
Applying In-Transit Buffers to Boost the
Performance of Networks with Source Routing

José Flich, Member, IEEE, Pedro López, Member, IEEE Computer Society,

Manuel Perez Malumbres, Member, IEEE, José Duato, Member, IEEE, and Tomas Rokicki

Abstract—Clusters of workstations (COWs) are becoming increasingly popular as a cost-effective alternative to parallel computers. In

these systems, processors are connected using irregular topologies, providing the wiring flexibility, scalability, and incremental

expansion capability required in this environment. Myrinet is one of the most popular interconnection networks for COWs. Myrinet uses

source routing and wormhole switching. The up*/down* routing algorithm is used to build the network routes. On the other hand, in

Myrinet, network behavior is controlled by the software running at the network interfaces. Hence, new features such as new routing

algorithms can be added by only changing this software. In previous work, we proposed the In-Transit Buffer (ITB) mechanism to

improve the performance of source routing-based networks. The ITB mechanism temporarily ejects packets from the network at some

intermediate hosts and later reinjects them into the network, performing a special kind of virtual cut-through switching at these hosts.

We applied this mechanism to up*/down* routing, in order to remove the down ! up forbidden channel dependences that prevented

minimal routing between every pair of hosts. Results showed that network throughput can be more than doubled on medium-sized (32

switches) networks. In this paper, we analyze in depth the effect of using ITBs in the network, showing that they not only serve for

guaranteeing minimal routing, but also that they are a powerful mechanism able to balance network traffic and reduce network

contention. To demonstrate these capabilities, we apply the ITB mechanism to improved routing schemes, such as DFS and smart-

routing. These routing algorithms (without ITBs) are able to improve the performance of up*/down* by 30 percent and 90 percent,

respectively, for a 32-switch network. The evaluation results show that, when ITBs are used together with these improved routing

algorithms, network throughput achieved by DFS and smart-routing can still be improved by 56 percent and 23 percent, respectively.

However, smart-routing requires a time to compute the routing tables that rapidly grows with network size, it being impossible in

practice to build networks with more than 32 switches. This high time is mainly motivated by the need of obtaining deadlock-free routing

tables. However, when ITBs are used, one can decouple the stages of computing routing tables and breaking cycles. Moreover, as

stated above, ITBs can be used to reduce network contention. In this way, in this paper, we also propose a completely new routing

algorithm that tries to balance network traffic by using a simple and low time consuming strategy. The proposed algorithm guarantees

deadlock freedom and reduces network contention with the use of ITBs. The evaluation results show that our algorithm obtains

unprecedented throughputs in 32-switch networks, tripling the original up*/down* and almost doubling smart-routing.

Index Terms—Networks of workstations, irregular topologies, wormhole switching, minimal routing, source routing.

�

1 INTRODUCTION

DUE to the increasing computing power of microproces-
sors and the high cost of parallel computers, Clusters

Of Workstations (COWs) are currently being considered as
a cost-effective alternative for small-scale parallel comput-
ing. Although COWs do not provide the computing power
available in multicomputers and multiprocessors, they meet
the needs of a great variety of parallel computing problems
at a lower cost. The interconnection network used is usually
the local area network (LAN) all computers are attached to.
Research in interconnection networks for COWs is advan-
cing relatively rapidly due to the research effort made on
interconnects for parallel computers.

The evolution of COWs is closely related to that of local

area networks (LANs). LANs have migrated from shared

medium to point-to-point links. As an example, consider
the evolution of the Ethernet family up to recent Gigabit
Ethernet networks [20]. Although Ethernet is very popular,
other commercial LANs have arisen in the high-speed
networking arena, trying to provide solutions for some of
the Ethernet weaknesses such as quality of service, priority-
based traffic, gigabit channels, and flow control mechan-
isms (ATM, VG100AnyLan, Autonet, Myrinet).

In COWs, topology is usually fixed by the physical
location constraints of the computers, making the resulting
topology irregular. On the other hand, either source or
distributed routing may be used to send packets across the
network. In source routing, the path to destination is built at
the source host and it is written into the packet header
before transmission. Switches route packets through the
fixed path found at the packet header. One example of
network with source routing is Myrinet [1]. In distributed
routing, the packet header only includes the destination
host. So, to forward a packet, each switch decides the next
output channel that will be used. The Autonet network [18]
is an example of a network with distributed routing. In
networks with source routing, switches are simpler and
faster than those in distributed routing because no route

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003 1

. J. Flich, P. López, M.P. Malumbres, and J. Duato are with the Department
of Computer Engineering, Universidad Politécnica de Valencia, Camino de
Vera, 14, 46071-Valencia, Spain.
E-mail: {jflich, plopez, mperez, jduato}@gap.upv.es.

. T. Rokicki is with Instantis, 725 B Loma Verde, Palo Alto, CA 94303.
E-mail: rokicki@instantis.com.

Manuscript received 14 Aug. 2001; accepted 5 June 2002.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 114777.

0018-9340/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

decisions have to be made in them. However, with
distributed routing, the path followed by a packet can be
dynamically changed in order to avoid congested areas,
thus taking advantage of adaptivity.

An important design issue related to routing is deadlock
handling. Usually, avoidance techniques based on a dead-
lock-free routing algorithm are used. Hence, routing is
restricted so that there are no cycles in the channel
dependence graph (CDG) [5]. A less restrictive approach
that also fits into this category allows the existence of cyclic
dependences between channelswhile providing someescape
paths to avoid deadlock [7], [22]. Many routing algorithms
that follow these approaches have been proposed.

Up*/down* [18] is one of the best known routing
algorithms for irregular networks. It was used in the DEC
AN1 system [15] and currently on Myrinet networks [1].
Up*/down* routing is quite simple. It is based on an
assignment of direction labels to links. To do so, a breadth-
first spanning tree is computed and, then, the up end of each
link is defined as: 1) The endwhose switch is closer to the root
in the spanning tree; 2) the endwhose switchhas the lower ID,
if both ends are at switches at the same tree level. As a result,
each cycle in the network has at least one link in the up

direction and one link in the down direction. Cyclic
dependences between channels are avoided by prohibiting
packets from traversing links in the up direction after having
traversed one in the down direction. While up*/down*
routing is simple, it concentrates traffic near the root switch
and uses a large number of nonminimal paths.

