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On the Design of Fast Wavelet Transform Algorithms
With Low Memory Requirements
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Abstract—In this paper, a new algorithm to efficiently compute
the two-dimensional wavelet transform is presented. This algo-
rithm aims at low memory consumption and reduced complexity,
meeting these requirements by means of line-by-line processing.
In this proposal, we use recursion to automatically place the order
in which the wavelet transform is computed. This way, we solve
some synchronization problems that have not been tackled by
previous proposals. Furthermore, unlike other similar proposals,
our proposal can be straightforwardly implemented from the
algorithm description. To this end, a general algorithm is given
which is further detailed to allow its implementation with a simple
filter bank or using the more efficient lifting scheme. We also
include a new fast run-length encoder to be used along with
the proposed wavelet transform for fast image compression and
reduced memory consumption. When a 5-megapixel image is
transformed, experimental results show that the proposed wavelet
transform requires 200 times less memory and is five times faster
than the regular one. If we consider the whole coding system, nu-
merical results show that it achieves state-of-the-art performance
with very low memory requirements and fast execution, becoming
an interesting solution for resource-constrained devices such as
mobile phones, digital cameras, and PDAs.

Index Terms—Image coding, optimization methods, run length
codecs, wavelet transform computation.

I. INTRODUCTION

THE discrete wavelet transform (DWT) is a new mathe-
matical tool that has aroused great interest in the field of

image processing due to its nice features. For example, it al-
lows image multiresolution representation in a natural way, we
can analyze the wavelet coefficients in both space and scale do-
mains and, for natural images, the DWT achieves high compact-
ness of energy in the lower frequency subbands, which is very
useful in image compression. Thus, while the popular standard
for image compression JPEG uses the discrete cosine transform
(DCT), the new JPEG 2000 standard [1] proposes the use of
the wavelet transform, since it offers better rate/distortion (R/D)
performance, avoids blocking artifacts typical of block-based
coders, and eases multiresolution.
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Unfortunately, despite the benefits that the wavelet trans-
form entails, some other problems are introduced. Wavelet-
based image processing systems are typically implemented by
memory-intensive algorithms, with higher execution time than
other transforms. In the usual DWT [2], the image decompo-
sition is computed by means of convolution filtering and so,
its complexity rises as the filter length increases. Moreover, in
the regular DWT computation, the image is transformed first
row by row and then column by column at every decompo-
sition level, and hence it must be kept entirely in memory.
These problems are not as noticeable in other transforms. For
example, the DCT is applied in small block sizes and thus a
large amount of memory is not specifically needed. In addi-
tion, due to the current importance of DCT-based coders, the
complexity of the DCT is a well-studied issue [3], and many
proposals exist to reduce the complexity of the Inverse [4] and
Forward [5] DCT.

The memory requirement of the wavelet transform may se-
riously affect memory-constrained devices that deal with dig-
ital images, such as digital cameras and personal digital as-
sistants (PDAs). The complexity of the wavelet transform is
another issue that affects these devices, since they usually con-
tain DSP or processors with lower computational power than
regular desktop workstation processors. Both memory and com-
plexity of the DWT impose severe restrictions on applications
running on this kind of device, in terms of required working
memory and processing time.

Since memory use and execution time of the DWT computa-
tion grow linearly with the image size, even high-performance
workstations with plenty of memory can find it difficult to deal
with the wavelet transform of large-scale images. This way,
in a geographical information system (GIS), where large dig-
ital maps are handled [6], the uncompressed color map of the
Iberian Peninsula (581 000 square meters approx.) needs more
than 1.6 Terabytes to be stored (scale 1 pixel:1 square meter). If
we use a DWT-based coder, we will need a prohibitive amount
of memory to perform the regular DWT computation.

As mentioned earlier, the regular one–dimensional (1-D)
DWT is computed by means of filtering operations. For a
first decomposition level, and a given filter bank (which is
defined by the selected wavelet family), the input samples are
separately filtered by the lowpass and highpass filters from the
filter bank, and then, the resulting transform coefficients are
downsampled by two. Note that for finite-length sample sets,
we need to specify the value of those samples beyond the signal
limits in order to operate around the boundaries. An efficient
option to prevent the appearance of artificial high frequency is
symmetric extension, in which the samples around both ends
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are copied in reverse order to extend the signal (e.g., a 3-sample
long extension of the set abcdefg is dcbabcdefgfed).

As a result of the wavelet decomposition, the signal spectrum
is split into a low-frequency and a high-frequency
subband. Since in natural signals most energy concentrates in

, the same decomposition process can be recursively applied
on the remaining low-frequency subbands (which is known as a
dyadic decomposition), until a desired decomposition level
is achieved. For a two-dimensional (2-D) wavelet transform, the
1-D DWT is separately applied on rows and columns, resulting
in four wavelet subbands, which are usually called , ,

, and . The first letter in the subband name identifies the
filter that has been applied horizontally, the second letter iden-
tifies the vertical filtering, and the number identifies the decom-
position level. As in the 1-D case, the wavelet decomposition is
recursively repeated on the low-frequency subband until
the desired decomposition level is reached.

The lifting scheme [7], [8] is probably the best-known algo-
rithm to calculate the wavelet transform in a more efficient way,
as an alternative to the regular convolution method. Since it uses
fewer filter coefficients than the equivalent convolution filter,
it provides a faster implementation of the DWT. This scheme
also provides memory reduction through in-place computation
of wavelet coefficients. However, if in-place computation is
applied, the low-frequency coefficients are interleaved with
the high-frequency coefficients, and the subsequent wavelet
processing can be non-optimal (especially in cache-based sys-
tems), requiring more careful processing. We can overcome this
problem with coefficient reordering, at the cost of increasing
the complexity of the algorithm.

