and Video Processing journal. He was serving as TPC member of

several relevant international Conferences related with his main

research interests. He is author of more than 160 conference and

journal publications and several networking books for undergraduate

CS courses. Currently, his research and teaching activities are related

to multimedia networking (image/video coding and network delivery)

and wireless network technologies (MANETs, VANETs and WSNs).

J Real-Time Image Proc

123

Alcocer et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:142
http://asp.eurasipjournals.com/content/2013/1/142

RESEARCH Open Access

MPCM: a hardware coder for super slow
motion video sequences
Estefanía Alcocer1*, Otoniel López-Granado1, Roberto Gutierrez2 and Manuel P Malumbres1

Abstract

In the last decade, the improvements in VLSI levels and image sensor technologies have led to a frenetic rush to

provide image sensors with higher resolutions and faster frame rates. As a result, video devices were designed to

capture real-time video at high-resolution formats with frame rates reaching 1,000 fps and beyond. These

ultrahigh-speed video cameras are widely used in scientific and industrial applications, such as car crash tests,

combustion research, materials research and testing, fluid dynamics, and flow visualization that demand real-time

video capturing at extremely high frame rates with high-definition formats. Therefore, data storage capability,

communication bandwidth, processing time, and power consumption are critical parameters that should be carefully

considered in their design. In this paper, we propose a fast FPGA implementation of a simple codec called

modulo-pulse code modulation (MPCM) which is able to reduce the bandwidth requirements up to 1.7 times at the

same image quality when compared with PCM coding. This allows current high-speed cameras to capture in a

continuous manner through a 40-Gbit Ethernet point-to-point access.

Keywords: PCM; Image coding; FPGA design; High speed; Integrated circuits

1 Introduction
Video compression has been an extremely successful tech-

nology that has found its commercial application across

many areas from scientific and industrial applications as

video archiving, high-quality medical video, surveillance

and security applications to the audiovisual industry (TV

and cinema) and the broad spectrum of video appliances

available in the market, such as digital cameras, DVD,

Blue-Ray, and DVB.

In the last decade, the improvements in VLSI levels and

image sensor technologies have led to a frenetic rush to

provide image sensors with higher resolutions and faster

frame rates. As a result, video devices were designed to

capture real-time video at high-resolution formats with

frame rates above 100 Hz. Nowadays, ultrahigh-speed

video cameras can be found in the market like Phantom

v641 (Vision Research Inc., Wayne, NJ, USA) [1] which is

able to capture high-resolution video (2, 560 × 1, 600 pix-

els) at 1,450 frames per second (fps). These video cameras

*Correspondence: ealcocer@umh.es
1Physics and Computer Architecture Department, Miguel Hernández

University, Elche 03202, Spain

Full list of author information is available at the end of the article

are specially suited for scientific or industrial applica-

tions, such as car crash tests, explosives and pyrotechnics,

ballistics, projectile tracking, combustion research,

materials research and testing, fluid dynamics, flow visu-

alization. which demand real-time video capturing at

extremely high frame rates with high-definition (HD) for-

mats. Therefore, data storage capability, communication

bandwidth, processing time and power consumption are

critical parameters that should be carefully considered in

the design process of high-speed video cameras.

In order to fight against these constraints, most of

nowadays high-speed cameras store the captured images

in a fast synchronous dynamic random access memory

(SDRAM) module of up to 64 GB [1-4] without perform-

ing compression, using pulse code modulation (PCM) [5].

The huge amount of data of the resulting uncompressed

image/video needs to be processed to guarantee its trans-

mission or storage, being a really challenging task. Thus,

the internal communication busmay not be fast enough to

transfer the video out of the camera, or the writing speed

of the storage device may not be high enough to save the

video [6]. So the approach of using fast SDRAM memory

as video storage is feasible since the memory bandwidth

is high enough, but when memory is run out, the camera

© 2013 Alcocer et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction

in any medium, provided the original work is properly cited.

Alcocer et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:142 Page 2 of 12
http://asp.eurasipjournals.com/content/2013/1/142

stops recording and needs to save the stored video to a

secondary storage in raw or compressed format. This is

a limitation because depending on the capturing resolu-

tion of the camera, only a few seconds could be recorded

in the random access memory (RAM) module, and so

continuous capturing is not possible.