Adaptive-trail routing [16] is based on finding a Eulerian
trail in the network, which establishes a dependence order
for all channels. Shortcut channels are added to the original
Eulerian trail in order to reduce path lengths. The routing
rule allows the use of shortcut channels if they are free;
otherwise, the Eulerian trail channels are used as escape
channels to avoid deadlock. Adaptive-trail routing was
proposed to be used in networks with distributed routing.

Smart-routing [3] first computes all the possible paths for
every source-destination pair, also building the CDG. Then,
it searches through the CDG for cycles. An iterative process
breaks cycles by removing dependences, taking into
account a heuristic cost function. This process finishes
when the CDG has no cycles. Although smart-routing
distributes traffic better than other approaches, it has the
drawback of its high computation overhead since it uses a
linear programming solver to balance the traffic while it
tries to break cycles.

Minimal adaptive routing [21] multiplexes each link into
two virtual channels, the adaptive and escape channels,
respectively. The adaptive channel is used to route packets
through minimal paths without restrictions, while the escape
channel is used as an escape path when the adaptive channel
is busy. As proposed in [21], escape channels must be used
following the up*/down* rule, which guarantees an acyclic
CDG. Minimal adaptive routing is only suitable for net-
works with distributed routing. This routing algorithm
outperforms the up*/down* routing algorithm by provid-
ing minimal paths in most cases. However, since it cannot
be applied to networks with source routing and it requires

the use of virtual channels, minimal adaptive routing is not
well suited for current LANs.

Finally, the DFS routing algorithm [17] computes a
depth-first spanning tree. Then, it adds the remaining
channels to provide minimal paths, which may lead to
cycles in the CDG. As in previous approaches, cycles are
broken by restricting routing. However, channels are
labeled using a heuristic in such a way that the number of
routing restrictions is small.

Routingalgorithms that lead toanacyclicCDGcanbeused
both in networks with source routing and in networks with
distributed routing. Up*/down* routing, smart-routing, and
DFS routing belong to this category. On the other hand,
routing algorithms that rely on escape paths to avoid
deadlocks can only be used in networks with distributed
routing because the source host cannot know in advance if an
escape channel will be needed at some intermediate switches
in the path to the destination. This is the case of adaptive-trail
and minimal adaptive routing. In this paper, we will only
focus on networks with source routing schemes.

2 BACKGROUND AND MOTIVATION

All previous source-based routing strategies (up*/down*,
DFS, and smart-routing) use different algorithms to
compute the possible paths among source-destination pairs
while maintaining deadlock freedom (acyclic CDG).
Although cycles are removed, routing is restricted and
many of the allowed paths are not minimal, increasing both
latency and contention in the network. Also, in routings
based on spanning trees (up*/down* and DFS), forbidding
some paths may result in unbalanced network traffic, which
will lead to rapid saturation. Moreover, as network size
increases, routing algorithms tend to increase the number of
routing restrictions, leading to the use of even longer paths,
higher network contention, and more unbalanced traffic.
On the other hand, the smart-routing algorithm highly
balances traffic. However, this good traffic balance also
leads to the use of long paths and, most importantly, it has a
high computation cost.

Additionally to these problems, another limiting factor of
performance in such networks is network contention.
Because wormhole switching is used and virtual channels
are not allowed, contention on one link can rapidly block
other links, cascading throughout the network. This effect
increases latency and reduces overall performance.

Taking into account all of these problems in networks
with source routing, the best routing algorithm should be
the one that: 1) always uses short paths, 2) highly balances
network traffic, and 3) helps in reducing network conten-
tion while guaranteeing deadlock freedom. Finally, this
algorithm should be scalable and require a reasonable
computation time.

In previous work [8], we proposed a new mechanism (in-
transit buffers, ITB) for networks with source routing.
Basically, this mechanism avoids routing restrictions by
ejecting packets at intermediate hosts and later reinjecting
them. Thismechanism can be easily implemented inMyrinet
by modifying the network control program at the network
interface card without changing the network hardware.

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

This mechanism was originally proposed to provide
minimal routing to up*/down*. In this routing algorithm,
ITBs are put in all the down-up transitions. The mechanism
has been extensively evaluated for both irregular [8] and

regular networks [9] under different traffic patterns, net-
work topologies, network sizes, and different message sizes.
Overall, this mechanism improves on the performance
achieved by up*/down*. Moreover, as network size in-

creases, more benefits are obtained since the up*/down*
routing does not scale well.

DFS and smart-routing obtain better performance than
up*/down* routing. As the ITB mechanism can be applied
to any source-based routing algorithm, it will be interesting

to analyze if it can also boost the performance of these
routing algorithms even more. As a first objective, in this
paper, we will apply the in-transit buffer mechanism to DFS
and smart-routing.

From [8], [9], we concluded that, by avoiding routing

restrictions, the ITB mechanism allows the use of minimal
paths for every source-destination pair. Moreover, it also
allows a good traffic balance not achieved by up*/down*.

On the other hand, besides applying the ITB mechanism
to traditional routing algorithms, this mechanism can also

be used to build new routing algorithms. As this mechan-
ism avoids routing restrictions, we can compute any set of
paths and, by using ITBs to break cycles, we can obtain a set
of deadlock-free paths (with ITBs) ready to be used in any
network with source routing. Therefore, as a second

objective of the paper we will propose a new routing
algorithm for networks with source routing that will try to
optimize the use of in-transit buffers.

Traditionally, existing routing algorithms have always
been focused on providing short paths and a good traffic

balance. However, to the best of our knowledge, network
contention and computation time have never been ad-
dressed when designing a routing algorithm. Our new
routing algorithm will consider the following:

. Minimal paths. By always using minimal paths,
messages use the minimum number of resources in
the network, thus lowering network contention.
Therefore, our new routing algorithm will be
restricted to always using minimal paths for every
source-destination pair.