Besides lifting, another way to speed up the execution time
in cache-based architectures is to optimize the memory access.
The regular 2-D wavelet transform computes the 1-D transform
first on each row, and then on each column. This process is
successively repeated on the low-frequency subbands. Due to
the organization of images in memory (usually row by row),
the column access does not exploit memory locality, and hence
does not take advantage of the cache memory. If we can arrange
the memory access strictly on rows, we will be able to improve
the cache performance [14]. We will take this approach in our
algorithm.

Other works have been focused on efficient hardware designs.
In this manner, in [28] two efficient VLSI architectures are pro-
posed to compute the DWT. One of these proposals is based
on a folded architecture in which latency is reduced at the ex-
pense of increasing the hardware area, although it is not com-
pletely utilized. The second proposal is a digit-serial architec-
ture, which requires simpler circuitry and lower power, but has
higher latency.

Let us address now the problem of memory consumption. The
simplest solution to reduce the amount of memory needed to
compute the wavelet transform of an image is to split the whole
image into smaller pieces, so that the DWT can be calculated
on each one separately. This approach is called image tiling and
is supported by JPEG 2000. However, it presents several prob-
lems. On the one hand, we have image blocks again, and then
blocking artifacts may reappear, especially when we use small
tile size and high quantization. On the other hand, we do not

decorrelate the entire image, but only the part that is being trans-
formed, and then the compactness is lower. In JPEG 2000, this
low compactness causes the PSNR to drop by more than 1 dB at
low bit rates, with a tile size of 128 128 instead of the whole
image [9].

However, there are other strategies to save more memory. One
of them is to get rid of wavelet coefficients as soon as they have
been calculated. With this approach, we can compute all the de-
composition levels simultaneously, and when a coefficient is not
going to be used anymore, it is discarded (compressed, saved or
processed according to the purpose of the wavelet decomposi-
tion). In the rest of this section, we survey some of these strate-
gies, focusing on the line-based approach.

A. Related Work

Several proposals have dealt with low-memory DWT imple-
mentations. In [10], it is introduced a first solution to overcome
this drawback for the 1-D DWT. Later, one of the first ap-
proaches to reduce memory consumption in wavelet processing
was done in [11]. The proposed algorithm includes image
coding by means of zerotrees [12], [13]. To reduce the memory
requirements, the encoder reorders the output bit stream so that
wavelet coefficients from several subbands are placed together,
and this way, the decoder can compute a fragment of the inverse
DWT, and produce several image lines. Once this group of
lines is decoded, the memory used by these coefficients can be
released and more lines can be read in the same way.

The first line-based algorithm was proposed in [14], where
1) reduction of memory is dealt in both the forward and inverse
transform (in [11] it is done only in the decoder); 2) the order of
the coefficients is rearranged with some extra buffers to allow
efficient use of memory in the encoder and the decoder; and
3) the zerotree encoder is replaced with a new entropy coding
algorithm.

In [15], a block-based implementation of the DWT was pro-
posed in order to match with block-based encoders and to re-
duce the memory usage of the wavelet transform. Although it is
an interesting proposal for block-based encoders, the required
memory resources are similar to those in [14]. This work also
includes a block-based encoder that is able to get state-of-the-art
coding performance, but the encoder is quite complex and re-
quires too much memory.

Finally, in [16], the authors show the importance of a good use
of cache memory, reducing the computation time of the DWT
by means of proper memory organization over the spatial com-
binative lifting algorithm (SCLA) proposal.

B. The Line-Based Approach

Recall that in the regular DWT, the image is transformed level
by level, by using the 1-D DWT first on rows, and then on
columns, and so it must be kept entirely in memory. In order
to keep in memory only the part of image strictly necessary, and
therefore to reduce the amount of memory required, the order
of the regular wavelet algorithm must be changed. We cannot
compute every decomposition level successively but this com-
putation has to be interleaved. In this section, we describe the
line-based DWT using a different approach from the one used
in [14].
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Fig. 1. Overview of a line-based forward wavelet transform. The boxes labeled
L andH represent the lowpass and highpass vertical filtering. The box labeled
1D-DWT indicates that a line is transformed as usual.

For the first decomposition level, the algorithm directly re-
ceives image lines, one by one. On every input line, a one-level
1-D wavelet transform algorithm is applied so that it is divided
into two parts, representing the horizontal details and a low-fre-
quency smaller version of this line. Then, these transformed
lines are stored in a first decomposition level buffer. When there
are enough lines in the buffer to perform a step of a column
wavelet transform, the vertical transform is computed and the
first line of the , , and wavelet subbands, and the
first line of the subband are calculated. At this moment,
for a dyadic wavelet decomposition, we can process (e.g., com-
press) and release the first line of every wavelet subbands. How-
ever, the first line of the subband is not part of the result
but it is needed as incoming data for the following decompo-
sition level. When the lines in the first level buffer have been
employed, this buffer is shifted twice (using a rotation opera-
tion) so that two lines are discarded while another two image
lines are input at the other end. Note that the downsampling by
two inherent to the wavelet transform (see the Introduction) is
achieved by shifting the buffer by two positions instead of by
one. Once the buffer is updated, the process can be repeated and
more lines are obtained.

At the second level, the buffer is filled with the lines that
have been computed in the first level. Once the buffer is com-
pletely filled, it is processed in the same way as we have de-
scribed for the first level. In this manner, the lines of the second
wavelet subbands are calculated, and the low-frequency lines
from are passed to the third level. As it is depicted in Fig. 1,
this process can be repeated until the desired decomposition
level (nlevel) is reached.