So as to overcome these restrictions, it would be of

interest to reduce the video storage requirements by

means of hardware encoders that fulfill the application

requirements, i.e., high frame rate and high-definition

and beyond video formats. Therefore, if we were able

to perform some kind of ultrafast encoding, we would

reduce the required storage resources, and real-time

recording like in conventional video cameras would be

possible.

Many hardware coders based on different coding algo-

rithms are used in real systems [7-14]. Most of them are

application-specific integrated circuits dedicated to spe-

cific encoding algorithms that are not designed to work in

real-time with ultrahigh frame rates and high-definition

video formats.

However, several attempts have been made in order to

deal with high-speed camera encoding. In [15] authors

present JPEG field-programmable gate array (FPGA)-

based encoder which is able to compress up to 500

frames/s at a resolution of 1, 280 × 1, 024. Also in [16],

an improved version of the fast boundary adaptation

rule [17] algorithm in conjunction with differential pulse

code modulation is applied to increase the R/D efficiency,

although coding delays were not provided.

In general, the constraints imposed by ultrahigh frame

rate video capture applications discard most of the exist-

ing coding techniques (e.g., predictive coding or transform

coding) since they are much more complex than PCM.

Therefore, a coding algorithm that has properties sim-

ilar to those of PCM (low complexity, random access,

and scalability) but with a better coding efficiency would

be of interest. Modulo-Pulse Code Modulation scheme

(MPCM) [18] image coder fulfills these requirements. To

encode an image, MPCM encoder removes certain bits

from each pixel value which represents a very simple pro-

cessing. The complexity is moved to the decoder side,

where the bits that were removed from each pixel will be

predicted by using its codeword (remaining bits of a pixel)

and side information (SI) that the decoder computes by

interpolating the previously decoded pixels.

In this paper we implement a fast codec based on

MPCM [18] over a XC7Z020-1CLG484CES Xilinx FPGA

device (Xilinx Inc., San Jose, CA, USA). Results show

that FPGA-based MPCM encoder obtains a throughput

of up to 409.84 MBytes/s at high compression rates for

monochromatic images, allowing to store on a nonvolatile

memory 2,501 fps at a 1, 280 × 1, 024 resolution. Further-

more, in this paper we present a hardware implementation

of theMPCMdecoding system, which is able to reproduce

a full-HD (1080p) video at 193 fps.

The rest of the paper is organized as follows. In Section 2

we present a brief overview of the Modulo-PCM encoder.

In Section 3, the description of the proposed architecture

is presented. A detailed evaluation of the architecture pro-

posal is shown in Section 4 in terms of R/D, coding delay,

power consumption, and occupied board area. Finally, in

Section 5 some conclusions are drawn.

2 Encoding system
In this section, we describe theMPCM-based coding algo-

rithm for the encoding of a one-dimensional signal. Let x̃n
(n ∈ N) be a continuous-amplitude discrete-time signal

whose amplitude values lie in [Amin,Amax]. Let xn be the

digital signal that results from the quantization of x̃n with
a fixed-rate uniform quantizer of B bits/sample and step

size:

� = (Amax − Amin) /2B.

The easiest way of reducing the bit rate of x̃n is to

remove the l-least significant bits (LSBs) of each code-

word of x̃n. To achieve a more efficient rate reduction,

we propose the use of a MPCM-based coding algorithm

(Figure 1). The samples of x̃n are divided into sets that

are encoded with different accuracies. For the sake of sim-

plicity, let us consider we divide x̃n into two sets: S0 =
{x2n|n ∈ i = 0, 1, 2, . . .} and S1 = {x2n+1|n = 0, 1, 2, . . .}.
As shown in Figure 1, each sample in S0 is encoded

by removing the l0-LSBs of its codeword (PCM signal)

while each sample in S1 is encoded by removing the m1-

most significant bits (MSBs) and l1-LSBs of its codeword
(MPCM signal). Then, the encoder works at an average

rate R = B − (l0 + l1 + m1)/2 bits/sample.

As the encoding of x2n is equivalent to a quantization

with a uniform quantizer with step size equal to 2l0�, the

decoder can directly reconstruct the samples of S0 from

their codewords (Figure 1). With respect to the encoded

samples in S1 (Figure 2 (a)), removing the l1-LSBs of x2n+1

is equivalent to quantizing its original continuous value

with a uniform quantizer with step size equal to 2l1�
(Figure 2 (b)). After removing the m1-MSBs, the result-

ing codeword identifies a set of 2m1 disjoint intervals

{Ii|i = 0, . . . , 2m1 − 1}, with each interval being of length

2l1� (Figure 2 (c)).