. Network contention. As mentioned above, the ITB
mechanism affects network contention by tempora-
rily ejecting messages from the network. Moreover,
network contention is affected by the number of ITBs
we put in the network. More ITBs in the network
will reduce network contention even more. On the
other hand, the main drawback of the mechanism is
the latency added to packets that use ITBs. With
more ITBs in the network, packets will use, on
average, more ITBs and latency will increase.
However, this latency penalty is only noticeable for
short packets and low traffic conditions [9]. There-
fore, there is a trade off between the number of ITBs
and latency. We will study the effect on network
contention of using a different number of ITBs in the
network, observing the increase in latency. We will

propose different methods to compute and allocate
ITBs in the network.

. Traffic balance and computation time. Routing
algorithms that have load balancing in mind, like
smart-routing, can have a high computation cost.
Without the advantages of ITBs or another deadlock
prevention mechanism, these algorithms must yield
a set of paths free of deadlocks. Deadlock avoidance
means that these algorithms must often deal with
many nonminimal paths, increasing the time to
compute balanced paths significantly. For example,
the smart-routing algorithm is unable to obtain paths
for networks with more than 32 switches in a
reasonable amount of computation time. However,
by using ITBs to break cycles, path computation can
be performed without taking deadlocks into account.
Therefore, all the possible paths can be evaluated at
the same time in order to select the set of paths that
offer a good traffic balance. So, by using ITBs we can
design a traffic balancing algorithm that, while
perhaps suboptimal, offers good load balancing, is
simple, and can be quickly computed.

To sum up, the objective of the paper is twofold: First,
ITBs will be applied to optimized routing algorithms (DFS
and smart-routing) to analyze if network performance can
be increased and, second, a new routing algorithm will be
presented. This algorithm will use minimal paths, will
obtain a good traffic balance, and will lower network
contention. This algorithm will rely on ITBs.

The rest of the paper is organized as follows: Section 3
presents how the ITB mechanism works and gives some
details about its implementation. In Section 4, the mechan-
ism is applied to some optimized routing strategies. In
Section 5, we present the new routing algorithm. In
Section 6, evaluation results for different networks and
traffic load conditions are presented, first analyzing the
benefits of using our mechanism combined with previous
routing proposals and second analyzing the benefits of our
new routing algorithm. Finally, in Section 7, some conclu-
sions are drawn.

3 ITBs: A MECHANISM TO REMOVE CHANNEL

DEPENDENCES

The basic idea of the mechanism is to break cyclic
dependences with host buffering. The paths between
source-destination pairs are computed following any given
rule and the corresponding CDG is obtained. Then, the
cycles in the CDG are broken by splitting some paths into
subpaths. To do so, an intermediate host inside the path is
selected and used as an in-transit buffer (ITB); at this host,
packets are ejected from the network as if it were their
destination. The mechanism works similarly to the cut-
through switching technique. Therefore, packets are re-
injected into the network as soon as possible to reach their
final destination. Notice that the dependences between the
input and output channels of the switch are completely
removed because, in the case of network contention,
packets will be completely ejected from the network at the
intermediate host. The CDG is made acyclic by repeating

FLICH ET AL.: APPLYING IN-TRANSIT BUFFERS TO BOOST THE PERFORMANCE OF NETWORKS WITH SOURCE ROUTING 3

this process until no cycles are found. Notice that more than
one intermediate host may be needed for a particular path.

This mechanism was first proposed for the up*/down*
routing algorithm to remove the dependences between
down and up channels [8]. It was referred to as in-transit
buffers (ITB). By removing dependences between down and
up channels, minimal paths between some hosts, forbidden
by the original up*/down* routing algorithm, are now
provided. As an example, Fig. 1a shows a network and the
assignment of link directions following the up*/down* rule.
Although there is a minimal path between switch 4 and
switch 1 (4 ! 6 ! 1), it is forbidden because it uses an up
link after a down link at switch 6. However, with the ITB
mechanism (see Fig. 1b), this path is allowed by using one
host at switch 6 as an in-transit host to break the
dependence. By using ITBs, minimal routing can be
guaranteed while keeping deadlock freedom.

On the other hand, ejecting and reinjecting packets at
some hosts also improves performance by reducing net-
work contention. Packets that are ejected free the channels
they have reserved, thus allowing other packets requiring
these channels to advance through the network (otherwise,
they would block). As a consequence, network throughput
may be increased.

Hence, the goal of the ITB mechanism is not only to
provide minimal paths by breaking some dependences, but
also to improve performance by reducing network conten-
tion. However, ejecting and reinjecting packets at some
intermediate hosts also introduces some penalty to them.
First, the latency of these packets is increased. When the
network load is low, this effect will be more prominent. An
efficient implementation of the mechanism can help to keep
this overhead low. Second, ITBs use some additional
resources in both network (links) and network interface
cards (memory pools and DMA engines). Finally, in order
to use the mechanism, there must be hosts attached to each
switch when there is a routing restriction. Although this is a

common situation where hosts are spread over an irregular
network, in the case where there are no hosts attached to a
critical switch, the routing algorithm can still use non-
minimal valid up*/down* paths.

If the rules used to build the paths between source-
destination pairs lead to an unbalanced traffic distribution,
then adding more ITBs than the ones strictly needed will
also help. This is the case for up*/down* because this
routing algorithm saturates the area near the root switch.
Thus, there is a trade off between using the minimum
number of ITBs that guarantees deadlock-free minimal
routing and using more than these to improve network
throughput through better traffic balance.

Notice that this mechanism does not require virtual
channels. However, if virtual channel flow-control is used,
the mechanism can also be used. By using virtual channel
flow-control, network contention is lower. However the
same nonminimal path set will be used and, more
importantly, the same traffic unbalance will be obtained.
Therefore, the use of ITBs in networks with virtual channel
flow-control will also help to obtain shorter paths and a
better traffic balance. In this paper, we focus only on
networks without virtual channels.

Let us discuss the implementation of the ITB mechanism
on a Myrinet network. In order to implement the ITB
mechanism, changes in the packet header format and in the
Myrinet Control Program (MCP) [11] are required. In Fig. 2,
we can see the new header format that supports in-transit
buffers. The entire path to destination is built at the source
host. A mark (ITB mark) is inserted in order to notify the in-
transit host that the packet must be reinjected into the
network after removing that mark. After the mark, the path
from the in-transit host to the final destination (or to
another in-transit host) follows.