In [14], the explanation of a line-based strategy is given in
an iterative way, and no detailed algorithm is described. Some
major problems arise when the line-based DWT is implemented
using an iterative algorithm. The main drawback is the synchro-
nization among the buffers. Before a buffer can produce lines,
it must be completely filled with lines from previous buffers,

therefore they start working at different moments, i.e., they have
different delays. Moreover, all the buffers exchange their result
at different intervals, depending on their level.

The time in which each line is passed to the following buffer
depends on several factors, such as the filter size, the number of
decomposition levels, the level and number of line being com-
puted, and the image size. In a hardware implementation, with a
fixed image size and a constant decomposition level, a pre-com-
puted unit control can be employed to establish the order of the
computations in the buffers for a given filter bank. Thus, sev-
eral hardware implementations of this line-based strategy have
been proposed, and they can be found in the literature [17]–[20].
However, a general case of this algorithm cannot be easily im-
plemented in software due to the synchronization problems ex-
posed above. In our proposal, we will take a different approach
to solve this problem in software by using a recursive definition
that will be detailed later.

C. Contributions and Paper Organization

In Section II, we propose a general recursive algorithm to
compute the DWT in a line-based fashion [11], [14]. We give
two implementations of this recursive algorithm, first by means
of a simple filter bank, and later using the lifting scheme to
improve its efficiency. Both convolution and lifting algorithms
are fully described and can be straightforwardly implemented.
In fact, we give an implementation in ANSI C language [21],
which differs little from the pseudo-code description. While in
the iterative approach [14] we need to handle several buffers
with different delay and rhythm, which is a difficult task, the
main contribution of our proposal is to solve the problem of
how to perform this communication among buffers. Moreover,
the proposal based on the lifting scheme reduces the memory
requirements by half when compared to the filter bank imple-
mentation, and improves the execution time.

Although the wavelet transform that we describe in this paper
is general purpose, we will use it in an image compression envi-
ronment. An important restriction is introduced by the fact that
only a part of each subband is available at every moment, and
therefore we need coding schemes that do not require global
knowledge of the image. Moreover, progressive coding (with
SNR scalability) is not possible in just one-pass, since we have
to encode an entire coefficient as soon as we receive it. There-
fore, multiple image scans focusing on a different bit-plane is
not feasible, unless we rearrange the coefficients later on, after
encoding all the coefficients, as JPEG 2000 does.

The line-based DWT that we propose in Section II can be
used along with JPEG 2000 in a standard coding/decoding
system. However, the block-coding algorithm used in JPEG
2000 (EBCOT [22]) is rather complex, due to the use of
bit-plane coding with a rate-distortion optimization algorithm
and a large number of contexts. Since we aim at low complexity,
in Section III we will depict a new run-length wavelet encoder
(RLW) to be used along with the proposed wavelet transform.
This RLW coder presents good compression performance, is
fast and does not introduce memory overhead, so it meets the
requirements with which we are dealing.

Note that run-length coding has been used several times in
wavelet-based compression (see [23], [24]), and even in the
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cleanup pass of JPEG 2000’s EBCOT [22], but these proposals
always work with bit-plane coding. Run-length coding is a good
way to achieve fast compression, but we are going to speed it up
by encoding the coefficients as a whole. Moreover, due to the use
of a line-based DWT, with neither rearrangement nor post-pro-
cessing of the wavelet coefficients, we do not aim at SNR scal-
ability, and therefore bit-plane coding is not necessary.

Finally, in Section IV, we compare the proposed implemen-
tations of the DWT with the regular wavelet transform in terms
of memory usage and execution time by using real implementa-
tions. In the same section, the proposed coder is also compared
with state-of-the-art image coders like SPIHT and JPEG 2000.

II. RECURSIVE ALGORITHM FOR BUFFER SYNCHRONIZATION

In this section, we present the Forward and Inverse Wavelet
Transform algorithms (FWT and IWT) that solve the synchro-
nization problems that have been addressed in the introduction.
In order to solve these problems, both algorithms are defined
with a recursive function that obtains the next low-frequency
subband (LL) line from a contiguous level. The wavelet trans-
form is implemented first by a simple filter bank, and then using
the lifting scheme, which is faster and requires less memory.

A. General Algorithm

Let us depict our algorithm briefly. The main task of the FWT
is carried out by a recursive function that successively returns
lines of a low-frequency subband at a given level .
The FWT is computed by requesting LL lines at the last level
(nlevel). As seen in Fig. 1, the nlevel buffer must be filled up
with lines from the nlevel-1 level before it can generate lines.
In order to get them, the function calls itself in a backward re-
cursion, until level zero is reached. At this point, it no longer
needs to call itself since it can return an image line, which can
be read directly from the input/output system. Although we are
calculating a forward wavelet transform, we do it by means of
backward recursion, since we go from nlevel to zero.

The function that implements this recursive algorithm is
called GetLLlineBwd() (see Algorithm 1 in Fig. 2). This
function receives a decomposition level as a parameter, and
calculates a line of each wavelet subband ( , and )
and returns a line from the low-frequency subband. In
order to get the subband lines at level , the first time that this
function is called at that level, it computes the first line of every
subband at level , the following time it computes the second
one, and so forth.