At the decoder, a PCM-coded signal is directly recon-

structed from its received codeword x̂2n. This recon-

structed value is set to the midpoint of its quantization

interval. However, a MPCM-coded signal is decoded by

using its codeword x̂2n+1 and its SI y2n+1. This pro-

cess is divided into two steps: decision and reconstruc-

tion. Consequently, in order to decide which Ii interval
x̂2n+1 belongs to, MPCM decoders exploit the correlation

between the signal samples by furnishing a prediction for

Alcocer et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:142 Page 3 of 12
http://asp.eurasipjournals.com/content/2013/1/142

Figure 1 Block diagram of MPCM coding algorithm.

Figure 2 Quantization intervals and codewords for B = 3, l1 = 1 andm1 = 1. (a) After A/D conversion. (b) After removing l1 bits. (c) After
removingm1 bits. (d) After deciding between I0 and I1. (e) After reconstruction. (f) After final quantization. Symbol X represents the removed bits.

Boldfaced codewords represent the codeword selected in each step for the shown values of x2n and y2n . Marked intervals are the intervals

represented by the selected codeword in each step.

Alcocer et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:142 Page 4 of 12
http://asp.eurasipjournals.com/content/2013/1/142

each sample in S1 based on previously decoded samples in

S0. This prediction y2n+1 acts as SI to decide the interval,

which is obtained by interpolating the previously decoded

samples in S0. Therefore, in this decision step, the decoder

uses y2n+1 to select one of the 2m1 disjoint intervals as

shown in (Figure 2 (d)), choosing the closest interval to the

prediction. If the decision process is done without error

for x2n+1, itsm1-MSBs are properly recovered; otherwise,

the decoder incurs a decision error in which the prob-

ability depends on m1 and the accuracy of the SI. The

accuracy of the SI depends on the degree of correlation

between the samples xn and the distortion introduced in

the encoding of S0. Furthermore, the larger the m1, the

shorter the minimum distance between the codewords of

the same set 2m1 , hence, the higher the probability of deci-

sion error. As a result, in order to limit these impacts in

the encoding algorithm, l0 must be lower than or equal to

l1 (l0 ≤ l1) and m1 must be the minimum possible. Once

the decoder has estimated them1-MSBs of x2n+1 (Figure 2

(d)) in the reconstruction step, it tries to recover its l1-
LSBs which finally provides an estimated signal x̂2n+1

(Figure 2 (e)). This reconstruction is done using the quan-

tization interval Ii where supposedly lies x2n+1 and its SI

(y2n+1) by taking the closest value of the chosen inter-

val to the prediction y2n+1 (Figure 2 (f)). Notably, if the

coding parameters accomplish the following characteris-

tics l0 = l1 and m1 = 0, the MPCM encoder/decoder

will act as a PCM coding system, since in such cases,

the help provided by the SI does not compensate the loss

suffered by encoding each MPCM signal with fewer bits

than the PCM signal. In fact, in these cases, midpoint

reconstruction performs better than MPCM reconstruc-

tion. Nevertheless, in most cases, MPCM performs better

than or the same as PCM, with great gains at 1, 2, 3, and

4 bpp.

For a more detailed description of MPCM encoder, the

reader is referred to [18,19].

3 Hardware implementation
In order to cope with the high throughput bandwidth of

nowadays high-speed cameras, both MPCM encoder and

decoder have been implemented over a hardware archi-

tecture. The description language used to build its design

is VHDL. The proposed hardware implementation has

been developed over a Zynq-7000 FPGA of Xilinx fam-

ily, specifically over the ZC702 model which includes the

XC7Z020-1CLG484CES SoC (System-on-Chip) [20].