Fig. 3 shows the implementation of the in-transit buffer
mechanism. First, some memory is needed at the network
interface card to store in-transit packets and the MCP

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Fig. 1. Link direction assignment and use of the ITB mechanism for an irregular network.

Fig. 2. Myrinet packet header for routing schemes based on ITBs.

program has to be modified to detect in-transit packets and
process them accordingly. In order to minimize the
introduced overhead, as soon as the in-transit packet
header is processed and the output channel is free, a
DMA transfer can be programmed to reinject the in-transit
packet. Thus, the delay to forward this packet will be
independent of packet length and will be equal to the time
required for processing the header and starting the DMA
(when the output channel is free). As the MCP allows this
kind of DMA programming, it is possible to efficiently
implement the in-transit buffer mechanism without mod-
ifying the Myrinet network hardware. On the other hand,
there is no problem if the DMA transfer begins before the
packet has been completely received because it will arrive at
the same rate that it is transmitted,1 assuming that all the
links in the network have the same bandwidth.2 Also, an
easy detection mechanism can be implemented in order to
detect, at the destination host, possible overruns due to
DMA transfers.

Notice that Myrinet does not implement virtual chan-
nels. Therefore, once a packet header reaches the network
interface card, data will continue arriving at a constant rate.
The only additional requirement is that the packet is
completely stored in the network adapter memory at the
source host before starting transmission to avoid inter-
ference with the source host I/O bus.

To make this mechanism deadlock-free, it must be
guaranteed that an in-transit packet that is being reinjected
can be completely ejected from the network if the reinjected
part of the packet becomes blocked, thus removing
potential channel dependences (down ! up transitions)
that may result in a deadlock configuration. So, when an in-
transit packet arrives at a given host, care must be taken to

ensure that there is enough buffer space to store it at the
interface card before starting its reinjection. If the buffer
space at the network interface card has been exhausted, the
MCP should either store the packet in the host memory or
discard it. In practice, a very small number of buffers are
required. In fact, in all the simulations run (see Section 6),
the reserved memory space (512KB) was enough to handle
all the in-transit packets without using the host memory.

In order to quantify the memory requirements of the ITB
mechanism, in [10], we obtained the number of in-transit
packets that are simultaneously stored at each NIC for
different packet injection rates. In particular, we analyzed
an irregular 32-switch network using a uniform traffic
pattern with 32-byte packets. Simulation was run for a
period of time long enough to deliver 2 million of packets.
Results showed that, even when the network is approach-
ing saturation, the amount of memory needed at the NICs
was negligible. No more than 15 packets (480 bytes without
considering headers) were held at the same time at a
particular NIC. When the network was saturated, more
space was required to store in-transit packets. However, the
maximum number of ITB packets at a particular NIC for a
2-million packet simulation was lower than 3,000 (96KB
without considering headers). The same behavior was
obtained for other network topologies and packet sizes.

Taking into account that current NICs offer up to 8MB of
available memory, less than 128KB are set aside for theMCP,
and that network load will not be usually beyond saturation,
we can conclude that the probability of NIC memory
overflow is very low. So, in the case ofNICmemory overflow,
the best solution will be to discard the packet.

The use of the mechanism on a particular in-transit host
could affect the performance of its local traffic. The in-
transit host output channel will be shared among local and
in-transit packets. An excessive number of in-transit packets
could block the injection of local packets. In order to
minimize this effect, a dynamic priority scheme has been
implemented. With this mechanism, local traffic priority is

FLICH ET AL.: APPLYING IN-TRANSIT BUFFERS TO BOOST THE PERFORMANCE OF NETWORKS WITH SOURCE ROUTING 5

1. Due to limited memory bandwidth in the network interfaces, a source
host may inject bubbles into the network, thus lowering the effective
reception rate at the in-transit host. This problem has been addressed and
can be easily avoided when implementing the MCP code. Also, future
implementations of Myrinet interfaces will eliminate this problem.

2. Myrinet supports mixing links with different bandwidth.

Fig. 3. In-transit buffer mechanism.

increased as the number of queued local packets increases.
In particular, when this number is large, both kinds of
packets have the same priority. By using this strategy, in all
the simulations run, starvation was avoided in all nodes.

Some preliminary work has been done to implement the
mechanism on a Myrinet network [4]. This version has been
developed by modifying the GM message layer protocol
[11]. The implementation adds the possibility of sending
packets through ITB hosts while allowing all the benefits
from the GM software. The correctness of the mechanism
has been verified in order to work properly under different
workload configurations.

4 APPLYING THE ITB MECHANISM TO ANY

ROUTING ALGORITHM

Although the ITB mechanism was first proposed for the
up*/down* routing, it can be applied to any source-based
routing scheme. In this section, we will apply the ITB
mechanism to several source-based routing algorithms:
up*/down*, DFS, and smart-routing. In the case of
up*/down*, we will use the two approaches mentioned
before: allocating the minimum and nonminimum number
of ITBs that guarantee deadlock-free minimal routing. In the
first case, given a source-destination pair, we will compute
all the minimal paths. If there is a valid minimal up*/down*
path, it will be chosen. Otherwise, a minimal path with ITBs
will be used. In the second approach, we will use more ITBs
than strictly needed to guarantee deadlock-free minimal
routing. In particular, we will randomly choose one
minimal path. If the selected path complies with the
up*/down* rule, it is used without modification. Otherwise,
ITBs are inserted. Notice that there may exist valid minimal
up*/down* paths between the same source-destination
pair, but they are not used. Hence, more ITBs than the
ones strictly necessary will be used. By using these two
approaches, we can evaluate the trade off mentioned above.
In the case of DFS, we will use ITBs in the same way as in
the second approach used for up*/down*, but verifying if
the paths comply with the DFS rule.

However, for smart-routing, we will use a different
approach. We first compute the paths between source-
destination pairs that better balance network traffic (in the
same way as smart-routing does). It is important to notice
that the obtained routes are not the same as those that
smart-routing computes. Smart-routing computes both

balanced and deadlock-free routes, whereas we compute
only balanced routes. For this reason, we will refer to these
routes as “balanced” rather than “smart.” Then, we
compute the CDG and place ITBs where needed to convert
it into an acyclic one. Since computing balanced routes
alone is easier than computing both balanced and deadlock-
free routes, the computational cost of the resulting routing
algorithm is lower than the computational cost of smart-
routing. Hence, the resulting routing algorithm relaxes one
of the most claimed drawbacks of smart-routing.