When this function is called for the first time at level , its
buffer is empty, and so it has to be recursively filled
with lines from the previous level as shown in Algorithm
1 (case 3.1). Recall that once a line is input, it must be trans-
formed using a 1-D DWT before inserting it into the buffer. On
the other hand, if the buffer is not empty, it simply has to be up-
dated by discarding some lines and introducing additional lines
from level . We do it by means of a recursive call again (case
3.3). However, if there are no more lines available at level ,
this recursive call returns End Of Line (EOL). That points out
that we are about to finish the computation at this level, but we
still have to calculate some subband lines from the remaining
lines in the buffer (case 3.2). We will give more details of each

Fig. 2. Algorithm 1: Recursive FWT computation with nlevel decompositions.
The backward recursive function GetLLlineBwd(i) returns a line from the
low-frequency subband LL . The first time that this function is called at level
i, it returns the first line of the LL subband, the following time it returns the
second line, etc. If there are no more lines at level i, it returns the EOL tag. As
the nth line of the LL subband is computed and returned, the corresponding
nth lines of theHL ,LH andHH subbands are also computed, processed and
released.

recursive case in Sections II-B–D, since they are handled in a
different way depending on whether we are dealing with a con-
volution algorithm or with the lifting scheme. In both convolu-
tion and lifting, we have a wavelet subband line from ,
and at the end of the recursive case. These lines are pro-
cessed and released depending on the application purpose (e.g.,
compression), and the function returns an line.

Every recursive function needs at least one base case to stop
recursion. This function has two base cases. The first case is
when all the lines at this level have been read. In this case, the
function returns EOL. The second base case is reached when the
backward recursion gets the level zero, and then no further re-
cursive call is needed because an image line is read and returned
directly from the I/O system.

Once we have defined the recursive function, we can com-
pute a wavelet transform with nlevel decompositions simply
by using this function to compute the whole subband.
This is done by the function LowMemUsageDWT(nlevel) in
Algorithm 1, which calls GetLLlineBwd(nlevel) until it returns
EOL.

This algorithm can be implemented easily because the syn-
chronization among buffers and the problem of different buffer
delays are solved directly with recursion, which automatically
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Fig. 3. Algorithm 2: Recursive IWT computation with nlevel decompositions.
The forward recursive function GetLLlineFwd(i) returns a line from a low-
frequency subband as Algorithm 1 does, although using forward recursion. First,
it retrieves a line of the HL , LH and HH subbands from the com-
pressed bit stream, and an LL line from the following level using a recursive
call. Then, with these lines, it can compute two lines of the LL subband and
return them alternatively.

sets the rhythm and order of the transformation steps. The itera-
tive alternative is more difficult because a simple nested loop is
not enough, and a complicated control to trigger the operations
at the correct moment for each level is required.

The inverse DWT algorithm (IWT), which is described in
Algorithm 2 in Fig. 3, is similar to the forward one, but applied
in reverse order. Thus, it carries out forward recursion, from zero
to nlevel, and so it builds a low-frequency line at level
from an line, which is computed recursively from ,
along with the corresponding , and lines,
which are input from the compressed bit stream. Since the re-

cursive function goes forward, the second base case is changed
to be reached when the parameter level is equal to nlevel, and
then a line from the low-frequency subband is retrieved
directly from the compressed bit stream. In the recursive case,
there are mainly two changes with respect to the backward func-
tion. The first modification is the introduction of a new function

, which is used to get the lines for the
buffer. This function alternatively returns the concatenation of
a line from the and subbands, or from the and

subbands, at a specified level . Contrary to the lines from
, and , which are retrieved directly from the com-

pressed bit stream, the line is computed recursively using
GetLLlineFwd(). The second difference is the introduction of
a logical variable, , which defines whether the
buffer needs to be updated or not to produce another line. In the
IWT, two lines can be computed once a buffer is full. Therefore,
this variable shows if the buffer is updated and if so, another line
can be computed without updating it. More details on how the
recursive case is implemented are given in Sections II-B–D.

Once the recursive function for the IWT is defined, all the
image lines can be computed just by calling this recursive func-
tion, with the parameter set to zero, until no more lines are
available.

B. Filter Bank Implementation

In the previous subsection, we described a general recursive
algorithm for the DWT computation. Now, we will use that
description to implement the DWT computation using a filter
bank. In this implementation, we insert lines into the buffer until
we can apply one-step of a vertical lowpass and a vertical high-
pass filter bank on it. Therefore, each buffer must be able to keep

lines, where is the number of taps for the largest
filter bank (lowpass and highpass filters). We only consider odd
filter lengths because they have higher compression efficiency,
however this analysis could be extended to even filters as well.

Since the base cases are completely defined in Algorithm 1,
we only have to describe the recursive case. In this case, when
a buffer is empty (case 3.1), its upper half (from to ) is
recursively filled with lines from the previous level. Once the
upper half is full, the lower half is filled using symmetric exten-
sion (in which the line is copied into the position,
the into the , the is copied into the 0 po-
sition). On the other hand, if the buffer is not empty, we only
have to update it (case 3.3). Therefore, we shift it by one posi-
tion so that the line contained in the first position is discarded
and a new line can be introduced in the last position by
using a recursive call. This operation is repeated twice because
after applying the highpass and lowpass filters with the lines in
the buffer, we discard the results of the following filtering op-
eration (which could be performed with the lines in the buffer
after the first shift) to efficiently implement a downsampling by
two. Finally, if no more lines can be computed from the previous
level (case 3.2), we fill the buffer by using symmetric extension
again. Actually, this is the same case as in 1-D DWT, in which
symmetric extension is used at both ends.

In all the cases, once there are enough lines in the buffer to
perform one step of a column wavelet transform, the convolu-
tion process is calculated vertically twice, first using the lowpass
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Fig. 4. Algorithm 3: Filter bank implementation, recursive case.

filter and then with the highpass filter. This way, we get a line
of every wavelet subband. This whole process is described in
Algorithm 3 (Fig. 4).

For the inverse transform, we need to change Algorithm 3
slightly. We only have to replace every 1-DFWT() function
by 1-DIWT(), change all for , and use Get-
MergedLineFwd() instead of GetLLlineBwd(). Then, we can
incorporate this modified version of Algorithm 3 as the re-
cursive case in Algorithm 2, but recall that we have to use
the variable to execute cases 3.2 and 3.3 only
when needed (as described in Algorithm 2), and to compute
an line using the and

functions alternatively (the
lowpass filter is applied when is true).