3.1 Encoder architecture

The implemented encoder architecture is illustrated in

Figure 3. The original image/frame captured by the cam-

era sensors is stored in a memory block whose reading is

determined by a control block. In that structure, 16 pixels

are read on each cycle so as to speed the encoding pro-

cess as much as possible within the scope of the device’s

internal memory. This memory acts as an internal buffer

of frames to read them in high-speed applications and it

is implemented with block RAMs. In this way, we use 52

dual-port 36-Kb block RAMs with ports configured as

512 × 64 bits, where 64 output bits, namely 8 pixels, are

read in each memory output port. These pixels are pro-

cessed in the following block, without delay, in the same

reading cycle, where they are encoded by removing the

corresponding l0 or lk and mk bits. Finally, we obtain the

coded samples of the image which are sent to the final

storage device.

Our proposed implementation design first divides the

image/frame into N set of pixels, where one of the result-

ing pixels is encoded using PCM and the rest of them with

MPCM. We take the strategy of dividing x [n1, n2] into

Figure 3 Encoder architecture design.

Alcocer et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:142 Page 5 of 12
http://asp.eurasipjournals.com/content/2013/1/142

four (N = 4) sets x0,0 [n1, n2], x0,1 [n1, n2], x1,0 [n1, n2], and
x1,1 [n1, n2] such that

xp,q [n1, n2] = x
[
2n1 + p, 2n2 + q

]
with p and q ∈ [0, 1] as explained in [19]. Then, the first

one is encoded using PCM, removing l0 LSBs, and the

remaining parts using MPCM, removing lk LSBs and mk
MSBs. A diagram of the steps used in our hardware algo-

rithm is shown in Figure 4. Remark that both the reading

and coding of the 16 pixels are performed in the same

clock cycle.

3.2 Decoder architecture

The proposed decoder architecture is shown in Figure 5.

In this approach, the buffer is filled with coded samples

until the first three lines are completed since at least three

rows and three columns of pixels stored are needed (9 pix-

els in total) so as to decode a set N of 4 pixels, then the

decoding process starts. The decoder is divided into two

steps: decision and reconstruction. The recovery of the

original image is performed as follows:

1. Three columns of data are processed in decision

block, where the PCM signal is reconstructed as

shown in Figure 6a. SIs are generated from the

previous PCM samples (Figure 6b), and one of the

possible intervals 2mk is selected in which each

MPCM decoded signal will be placed (Figure 6c).

2. At the decoder reconstruction block, we recover the

LSB removed in the encoding process using its SI and

the interval corresponding to each MPCM sample as

shown in Figure 6d, according to this rule:

x̂ =
⎧⎨
⎩
a if y < a
y if a ≤ y ≤ b
b if y > b

.

After completing these steps, we get four decoded

pixels.

3. In each cycle, two columns of encoded samples leave

the decoder and another two enter into it, keeping

the last previous column, considering that it contains

the necessary PCM samples to decode the next set of

4 pixels. This process is carried out iteratively until all

samples of the three rows from the buffer have been

decoded.

4. Then, the buffer is shifted. Two rows leave the buffer

and two new ones enter into it, keeping the last

previous row, as in case of columns. All the above

operations continue until all the input encoded

samples are decoded.

The proposed decoder design has been completely

pipelined, so this makes each of the aforementioned steps

used for decoding to be performed concurrently. In addi-

tion, as previously mentioned, four decoded pixels are

obtained in each cycle. In this approach, the operating

Figure 4 Example of the encoder algorithmwith l0 = 2, lk = 1 andmk = 1. Blue-colored blocks are samples to be coded using PCM and the

yellow/orange ones are to be coded using MPCM.

Alcocer et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:142 Page 6 of 12
http://asp.eurasipjournals.com/content/2013/1/142

Figure 5 Decoder architecture design.

frequency has been set to get the 4 pixels, but in order

to organize the entire decoded image, a phase-locked-

loop (PLL) module has been used, which generates mul-

tiple clocks for a given input clock. Therefore in each

cycle, 4 pixels are stored in a buffer with a fixed fre-

quency, but these pixels are read with a frequency four

times higher, thus achieving a serial output without

delay. The buffers used in the proposed architecture have

been implemented using single dual-port 18-Kb block

RAMs.