5 A NEW ROUTING ALGORITHM WITH ITBs

In order to ease the description of the new routing
algorithm, we first decompose traditional routing algo-
rithms for networks with source routing into a few well-
defined stages, as shown in Fig. 4. First, routing algorithms
compute some possible paths for every source-destination
pair. After computing the different paths, the final set of
paths that will be used is selected. Usually, only one path
for every source-destination pair is selected. These two
stages (computing and selecting paths) are influenced by
some restrictions. The first one is deadlock freedom. This
restriction can be applied to the first stage when routes are
computed (up*/down* and DFS). Therefore, only paths that
do not introduce cycles in the CDG are computed.
However, this restriction can be also applied to the second
stage (smart-routing). The smart-routing algorithm consid-
ers all the possible paths for every source-destination pair
and then selects the set of paths that does not introduce
cycles in the CDG.

The second restriction imposed at these stages is that
short path lengths are preferred. However, by keeping the
deadlock freedom condition, short paths are sometimes not
allowed and, therefore, this restriction is not usually
accomplished and, then, the routing algorithm must choose
longer paths.

Finally, paths are computed taking into account some
kind of traffic balance. So, a load balancing algorithm is
used in order to select paths. The deadlock freedom
condition usually restricts the number of alternative paths
that can be computed and, therefore, traffic balance may not
be achieved (up*/down* and DFS). On the other hand, to
override this problem, some routing algorithms (smart-
routing) have some feedback between the two stages.
Therefore, selecting some paths can involve computing

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Fig. 4. Stages in the design of typical source routing algorithms.

and changing some already computed paths. This feedback
can introduce a high computation time penalty. On the
other hand, traffic balance is usually achieved because more
alternative paths are considered.

By using ITBs, we can change the chain design shown in
Fig. 4. In particular, our new routing algorithm will follow
the stages shown in Fig. 5.

First, the routing algorithm computes the whole set of
minimal paths. Notice that, in this first stage, there is no
restriction in keeping the deadlock freedom condition (this
will be ensured in the last stage). In the next stage, traffic is
balanced. As deadlock related conditions are not considered,
we can play with more paths and, therefore, we can try to
balance traffic without requiring feedback between stages.

After selecting the final paths, the routing algorithm goes
to the last stage, where in-transit buffers are inserted in
order to break cycles. Notice that, by using more ITBs, we
can also reduce network contention. Finally, we have just
one minimal path for every source-destination pair and the
resulting path set is balanced and does not introduce cycles
in the CDG thanks to the use of ITBs.

Our new routing algorithm will try to optimize each
stage. In the computing paths stage, it will consider all the
possible minimal paths for every source-destination pair
unless there are a large number of such paths, in which case
we will randomly select a reasonably large number of paths.
The path selection stage will balance paths using a new
traffic balancing algorithm. Once the paths are computed
and selected, the routing algorithm will apply ITBs in order
to break cycles and, at the same time, it will reduce network
contention. Different algorithms for breaking cycles will be
presented.

In the next two sections, we explain the algorithms used
for balancing paths and lowering network contention,
respectively.

5.1 Balancing and Selecting Paths

Usually, routing algorithms balance traffic having in mind a
uniform distribution of message destinations. Although
actual traffic patterns change depending on running
applications, this message destination distribution is often
considered as a worst case (from the point of view of
locality). In fact, the smart-routing algorithm balances traffic
for a uniform distribution of message destinations and
performs well for different traffic patterns (refer to
Section 6). We will take the same approach in this paper,
balancing paths assuming a uniform distribution of
message destinations.

The way we balance traffic is by counting the number of
paths that cross each link and trying to keep that number
uniform on all network links. Therefore, once paths are
computed, we select those paths that best balance the
number of paths per link.

Fig. 6 shows the algorithm used for balancing and
selecting paths. This algorithm removes paths minimizing a
cost function. The cost function is the standard deviation of
the number of paths that cross each link. To do that, the
algorithm removes a path at each loop iteration. In order to
decide which path will be removed, the algorithm removes
one path temporarily and computes the standard deviation
of the number of paths per link using the rest of paths. This
is repeated for all the paths. After this process, the
algorithm knows the standard deviations resulting for the
elimination of each path. Then, it removes the path that
shows the maximum decrease (minimum increase) in the
standard deviation. Notice that a given path will be
removed only if there are still alternative paths for that
source-destination pair. The algorithm finishes when none
of the path can be removed. At the end, there will be only
one path for each source-destination pair.

This simple algorithm may not achieve the optimal
traffic balance. However, it should balance traffic better
than those used in the up*/down* and DFS routing
algorithms due to the lack of routing restrictions imposed
by the requirements of deadlock freedom.

5.2 Breaking Cycles and Lowering Network
Contention

The last stage of our routing algorithm deals with cycles in
the CDG and also with network contention. As explained
before, there is a trade off between network contention and
latency penalty when adding ITBs.

The best solution for reduced network contention is to
put ITBs on all the switches for all the paths. So, each packet
will be ejected and reinjected at each switch. This approach
obtains an acyclic CDG because there are only dependences
between a channel connecting two switches and a channel
connecting a switch to a host and vice versa. This approach
will reduce network contention to the minimum.

On the other hand, the best solution for reducing latency
overhead is to put the minimum number of ITBs that
guarantees deadlock freedom. One alternative is to search
cycles in the CDG, breaking them by inserting ITBs. This
algorithm does not guarantee a minimum number of ITBs
since the number of cycles found depends on the order in

FLICH ET AL.: APPLYING IN-TRANSIT BUFFERS TO BOOST THE PERFORMANCE OF NETWORKS WITH SOURCE ROUTING 7

Fig. 5. Stages in the new routing algorithm for networks with source routing.

which they are broken. However, the algorithm will use a

low number of ITBs.
In order to fully explore the trade off between reduction

in network contention and latency increase, we will also

evaluate three approaches that fall between the latter two

approaches by using different quantities of ITBs. These

approaches will put, on average, 33 percent, 50 percent, and

66 percent of the maximum number of ITBs in the network.