C. Implementation With the Lifting Scheme

The convolution implementation that has been presented in
the previous subsection introduces wide benefits in memory
usage, since we only keep in memory a few low-frequency lines

for each decomposition level instead of the whole
subbands. However, we can still reduce the amount of memory
required and speed up its execution time by using the lifting
scheme [7].

In the lifting scheme, the wavelet coefficients are computed
by means of several steps on the input samples (see Fig. 5).
In the first step, the samples in odd positions (black squares
in the figure) are processed from the contiguous even samples
(the white ones). This way, we try to predict each odd sample
as a linear combination of the even ones, and thus this step is
called prediction step. In the second step, the even values are
computed from the contiguous odd ones, and it is called up-
date step. In this manner, we compute successive prediction and
update steps. The total number of steps depends on the DWT
transform that is being computed. Finally, the odd values cal-
culated in the last prediction step are normalized by a constant
factor to achieve the high-frequency wavelet coefficients.
The values from the last update step are normalized by to
get the low-frequency coefficients.

Fig. 5. Overview of the lifting scheme for the B9/7 FWT.

TABLE I
WEIGHTING VALUES FOR PREDICTION AND UPDATE STEPS OF THE LIFTING

SCHEME IN THE B9/7 WAVELET TRANSFORM

The normalization constant depends on the desired fea-
tures of the transformation (close to orthonormal, preserve the
dynamic range of the coefficients, etc.). The lifting scheme de-
picted in Fig. 5 is for the popular B9/7 transform [25]. The
derivation from the filter bank to the weighting factors for every
prediction and update step is given in [26], and the numeric
values for these weighting factors are shown in Table I.

The main advantage of the use of the lifting scheme instead of
convolution is the extra reduction of memory achieved. Let us
define as the total number of weighting factors (prediction
and update) for a DWT. Then, the buffer height in the lifting
scheme has to be , so it can perform the prediction and
update steps needed to compute a low and a high-frequency line
in a segmented way, as we will see later. Despite computing
sample lines, we need two additional lines to calculate the first
and last values. We will see that these additional lines are read
but not modified in the step in which they are read. In general

is lower than (see [26] for details) and therefore
we need less lines in the buffers. For example, for B9/7,
is 9 while is only 6. For the sake of clarity, in the rest of
this section, we will consider that the number of sample values
in each decomposition level is even, and so is (although it is
not difficult to extend it to the general case).

In Algorithm 4 (Fig. 6), we describe how to implement the
recursive case of Algorithm 1 using the lifting scheme. In this
algorithm, when the buffer is empty (case 3.1), we fill it from

to 0 ( is left empty), using a recursive call. Then, we
compute the successive prediction and update steps, using only
the lines in the buffer. This way, we compute fewer lines in every
step, since the rest of lines rely on information that still has not
been input. Finally, we get a low frequency line (with the first
line of the and subbands) and a high frequency line
(with one line from and ). The lines that have been
handled in this step are shown in the highlighted area on the left
of Fig. 5. Now, in this figure, each square represents an entire
line instead of a single sample. The squares at the top of Fig. 5
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Fig. 6. Algorithm 4: Lifting implementation, recursive case.

Fig. 7. Line processing in buffer for the lifting scheme.

are lines from the previous level, the grey squares in the middle
of the figure are intermediate states of those lines, while those at
the bottom are the concatenation of and lines (black
squares), or and lines (white squares).

At this moment, we can see in Fig. 5 that all the lines in a
diagonal (on the hypotenuse of the triangle that defines the left
area) are predicted or updated (except the first one). Hence, if
we introduce two more lines, and discard other two lines (the
line in was processed and encoded, and was empty),
we can compute two more lines in a segmented way (case 3.3).
Every time that we introduce two lines in the buffer, the lines are
processed as described in Fig. 7 (for B9/7). The first column in
this figure indicates the initial state, in which we have two new
lines (white and black squares) at top. Then, the new odd line
is predicted from its two contiguous even lines (and this square
becomes grey because it is an intermediate value). Afterwards,
we update the third line in the buffer from the contiguous even
lines, and so forth. At the end of this process, we have computed
two new lines, which represent four subband lines. The new

Fig. 8. Overview of the lifting scheme for the B7/9 IWT.

high-frequency line is not released because it is necessary for
the following pass. Thus, we normalize and release the new low-
frequency line, and the high-frequency line that was computed
in the previous pass with a total of four subband lines (two per
square). This computation of four subband lines is represented
in the middle of Fig. 5 as the pass from the left dotted area,
which represents the initial state in Fig. 7 (first column), to the
right dotted area, which is the final state in Fig. 7 (last column).

Finally, the highlighted area on the right of Fig. 5 shows the
lines that are processed when no more lines can be read from the
previous level (case 3.2). In this case, we use the remaining
intermediate lines to generate more subband lines while we are
cleaning the buffer by shifting it two positions in each call.

Although symmetric extension is not as necessary in the
lifting scheme as in a filter bank implementation (to make the
transform non-expansive), a simple way to apply symmetric
extension in this algorithm is to double the weighting factor
when there is only a line available to predict/update another
line, in other words, if the predicted/updated line is on an edge
in Fig. 5.