4 Results
Both encoder and decoder architecture designs have been

tested. In this section, we present the performance eval-

uation of the complete system in terms of peak signal-

to-noise ratio (PSNR), encoding/decoding times, board

area usage, maximum frame rate, and speed-ups obtained

when compared to a CPU sequential algorithm. The archi-

tectures have been synthesized, placed and routed using

Xilinx ISE 14.3 tool, and have been simulated and ver-

ified using Matlab/Simulink through System Generator

toolbox. They have been designed into the Zynq AP SoC-

based board previously mentioned. Occupied board area,

maximum frequency, and power consumption estimation

have been measured from the Xilinx ISE 14.3 tool. In our

experiments, we have assessed the results of eight gray-

scale images with 8 bits per sample, five of which (Zelda,
Lena, Peppers, Barbara, and Baboon) with a resolution of

512 × 512 pixels and the rest, a full-HD (1080p) image, a

2, 048× 2, 560 image, and a 4K UHD image. Furthermore,

we have assigned values to the coding/decoding parame-

ters (with N = 4, l1 = l2 = l3, and m1 = m2 = m3)

so as to obtain the best result on average of PSNR for a

given bit-rate, although there may be other combinations

of parameters that would optimize a particular image as

proposed by Marleen Morbee in [19].

In Table 1 the PSNR obtained for all tested images as a

function of the bit rate (R) is presented. As expected, for

Alcocer et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:142 Page 7 of 12
http://asp.eurasipjournals.com/content/2013/1/142

a b

c d

Figure 6 Example of MPCM decoding process with l0 = 2, l1 = 1 andm1 = 1. (a) Reconstruction of PCM signals by taking the midpoint of its

quantization interval. (b) Obtaining of SI (yk) by interpolating the previously decoded PCM signals. (c) Decision step to recover MPCM signals.

Interval selection of the 2m1 potential codewords. (d) Reconstruction step to recover MPCM signals.

higher rates (R), which means removing few bits in the

encoding process, MPCM algorithm generally provides

good PSNR due to the fact that no significant loss occurs

in the coding process, and, consequently, no big errors

are introduced in the decoding process. Therefore, the

lower the rate (R), the lower the PSNR value. Moreover,

as explained in Section 2, in the cases where the chosen

parameters meet l0 = l1 and m1 = 0, a reconstruction

PCM is applied, so the PSNR corresponding to R = 6

bpp and R = 5 bpp, shown in Table 1, is the same for

Table 1 PSNR values for all tested images for a given bit-rate

PSNR (dB)

R = 4 bpp R = 4.5 bpp R = 5 bpp R = 5.5 bpp R = 6 bpp

Image (l0 ,l1 ,m1) (l0 ,l1 ,m1) (l0 ,l1 ,m1) (l0 ,l1 ,m1) (l0 ,l1 ,m1)

(1,4,1) (2,4,0) (3,3,0) (1,3,0) (2,2,0)

Zelda (512 × 512) 39.00 38.90 40.15 41.51 45.04

Lena (512 × 512) 37.74 37.77 39.82 41.06 44.96

Peppers (512 × 512) 33.70 36.92 39.32 40.29 44.62

Barbara (512 × 512) 26.06 35.27 38.91 39.83 44.56

Baboon (512 × 512) 24.45 33.02 37.61 38.20 43.85

Tractor (1, 920 × 1, 080) 38.01 39.67 40.22 42.15 44.73

Woman (2, 048 × 2, 560) 30.53 36.47 39.52 40.70 44.95

Ducks (3, 840 × 2, 160) 35.09 35.00 38.14 38.88 43.72

Alcocer et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:142 Page 8 of 12
http://asp.eurasipjournals.com/content/2013/1/142

Figure 7 PSNR as a function of the rate of image tractor coded using MPCM and only PCM.

a PCM coding. One advantage of the proposed MPCM

algorithm versus PCM is the possibility of compressing

intermediate bit rates (nonintegers) due to the different

numbers of bits removed in a set of pixels (l0 �= l1). In
addition, MPCM algorithm overcomes in quality to PCM

at high levels of compression . An example of comparison

between the MPCM coding and PCM coding is shown in

Figure 7 (tractor image), which shows the PSNR values as

function of the rate for the image full-HD (1080p). As it

can be seen, MPCM obtains the same quality than PCM

Figure 8 A set of four monochromatic images (Zelda 512 × 512) decoded with the following bit rates. (a) Original image. (b) At 6 bpp.
(c) At 5 bpp. (d) At 4 bpp.

Alcocer et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:142 Page 9 of 12
http://asp.eurasipjournals.com/content/2013/1/142

Figure 9 A set of four monochromatic images (Tractor 1, 920 × 1, 080) decoded with the following bit rates. (a) Original image.