All of these approaches must be also designed taking into

account that the CDG must be acyclic.
To use 33 percent of ITBs while breaking all cycles, we

use the following rules: First, we assign a random identifier

to each switch, taking care to assign unique identifiers.

Then, for each subpath that crosses three switches in

sequential order (A, B, and C with identifiers a, b, c), we put

an ITB if

ðb > aÞ AND ðb > cÞ: ð1Þ

Taking into account that identifiers are generated

randomly and are unique, we can obtain six orderings of

switches (abc, bac, bca, cba, cab, acb). Two (cab,acb) out of

these six orderings follow the rule (1). Hence, there is a

33 percent of probability of placing an ITB.
With these rules, cycles are removed since, in each cycle,

there will be at least one switch with higher identifier than

the neighbor switches of the cycle.
For 66 percent ITBs, we follow similar rules. By using

random and unique identifiers, we put an ITB whenever the

identifier of switch B is higher than either identifier of

switch A or identifier of switch C. That is,

ðb > aÞ OR ðb > cÞ: ð2Þ

Orderings abc, cba, cab, and acb follow the rule (2).

Therefore, probability of putting an ITB is 66 percent. Also,

cycles are prevented since, in each cycle, there will be at

least one switch with an identifier higher than one of its

neighbors.

Finally, for 50 percent ITBs, we put an ITB whenever a
path uses a switch with a lower identifier than the following
one. That is,

a < b: ð3Þ

All of these approaches will be evaluated in the next
section with the balancing algorithm presented above.

6 PERFORMANCE EVALUATION

In this section, we evaluate the behavior of the ITB
mechanism over the different source-based routing algo-
rithms described above. We also evaluate the new routing
algorithm. For this algorithm, we study the effect on traffic
balancing and also the effect on network contention.

First, we present the network model, and the network
loadsused throughout the evaluation. Then,wepresent some
considerations about the methodology used to evaluate the
mechanism. Finally, we present the simulation results.

6.1 Network Model

The network is composed of a set of switches and hosts, all
of them interconnected by links. Network topologies are
completely irregular and have been generated randomly,
taking into account only three restrictions. First, we assume
that there are exactly four hosts connected to each switch.
Second, all the switches in the network have the same size.
We assume that each switch has eight ports. So, there are
four ports available to connect to other switches. Finally,
two neighboring switches are connected by a single link.
These assumptions are quite realistic and have already been
considered in other evaluation studies [21], [22].

In order to evaluate the influence of network size on
system performance, we vary the number of switches in
the network. We use network sizes of 16, 32, and 64
switches. Thus, there are 64, 128, and 256 hosts in the
system, respectively. To make results independent of the
topology, we evaluate up to 10 random topologies for
each network size.

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Fig. 6. Algorithm for balancing and selecting paths.

Links, switches, and interface cards are modeled based
on the Myrinet network. Concerning links, we assume
Myrinet short LAN cables [14] to interconnect switches and
workstations. These cables are 10 meters long, offer a
bandwidth of 160 MB/s, and have a delay of 4.92 ns/m
(1.5 ns/ft). Flits are one byte wide. Physical links are also
one flit wide. Transmission of data across channels is
pipelined [19]. Hence, a new flit can be injected into the
physical channel every 6.25 ns and there will be a maximum
of eight flits on the link at a given time.

We do not use virtual channels since the actual Myrinet
switches do not support them. A hardware “stop and go”
flow control protocol [1] is used to prevent packet loss. In
this protocol, the receiving switch transmits a stop(go)
control flit when its input buffer fills over (empties below)
56 bytes (40 bytes) of its capacity. The slack buffer size in
Myrinet is fixed at 80 bytes.

Each Myrinet switch has a simple routing control unit
that removes the first flit of the header and uses it to select
the output link. That link is reserved when it becomes free.
Assuming that the requested output link is free, the first flit
latency is 150 ns through the switch. After that, the switch is
able to transfer flits at the link rate, that is, one flit every
6.25 ns. Each output port can process only one packet
header at a time. An output port is assigned to waiting
packets in a demand-slotted round-robin fashion. When a
packet gets the routing control unit, but it cannot be routed
because the requested output link is busy, it must wait in
the input buffer until its next turn. A crossbar inside the
switch allows multiple packets to traverse it simultaneously
without interference.

Each Myrinet network interface card has a routing table
with one or more entries for every possible destination of
messages. The way tables are filled determines the routing
scheme. For each source-destination pair, only one path will
be computed for the different routing algorithms.

In the case of using in-transit buffers, the incoming
packet must be recognized as in-transit and the transmis-
sion DMAmust be reprogrammed. We have used a delay of
275 ns (44 bytes received) to detect an in-transit packet and
200 ns (32 additional bytes received) to program the DMA
to reinject the packet.3 Also, the total capacity of the in-
transit buffers has been set to 512KB at each interface card.

6.2 Network Load

In order to evaluate different workloads, we use different
message destination distributions to generate network
traffic:

. Uniform distribution. The destination of a message
is chosen randomly with the same probability for all
the hosts. This pattern has been widely used in other
evaluation studies [2], [6].

. Bit-reversal distribution. The destination of a
message is computed by reversing the bits of the
source host identification number. This pattern has
been selected taking into account the permutations

that are usually performed in parallel numerical
algorithms [12], [13].

. Local distribution. Message destinations are, at most,
five switches away from the source host and are
randomly computed.

. Hot-spot distribution. A percentage of traffic is sent
to one host. The selected host is chosen randomly.
The same host number will be used for all the
topologies. In order to use a representative hot-spot
distribution, we have used different percentages of
the traffic sent to the hot-spot host depending on the
network size. In particular, we have used 20 percent,
15 percent, and 5 percent for 16, 32, and 64-switch
networks, respectively. The rest of the traffic is
randomly generated using a uniform distribution.

. Combined distribution. This distribution mixes the
uniform, bit-reversal, local, and hot-spot distribu-
tions. Each host will generate message destinations
using each distribution with the same probability.
With this distribution, we model the traffic gener-
ated by different applications that are concurrently
running in the system.