For the inverse transform, we have to perform the same op-
erations as in the forward DWT but in the reverse order. More-
over, the sign of the weighting factors have to be changed, and
the scaling factors are swapped. These modifications are shown
in Fig. 8, where the input data are compound subband lines
( and interleaved), and the output data are
low-frequency lines of the previous level . The IWT al-
gorithm is similar to the one given for the forward implementa-
tion (Algorithm 4), but considering the same changes that were
described in the filter bank implementation. Recall that two lines
are computed in every step, and thus the vari-
able is used to know if there is a line available in the buffer from
the previous pass, or the buffer needs updating to compute two
more lines.

D. Some Theoretical Considerations

The main advantage of line-based algorithms is their lower
memory requirements compared with the regular wavelet trans-
form. In the filter bank implementation, every buffer contains

lines, so it needs to store co-
efficients. If the image width is and height is , the first-level
buffer width is coefficients, and the width is halved at every
level. So the memory requirements for all the buffers are
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coef-
ficients, which is asymptotically (as nlevel approaches infinity)

coefficients. This is even better when the lifting
scheme is used, because only coefficients are
needed (the relationship between the and is shown in
[26], and asymptotically is twice ). We can compare
these memory requirements with the regular wavelet transform,
which requires coefficients. Since for efficient
filter banks (i.e., twice
the buffer height is considerably lower than the image height),
a line-based approach uses much less memory than the regular
one. Since the buffer size depends on the image width, and the
required amount of memory in a line-based approach is inde-
pendent of the image height, the best case for this algorithm is
transforming wide images with few lines (if this is not the case,
the image can be rotated if convenient and possible). Note that
this analysis is exactly the same, independently of the use of an
iterative or recursive line-based algorithm.

If we analyze the algorithm complexity as the number of co-
efficients that need to be computed, obviously the result is the
same in the regular algorithm and in the line-based approaches.
Thus, for the first decomposition level, coefficients are
computed in both cases (although in a different order in line-
based algorithms), then for a second level,

coefficients are computed, and in gen-
eral for a -level coefficients are calculated. For
both the regular and the proposed algorithms, the total amount
of coefficients to be computed can be expressed as

, which asymptotically is . However, re-
duction of memory has another beneficial side effect in execu-
tion time when our algorithm is implemented in a cache-based
system. The subband buffers are more likely to fit in cache
memory than the whole image, and that is why the execution
time is substantially reduced. Moreover, we have replaced the
column access of the regular DWT, which clearly affects the
cache performance, with a more sophisticated access arranged
in line buffers. In addition, we expect that the lifting scheme ver-
sion will reduce the computational cost of the algorithm since it
performs fewer floating-point operations.

A drawback that has not been considered yet is the need to
reverse the order of the subbands, from the FWT to the IWT.
The former starts generating lines from the first levels to the last
ones, while the latter needs to get lines from the last levels be-
fore getting lines from the first ones. This problem can be solved
using some additional buffers at both ends to reverse the coef-
ficients order, so that data are supplied in the right order [14].
Other simpler solutions are: 1) to save every level in secondary
storage separately so that it can be read in a different order, or
2) if the wavelet transform is used for image compression, to
keep the compressed coefficients in memory. For the sake of
simplicity, we will use the last option for the coder that is intro-
duced in Section III, although any of them can be used.

Energy consumption is critical when running the proposed al-
gorithms in mobile devices (such as PDAs) in order to increase
the operation time. In [19], the authors propose a general en-
ergy model for studying different 2-D DWT architectures. This
model is completely based on memory access operations, since
in this kind of memory data-intensive algorithms, such as the

2-D DWT, the energy dissipation due to data storage and trans-
fers forms the dominant component (up to 80%) of the total
power budget. It is worth of mention that a transfer to/from an
on-chip memory consumes 4–10 times more power than one
addition, while an off-chip access requires 10–100 times more
power than an on-chip access. So, they propose the following
expressions:

where is a function that depends on technology (memory
size in words, bits per memory word and number of memory
ports, among other parameters) and is the supply voltage.
Although the number of memory access between the regular
2-D DWT transform and the line-based versions are similar, the
on-chip memory access ratio of line-based proposal will be sig-
nificantly high compared with the traditional 2-D DWT (notice
that first-level cache is placed on-chip, as it happens in most cur-
rent conventional processors). So, taking into account the pre-
vious considerations, we could say that line-based algorithms
will require less energy than a regular convolution 2-D DWT
transform.

III. RUN-LENGTH CODING OF THE WAVELET COEFFICIENTS

In the proposed wavelet transform, once a subband line is
calculated, it has to be encoded as soon as possible in order
to release memory and reduce memory consumption. However,
entropy coders need to exploit local similarity in the image to
be efficient, and therefore better compression performance can
be achieved if we group subband lines in an encoder buffer.
These buffers store the lines released by the DWT and group
them before the coding stage. When we consider that there are
enough lines in a buffer to perform an efficient compression, the
Run-Length algorithm (Algorithm 5, Fig. 9) is called, passing
the encoder buffer (Buffer) and the level of the buffer as
parameters.

Since the encoder does not know the whole image, but only
the lines that are in the buffers at that moment, it cannot use
global image information. Moreover, we aim at fast execution,
and hence no R/D optimization or bit-plane coding can be made.
In Section III-A, we propose a RLW encoder that fulfills the
aforementioned features.

A. Fast Run-Length Coding

In the proposed algorithm, which is formally described
in Algorithm 5, the quantization process is performed by
two strategies: one coarser and another finer. The finer one
consists in applying a scalar uniform quantization to every
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Fig. 9. Algorithm 5: Run-length coding of the wavelet coefficients.

coefficient using a quantization parameter. We can use the
same quantization parameter for all the wavelet coefficients
for a ( , ) normalization, since the DWT then results in
a nearly orthonormal transformation. Actually, we can avoid
the multiplication that this quantization implies because it can
be combined with the normalization step in the lifting scheme
computation. The coarser quantization is based on removing
bit planes from the least significant part of the coefficients.
We define rplanes as the number of less significant bits to be
removed, and we call significant coefficient those coefficients

that are different from zero after discarding the rplanes
bits, in other words, if .