(b) At 6 bpp. (c) At 5 bpp. (d) At 4 bpp.

at low compression rates. However, at high compression

rates, MPCM obtains a PSNR improvement up to 15 dB

when compared to PCM.

Furthermore, two images compressed at different bit

rates by the algorithm MPCM proposed are shown in

Figures 8 and 9. As you can see from the pictures, at 6

and 5 bpp, non-perceptual inequality is observed regard-

ing the original image. However, some differences begin

to be appreciated at a rate of 4 bpp, for example, in the set

of images of the tractor, one could see a slight distortion

inside the rear wheel at 4 bpp.

4.1 Encoder evaluation

Regarding coding/decoding delay, the proposed encoder

architecture works at a maximum clock frequency of

204.96 MHz, that is 4.879 ns. Furthermore, the algorithm

requires 16,387 cycles to perform the encoding process

for an image resolution of 512 × 512 pixels. Therefore,

we require 79.952 μs to encode any image for the afore-

mentioned resolution, which is 12 times faster than the

sequential algorithm on an Intel Core 2 CPU at 1.8 GHz

with 5 GBytes RAM. As the encoding process does not

depend on the internal characteristics of the image, but

Figure 10Maximum encoded frames per second for different monochromatic image resolutions.

Alcocer et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:142 Page 10 of 12
http://asp.eurasipjournals.com/content/2013/1/142

Table 2 Area used in the FPGA encoder implementation

Used Available Utilization (%)

Number of slices 14 13,300 1

Number of slice registers

(as flip-flops)

17 106,400 1

Number of slice LUTs 35 53,200 1

Number of RAMB36 52 140 37

FMax (MHz) 204.96 - -

Power consumption

(mW)

305 - -

only on the image resolution, in Figure 10, the maximum

frame rate achievable for the proposed architecture is pre-

sented. As shown, the hardware implemen tation of the

MPCM encoder is able to compress up to 3,558 fps for

HD-ready resolution (720p) or up to 1,581 fps for full-HD

resolution (1080p).

The high-speed encoding process makes high-speed

cameras able to capture continuously and grab without

the restrictions of the internal RAM size. For example,

the proposed MPCM hardware implementation could

compress at 4 bpp rate with a reasonable quality and

a throughput bandwidth of 1,640 MBytes/s which will

extend the capturing time over the internal camera RAM

module up to two times or will permit its transmission

over a 40-Gbit Ethernet point-to-point access.

The basic elements of a FPGA are configurable logic

blocks (CLBs). CLBs architecture includes 6-input look-

up tables (LUTs), memory capability within the LUT and

register, and shift register functionality. The LUTs in the

Zynq-7000 AP SoC can be configured as either one 6-

input LUT (64-bit ROMs) with one output, or as two

5-input LUTs (32-bit ROMs) with separate outputs but

common addresses or logic inputs. Each LUT output can

optionally be registered in a flip-flop. Four of such LUTs

and their eight flip-flops as well as multiplexers and arith-

metic carry logic form a slice, and two slices form a

configurable logic block (CLB). Four of the eight flip-flops

per slice (one flip-flop per LUT) can optionally be config-

ured as latches. Between 25% and 50% of all slices can also

use their LUTs as distributed 64-bit RAMor as 32-bit shift

registers [20].

Table 2 presents the results of the encoder imple-

mentation in terms of hardware resources used, indi-

cating the number of used slices, flip-flops, LUTs and

36-KB block RAMs. In addition, it shows an estima-

tion of the power consumed using XPower of Xilinx ISE

14.3, being only 305 mW, due to the high segmenta-

tion in the encoder design. As shown, only 1% of all

the available area in the FPGA is used, so given the

large amount of unused area on the FPGA, we could use

it to deploy multiple identical encoders that could run

concurrently. Thus, different frames could be encoded

simultaneously so as to increment the available record-

ing time of a high-speed camera. To take advantage of

this, we would only have to consider an external mem-

ory to support the storage of several frames, considering

the blocks RAMs used as intermediate buffers. Another

option would be to divide the images or frames in differ-

ent collections of lines which could be encoded in parallel.

Figure 11Maximum decoder frames per second for different image resolutions.