Although we use different message sizes (32, 512, and
1K bytes), for the sake of brevity, results will be shown only
for 512-byte messages.

6.3 Methodology

Although the ITB mechanism can be implemented in
software in Myrinet, simulation was preferred rather than
a real implementation in order to analyze in depth the

behavior of the mechanism in a full range of network
configurations.

Execution-driven simulations have been avoided since
the best benefit of our mechanism is the increase in network
throughput. The traffic conditions needed to reach such

throughput are very difficult to obtain in execution-driven
simulations. Also, network size is restricted in these kinds
of simulations due to the prohibitive execution time and to
the huge amount of memory needed at the simulation

platform. Therefore, execution-driven simulations are not
well suited to testing our mechanism in large system
configurations.

We use event-driven simulation to evaluate the mechan-
ism. For each simulation run, we assume that the packet

generation rate is constant and the same for all the hosts.
Once the network has reached a steady state, the flit
generation rate is equal to the flit reception rate. We
evaluate the full range of traffic, from low load to
saturation. During the first 100,000 messages, the system

is considered to be unstable. After that, 100,000 more
messages are simulated and taken into account in order to
obtain results.

6.4 Simulation Results: ITBs over Routing
Algorithms

In this section, we evaluate the performance of the in-transit
buffer mechanism when it is applied to the source-based
routing algorithms mentioned in Section 4. First, we analyze

the behavior of the routing algorithms without using in-
transit buffers. We evaluate up*/down* routing (UD),

FLICH ET AL.: APPLYING IN-TRANSIT BUFFERS TO BOOST THE PERFORMANCE OF NETWORKS WITH SOURCE ROUTING 9

3. These timings have been measured on a real Myrinet network.
Average timings have been computed from the transmission of more than
1,000 messages using the Real Time Clock register (RTC) of the Myrinet
interface card.

depth-first search spanning tree-based routing (DFS), and
the smart-routing algorithm (SMART).

Then, we evaluate the use of in-transit buffers over
up*/down* and DFS routing. For up*/down* routing, we
analyze the two approaches mentioned above: using the
minimum number of ITBs needed to guarantee deadlock-
free minimal routing (UD_MITB) and using more ITBs
(UD_ITB). For DFS routing, we only use the second
approach. This new routing algorithm will be referred to
as DFS_ITB. Finally, we evaluate the use of in-transit buffers
over balanced but deadlocking routes supplied by the
smart-routing algorithm. This routing will be referred to as
BALANCED_ITB.

For all the evaluations, we use three random topologies
of sizes 16, 32, and 64 switches, respectively. We will plot
the average message latency4 measured in nanoseconds
versus the accepted traffic5 measured in flits/ns/switch.

In order to make results independent of the topology, we
average the results for 10 random topologies for each
network size. We show the increase in throughput6 when
using the in-transit buffer mechanism with respect to the
original routing algorithms. Moreover, we show the
minimum, maximum, and average increase in throughput.

6.4.1 Routing Algorithms without ITBs

Fig. 7 shows the behavior of the different routing algorithms
(UD, DFS, and SMART) for a uniform distribution of
message destinations for different topologies of 16, 32, and
64 switches, respectively. SMART routing is not shown for
the 64-switch network due to its high computation time.

As was expected, the best routing algorithm is SMART. It
achieves the highest network throughput for all the
topologies we could evaluate. In particular, for the
16-switch network, SMART increases throughput over UD
and DFS routings by factors of 1.22 and 1.10, respectively.
Also, for larger networks (32 switches), SMART increases
network throughput by factors of 1.77 and 1.28 with respect
to UD and DFS routing, respectively. For the 64-switch
network, the best routing algorithm is DFS (SMART was not

available). Concerning only DFS and UD routing algo-
rithms, we observe that DFS improves over UD for all
network sizes.

The higher network throughput achieved by SMART
routing is due to its better traffic balancing. Fig. 8 shows the
utilization of links connecting switches for the 32-switch
network when using UD, DFS, and SMART routing,
respectively. Links are sorted by utilization. Traffic is
0.03 flits/ns/switch. For this traffic value, UD routing is
reaching saturation. We observe that, when using the
UD routing, half the links are poorly used (52 percent of
links with a link utilization lower than 10 percent) and a few
links highly used (only 11 percent of links with a link
utilization higher than 30 percent), some of them being
overused (three links with a link utilization higher than
50 percent). Traffic is clearly unbalanced among all the
links. On the other hand, DFS routing reduces this
unbalancing and has 31 percent of links with link utilization
lower than 10 percent and 9 percent of links with link
utilization higher than 30 percent. However, the best traffic
balancing is achieved by SMART routing. We observe that,
for the same traffic value, links are highly balanced, link
utilization ranging from 7.76 percent to 20.26 percent
(76 percent of links with a link utilization between
15 percent and 20 percent). As traffic is better balanced,
more traffic can be handled by the SMART routing and,
therefore, higher throughput is achieved.

Table 1 shows minimum, maximum, and average
increases of network throughput when comparing UD,
DFS, and SMART routing algorithms using 10 random
topologies for each network size. We observe that SMART
routing always increases network throughput with respect
to UD and DFS routing. For 32-switch networks, on
average, SMART routing improves over UD and DFS by
factors of 1.59 and 1.26, respectively. We also observe that,
as a network grows, DFS routing also increases its
improvement over UD. For large networks (64-switch
networks), DFS improves UD by a factor of 1.38 on average.

Table 2 shows factors of throughput increase for
different network traffic patterns and different network
sizes. We observe that, for all the traffic patterns analyzed,
SMART routing improves, on average, over UD and DFS.
For the combined traffic pattern on 32-switch networks,
SMART routing improves, on average, over UD and DFS by
factors of 1.50 and 1.28, respectively. On the other hand,
DFS routing always achieves, on average, higher network

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

4. Latency is the elapsed time from the injection of a message into the
network at the source host until it is delivered at the destination host.

5. Accepted traffic is the amount of information delivered by the network
per time unit. In order to make it independent of the number of switches in
the network, it is measured in flits/ns/switch.

6. Throughput is the maximum amount of information delivered by the
network per time unit. It is equal to the maximum accepted traffic.