The wavelet coefficients are encoded as follows. The coef-
ficients in the buffer are scanned column by column (to ex-
ploit their locality). For each coefficient, if it is not significant,
a run-length count of insignificant symbols at this level is in-
creased . However, if it is significant, the run is
broken and we have to encode the count of insignificant sym-
bols and the significant coefficient.

A significant coefficient is represented by a symbol that in-
dicates the number of bits required to represent that coefficient.
We use arithmetic coding to store that symbol in an efficient
way. Since coefficients in the same subband have similar mag-
nitude, an adaptive arithmetic encoder is able to represent this
information very efficiently. In addition, we can improve the
compression performance of the arithmetic coding using two
contexts depending on the significance of the left and upper
neighbors (which have already been coded). Once we have en-
coded the amount of bits required by a significant coefficient,
we still need to store its significant bits and the sign. For these
bits, we use raw coding (i.e., with no compression) to speed up
the execution time of the algorithm, with only a small loss in
performance.

The count of insignificant symbols is en-
coded with a special symbol, which is called RUN symbol.

After encoding a RUN symbol, the run-length count is stored in
a similar way as the significant coefficients. First, the number of
bits needed to represent the run value is encoded (with adaptive
arithmetic coding and a different context), afterwards, the bits
are raw encoded.

Compression performance can be increased if a specific
symbol is used for each insignificant coefficient, since an arith-
metic encoder stores more efficiently many likely symbols than
a lower amount of less likely symbols (i.e., different run-length
counts). Notice that we do not use run-length coding to improve
the compression performance but to reduce the complexity of
the algorithm, most of all at high compression ratios, where
many insignificant coefficients in a run are coded with only
a symbol. Nevertheless, for short run-lengths, we improve
the coding performance if a LOWER symbol is encoded for
each insignificant coefficient instead of a RUN symbol for the
entire sequence. The threshold value to enter in run-length
mode and start using run-length symbols is defined by the
enter_run_mode parameter in Algorithm 5.

B. Tradeoff Between R/D Performance and Speed and Memory
Requirements

The proposed algorithm can be tuned depending on the final
application requirements. Thus, some parameters can be ad-
justed to improve the compression performance at the cost of
slightly higher memory requirements or execution time. This
way, the number of lines in every encoder buffer can be 8 for a
good R/D performance, but compression efficiency can be im-
proved with 16 lines, increasing the memory requirements. An-
other parameter that can be tuned is the enter_run_mode vari-
able of Algorithm 5. When this parameter is increased, larger
run-lengths are encoded by successive LOWER symbols, which
results slower but a bit more efficient in R/D performance. An-
other tradeoff between compression efficiency and complexity
is the use of arithmetic coding (with contexts) instead of raw
coding to encode the sign of the coefficients, because there is a
dependence among the sign of the wavelet coefficients inside a
subband. In general, each of these improvements may increase
the PSNR of an image encoded at 1 bpp in about 0.1 dB, while
the two latter improvements increase the execution time in about
20% each one.

IV. GLOBAL EXPERIMENTAL RESULTS AND

CODING PERFORMANCE

In order to compare the regular wavelet transform and our
proposals, we have implemented them (using the well-known
Daubechies 9/7 [25], [26] ) with standard ANSI C language, on
a regular PC computer with 256 KB L2 cache. These implemen-
tations are available at [21].

For these tests, we have used the standard Lena (512 512)
and Woman (2048 2560) images. With six decomposition
levels, the regular WT (both filter bank and lifting implemen-
tations) needs 1030 KB for Lena and 20510 KB for Woman,
while the filter bank implementation requires 41 KB for Lena
and 162 KB for Woman, i.e., it uses 25 and 127 times less
memory. Our proposal using the lifting scheme still needs less
memory, requiring 26 KB for Lena and 103 KB for Woman,
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TABLE II
MEMORY REQUIREMENT (KB) COMPARISON AMONG OUR PROPOSALS AND

THE USUAL ALGORITHM USING DIFFERENT IMAGE SIZES

Fig. 10. Execution time comparison (excluding I/O time).

which means that it only requires 60% of memory with respect
to the filter bank algorithm. In addition, Table II shows that our
proposals are much more scalable than the usual DWT.

In Fig. 10, we present an execution time comparison between
our proposals and the regular DWT (convolution and lifting).
It shows that, while our algorithms display linear behavior, the
regular DWTs approach to an exponential curve. This behavior
is mainly due to the ability of our algorithms to fit in cache for
all the image sizes (162 KB and 103 KB for the 5-megapixel
image with convolution and the lifting scheme, respectively).
On the contrary, the usual wavelet transform rapidly exceeds the
cache limits (e.g., it needs 1287 KB for the VGA resolution). In
the regular implementation, an interesting point is that, despite
requiring fewer operations, the lifting scheme exhibits almost
the same execution time as the filter bank implementation, since
memory access is the real bottleneck in the regular implemen-
tation. Thus, the relieved computing time is spent in the coef-
ficient reorganization required by the lifting scheme. However,
in the new proposal, this figure shows that the lifting scheme
implementation is about 40% faster than the convolution algo-
rithm, not only because fewer floating-point operations are per-
formed, but mainly due to the reduced memory access. Anyway,
both proposals are faster than the usual wavelet transform, due
to their better use of the cache memory.