Alcocer et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:142 Page 11 of 12
http://asp.eurasipjournals.com/content/2013/1/142

Table 3 Area used in the FPGA decoder implementation
for parameters l0 = 2, l1 = 1, andm1 = 1

Used Available Utilization (%)

Number of slices 129 13,300 1

Number of slice registers

(as flip-flops)

415 106,400 1

Number of slice LUTs 208 53,200 1

Number of RAMB18 5 140 4

FMax (MHz) 154.5 - -

Power consumption (mW) 221 - -

In this way, a speed-up of 8× fps would be achieved and

as a result, the MPCM encoder would be able to com-

press up to 12,648 fps for full-HD (1080p)monochromatic

resolution.

4.2 Decoder evaluation

As far as the decoder is concerned, the maximum clock

frequency obtained for the decoder is 160 MHz with a

latency of only 713 cycles. However, the maximum clock

frequency has been set at 100 MHz. This frequency is

taken as a compromise due to the use of other frequency

four times higher provided by the PLL module, as dis-

cussed in Section 3.2, since there is a limited frequency for

the FPGA used. So, the MPCM decoder is able to recover

400 Mpixels per second at that frequency. On the other

hand, the algorithm requires 66,240 cycles to perform the

decoding process for an image resolution of 512 × 512

pixels, so 662 μs are needed to decode any image for

that resolution, being 70 times faster than the sequential

decoding algorithm on an Intel Core 2 CPU at 1.8 GHz

with 5 GBytes RAM.

Figure 11 shows the maximum decoding frame rate

achievable for the proposed architecture. As shown, the

hardware implementation of the MPCM decoder is able

to recover up to 434 fps for HD-ready (720p) resolution or

up to 193 fps for full-HD (1080p) resolution, which cor-

responds to a throughput of 50 MBytes/s, making avail-

able to reproduce high-definition cinema at high frame

rates.

Regarding the occupied board area, Table 3 shows

a summary of the hardware resources required by the

decoder, which, in a similar way with the encoder, is less

than a 1%. The occupied board area could vary depending

on the l0, l1,m1 parameters, but in any case it will be lower

than 1%. As indicated in Section 3.2, the buffers used have

been modeled on single dual-port 18-Kb block RAMs so

as to take advantage of the lower consumption compared

to distributed memories, besides being faster. Note that

the maximum frequency shown in Table 3 is 154.5 MHz,

but in our design, we have set this frequency to 100 MHz

as explained previously.

5 Conclusions
In this paper, we have presented an efficient FPGA imple-

mentation of the MPCM codec. We have shown the

quality of the reconstructed frames in terms of PSNR at

different compression rates and for several frames with

different textures. Regarding coding speed, the results

show that our proposed implementation is able to com-

press a full-HD (1080p) resolution picture at 1,581 fps.

The maximum achievable throughput bandwidth of our

proposed implementation is 409.84 MBytes/s which per-

mits the continuous grabbing of a nowadays high-speed

camera at an image resolution of HD-ready (1, 280×720p)

and a reasonable good quality. But, if the final applica-

tion requires a higher image quality, our encoder is able to

give up to 1,640MBytes/s at a 2:1 compression rate, incre-

menting the capturing time over the high-speed camera

internal RAM memory. The occupied area of the FPGA

used is less than 1% of the total available area, which give

us the possibility to replicate several times the encoding

system and thus, several frames or different collections of

lines of the same image can be compressed in a parallel

way.

We have also developed in hardware a MPCM decoder

module. Our proposed decoder design is able to recover

images at 193 fps for full-HD resolution, with an occupied

board area of less than 1%.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

This research was supported by the Spanish Ministry of Education and Science

under grant TIN2011-27543-C03-03.

Author details
1Physics and Computer Architecture Department, Miguel Hernández

University, Elche 03202, Spain. 2Communications Engineering Department,

Miguel Hernández University, Elche 03202, Spain.

Received: 31 January 2013 Accepted: 22 July 2013
Published: 27 August 2013

References

1. Vision Research PHANTOM v641. http://www.visionresearch.com/

Products/High-Speed-Cameras/v641. Accessed 7 January 2013.

2. Fastec Imaging TS3 100-S. http://www.fastecimaging.com/products/

high-speed-cameras/handheld-cameras/ts3-100-s. Accessed 8 January

2013.