Since the forward and inverse transform are symmetric, fur-
ther experiments have shown that the IWT has similar results

TABLE III
PSNR (DB) WITH DIFFERENT BIT RATES AND CODERS FOR THE EVALUATED

IMAGES. THE NUMBERS IN PARENTHESIS CORRESPOND TO THE DECREASE OF

PERFORMANCE IF THE R/D IMPROVEMENTS DISCUSSED IN SECTION III-B
ARE NOT APPLIED

in memory requirement and execution time. Moreover, a com-
parison with iterative methods (like the one in [14]) shows very
similar execution times and memory requirements, since in both
implementations the number of floating-point operations and
memory access is identical and executed in the same order, and
the defined buffers and their size are exactly the same as well.

Next, we compare the proposed RLW coder with the state-
of-the-art wavelet coders SPIHT [13] and JPEG 2000 [1]. The
results for JPEG 2000 have been obtained using Jasper [27],
an official implementation included in the ISO/IEC 15444-5
standard. All of them use Daubechies B9/7 and have been
written and compiled with the same level of optimization. In
our comparison, we use the standard images Lena and Barbara
(monochrome, 8 bpp, 512 512) and the larger and less blurred
images Café and Woman (monochrome, 8 bpp, 2560 2048,
equiv. 5 megapixel), from the JPEG 2000 testbed.

Table III shows a compression comparison for the evaluated
images and coders. In general, our proposal performs as well as
SPIHT for less detailed images (Lena and Woman) and better
than it for more detailed images (Barbara and Café). SPIHT per-
forms worse with complex images because it is based on coeffi-
cients trees, and it can establish fewer trees in images with many
details. On the contrary, JPEG 2000 is more efficient than our
proposal in highly detailed images, since it defines more con-
texts and uses a Rate/Distortion optimization algorithm. Both
JPEG 2000 and our run-length coder exhibit similar results in
low detailed images.

As expected, the comparison in which our encoder clearly
outperforms both SPIHT and the evaluated implementation of
JPEG 2000 (Jasper) is in memory consumption. Table IV shows
that for a 5-megapixel image, our proposal requires between 25
and 35 times less memory than SPIHT, and more than 50 times
less memory than Jasper/JPEG 2000. However, it is important to
point out that other implementations of JPEG 2000 can integrate
a line-based approach (an iterative version or the new recur-
sive proposal) to greatly reduce memory consumption. In this
table, the last column refers to the case in which the complete bit
stream (i.e., the compressed image) is kept in memory while it is
generated. Due to the computation order in the proposed wavelet



OLIVER AND PEREZ MALUMBRES: ON THE DESIGN OF FAST WAVELET TRANSFORM ALGORITHMS WITH LOW MEMORY REQUIREMENTS 247

TABLE IV
TOTAL AMOUNT OF MEMORY REQUIRED (IN KB) TO ENCODE THE WOMAN

IMAGE WITH THE COMPARED ALGORITHMS. THE NUMBERS IN PARENTHESIS

CORRESPOND TO THE MEMORY THAT IS SAVED IF THE R/D IMPROVEMENTS

ARE NOT USED (IT IS APPLIED IN BOTH COLUMNS OF OUR

PROPOSED ALGORITHM)

TABLE V
EXECUTION TIME (IN MILLION OF CPU CYCLES) NEEDED TO ENCODE LENA

AND WOMAN WITH DIFFERENT IMAGE SIZE. THE NUMBERS IN PARENTHESES

CORRESPOND TO TIME REDUCTION ACHIEVED IF NO R/D IMPROVEMENTS

ARE APPLIED

transform, the coefficients from different subband levels are in-
terleaved. Thus, instead of a single bit stream, we can generate a
different bit stream for every level. These different streams can
be kept in memory or saved in secondary storage. The amount
of memory required for the bit stream buffers can be reduced if
we reverse the order of the coefficients and release memory as
soon as we have enough coefficients at all the levels (e.g., one
line at level N, two lines at level N-1, four lines at N-2, etc.). In
this table, we can estimate that the amount of memory needed
for a single process (written in C and running under Windows
XP) is about 650 KB, and the remaining memory is required for
the DWT transform and the coding algorithm. Moreover, we can
save 180 KB if we use 8 lines per buffer instead of 16.

Finally, we compared the complexity of the coders. Since
JPEG 2000 has more contexts and uses a Rate/Distortion
optimization algorithm, it is more complex than our proposal.
SPIHT is also more complex because it performs several image
scans focusing on a different bit-plane in every image scan. In
addition, in cache-based systems, the proposed DWT improves
the cache performance. Table V presents an execution time
comparison with two image sizes (Lena and Woman). It shows
that our algorithm clearly outperforms Jasper/JPEG 2000, and
it is several times faster than SPIHT. Moreover, we can speed it
up in about 30% if no compression improvement is performed
(in particular, without arithmetic coding for the signs, and with a
lower value for the enter_run_mode parameter in Algorithm 5).

V. CONCLUSION

In this paper, we have introduced a recursive line-by-line
wavelet transform algorithm, which presents very low memory
requirements and reduced execution time. The execution order
of the wavelet transform is automatically placed by recursion
and this way, the problems about different delay and rhythm

among buffers are explicitly solved. A first general description
has been further detailed to allow two different implementations
(filter bank and lifting algorithms), being the former simpler to
implement but the latter more efficient in terms of complexity
and memory requirements.

The proposed DWT can be used as part of a compression
algorithm such as JPEG 2000, speeding up its execution time
and reducing its memory requirements. However, we have de-
scribed a simple run-length coder to be used along with this
recursive wavelet transform, which displays good compression
performance and very low complexity requirements.

As a conclusion, the main contribution of the proposed DWT
and image coder is their low memory requirements with a
straightforward software implementation, which makes them
good candidates for many embedded systems and other memory-
constrained applications (such as digital cameras and PDAs).
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