3. PHOTRON FASTCAM SA-X. http://www.photron.com/index.php.

Accessed 24 January 2013.

4. i-SPEED 3. http://www.olympus-ims.com/es/ispeed-3/. Accessed 7

January 2013.

5. NS Jayant, P Noll, Digital Coding of Waveforms: Principles and Applications

to Speech and Video. (Prentice-Hall, Englewood Cliffs, 1984)

6. P Gemeiner, W Ponweiser, P Einramhof, M Vincze. Real-time slam with

high-speed CMOS camera, in Proceedings of the 14th International

Conference on Image Analysis and Processing (IEEE Computer Society

Washington, 2007), pp. 297–302

7. B Vanhoof, M Peon, MG Lafruit. A scalable architecture for MPEG-4

embedded zero tree coding, in IEEE Conference on Custom Integrated

Circuits (Town and Country Hotel San Diego, May 1999), pp. 16–19

Alcocer et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:142 Page 12 of 12
http://asp.eurasipjournals.com/content/2013/1/142

8. O Ismailoglu, I Benderli, M Korkmaz, T Durna, Y Kolak, A Tekmen. A real time

image processing subsystem: Gezgin, in Proceedings of 16th Annual/USU

Conference on Small Satellites, (Logan, Utah, 12–15 August 2002)

9. LH Chen, WL Liu, OTC Chen, RL Ma. A reconfigurable digital signal

processor architecture for high-efficiency MPEG-4 video encoding, in IEEE

International Conference onMultimedia and Expo (Swiss Federal Institute of

Technology Lausanne, 26–29 August 2002)

10. J Ritter, G Fey, P Molitor. Spiht implemented in a XC4000 device, in

Proceedings of IEEE 45th Midwest Symposiumon Circuits and Systems,

(Tulsa, Oklahoma, 4–7 August 2002). vol. 1, pp. 239–242

11. I Urriza, JI Artigas, JI Garcia, LA Barragan, D Navarro. VLSI architecture for

lossless compression of medical images using discrete wavelet transform,

in Proceedings of Conference on Design Automation and Test in Europe,

(Belfast, 27–29 August 1998), pp. 196–201

12. J Ahmad, M Ebrahim, FPGA based implementation of baseline JPEG

decoder. Int. J. Electrical Comput. Sci. 9(9), 371–377 (2009)

13. J Rosenthal, JPEG image compression using an FPGA. (PhD Thesis,

University of California, 2006)

14. A Descampe, F Devaux, G Rouvroy, B Macq, JD Legat, An efficient FPGA

implementation of a flexible JPEG2000 decoder for digital cinema. (PhD

Thesis, Université Catholique de Louvain, 2002)

15. X Chen, L Zeng, Q Zhang, W Shi, A novel parallel JPEG compression

system based on FPGA. J. Comput. Inf. Syst. 7(3), 697–706 (2011)

16. Y Wang, S Chen, A Bermak. FPGA implementation of image compression

using DPCM and FBAR, in Proceedings of IEEE International Symposiumon

Integrated Circuits, ISIC ’07, (Singapore, 26–28 September 2007),

pp. 329–332

17. D Martinez, MM Van Hulle, Generalized boundary adaptation rule for

minimizing rth power law distortion in high resolution quantization.

Neural Netw. 8(6), 891–900 (1995)

18. J Prades-Nebot, A Roca, E Delp. Modulo-PCM based encoding for high

speed video cameras, in Proceedings of the 15th IEEE International

Conference on Image Processing, ICIP 2008, (San Diego, CA, 12–15

October 2008), pp. 153–156

19. M Morbee, Optimized information processing in resource-constrained

vision systems. (PhD Thesis, Universidad Politécnica de Valencia,

Universiteit Gent, 2011)

20. Xilinx, Inc., Zynq-7000 all programmable SoC overview, advance product

specification - ds190 (v1.2) (Xilinx, Inc., 2012). http://www.xilinx.com/

support/documentation/data_sheets/ds190-Zynq-7000-Overview.pdf.

Accessed 20 January 2013.

doi:10.1186/1687-6180-2013-142
Cite this article as: Alcocer et al.: MPCM: a hardware coder for super slow
motion video sequences. EURASIP Journal on Advances in Signal Processing

2013 2013:142.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Página en blanco