Fig. 7. Average message latency versus accepted traffic. Message size is 512 bytes. Uniform distribution. Network size is (a) 16 switches,

(b) 32 switches, and (c) 64 switches.

throughput than UD. In particular, when the combined
traffic pattern is used, DFS improves performance over UD
on average by a factor of 1.35 for 64-switch networks.

We conclude that traffic balancing plays a key role in
obtaining high network performance. SMART routing is the
best routing algorithm because it highly balances traffic
among all the network links. Its main drawback is the high
computation time required to compute the routing tables.
The other routing algorithms achieve less throughput, but,
on the other hand, they can be quickly computed for any
network size. If this is considered a serious constraint, the
DFS routing algorithm should be preferred.

6.4.2 In-Transit Buffers on UD and DFS

We focus now on the performance of the in-transit buffer
mechanism when it is applied to UD and DFS routings.
Fig. 9 shows the performance results obtained by the
resulting routing algorithms (UD_MITB, UD_ITB, and
DFS_ITB) for the uniform distribution of message destina-
tions for 16, 32, and 64-switch networks.

As can be seen, the in-transit buffer mechanism always
improves network throughput over both original routing
algorithms. Moreover, as network size increases, more
benefits are obtained by the in-transit buffer mechanism.
Concerning UD_MITB routing, we observe that UD is
improved by factors of 1.12, 1.50, and 2.00 for 16, 32, and
64-switch networks, respectively. However, when more
ITBs are used, more benefits are obtained. In particular,
UD_ITB improves over UD by factors of 1.22, 2.14, and 2.75
for the 16, 32, and 64-switch networks, respectively.
Concerning DFS, DFS_ITB routing improves network
throughput over DFS by factors of 1.10, 1.39, and 1.54 for
the same network sizes.

When comparing routing algorithms that use more in-
transit buffers (UD_ITB and DFS_ITB), we observe that

network throughput is roughly the same. These routing
algorithms use the same minimal paths and the main
difference between them is where the in-transit buffers are
allocated and how many in-transit buffers are needed. We
also notice that DFS_ITB routing exhibits lower average
latency than UD_ITB. This is because DFS routing is less
restrictive than UD routing and, therefore, DFS_ITB needs
fewer ITBs on average than UD_ITB. When using DFS_ITB
routing in the 64-switch network, messages use 0.3 ITBs on
average, while the average number of ITBs per message is
0.55 in UD_ITB. This also explains the higher network
throughput achieved by UD_ITB since more messages
using ITBs are removed from the network, thus reducing
network contention.

UD and DFS are computed from a spanning tree. One of
the main drawbacks of such an approach is that, as network
size increases, a smaller percentage of minimal paths can be
used. For the 16-switch network, 89 percent of the paths
computedbyUDareminimal.However, for 32 and64-switch
networks, the percentage of minimal paths goes down to
71 percent and 61 percent, respectively. When DFS routing is
used, something similar occurs. There are 94 percent, 81
percent, and70percent ofminimalpaths for the 16, 32, and64-
switch networks, respectively.When using in-transit buffers,
all the computed paths are minimal. Therefore, as network
size increases, network throughput increases with respect to
routing algorithms that do not use ITBs.

However, the most important drawback of routing
algorithms computed from spanning trees is the unbalanced
traffic. As network size increases, routing algorithms tend
to overuse some links (links near the root switch) and this
leads to an unbalanced traffic situation. As in-transit
buffers allow the use of alternative paths, network traffic
is not forced to pass through the root switch (in the
spanning tree), thus achieving better network perfor-
mance. Fig. 10a, Fig. 10b, and Fig. 10c show the link
utilization for UD_MITB, UD_ITB, and DFS_ITB routing,
respectively, in the 32-switch network. Network traffic is
0.03 flits/ns/switch (where UD routing saturates). We
observe that UD_MITB routing achieves better traffic
balancing than UD (refer to Fig. 8a). Only 33 percent of
links have a link utilization lower than 10 percent and only
10 percent of links are used more than 30 percent of the
time. However, as this algorithm uses ITBs only when
needed to ensure deadlock-free minimal routing, a high
percentage of paths are still valid minimal up*/down*

FLICH ET AL.: APPLYING IN-TRANSIT BUFFERS TO BOOST THE PERFORMANCE OF NETWORKS WITH SOURCE ROUTING 11

Fig. 8. Link utilization. Traffic is 0.03 flits/ns/switch. Network size is 32 switches. Message size is 512 bytes. Uniform distribution. (a) UD, (b) DFS,

and (c) SMART routing.

TABLE 1
Factor of Throughput Increase between UD, DFS, and SMART

Routing for the Uniform Distribution

Message size is 512 bytes.

paths and, therefore, part of the traffic is still forced to cross
the root switch. UD_MITB traffic balancing is improved by
UD_ITB and DFS_ITB. UD_ITB routing has all the links
with a utilization lower than 30 percent and only 20 percent
of links are used less than 10 percent of the time. DFS_ITB
routing shows roughly the same traffic balancing.

Table 3 shows the average results for 30 different
topologies. We observe that more benefits are obtained
when using more ITBs than the ones strictly needed to
guarantee deadlock-free minimal routing. UD_ITB im-
proves over UD, on average, by factors of 1.29, 1.88, and
2.57 for 16, 32, and 64-switch networks, respectively. In a
particular 64-switch network, throughput is tripled when
using UD_ITB instead of UD routing. On the other hand,
throughput is increased over DFS, on average, by factors of
1.12, 1.41, and 1.63 for different network sizes.

In order to analyze the latency overhead introduced by
ITBs, Table 4 shows the latency introduced by in-transit
buffers for very low traffic (the worst case). We show results
for 512 and 32-byte messages. For 512-byte messages we
observe that, on average, the in-transit buffer mechanism
slightly increases average message latency. This increase is
never higher than 5 percent. The latency increase is only
noticeable for short messages (32 bytes). In this case, the
maximum latency increase ranges from 16.66 percent to
22.09 percent for UD_ITB. The explanation is simple.
Latency depends both on traversed distance and message
length. ITBs only increase the latency component that
depends on the number of hops that a message takes. As
messages are longer, the relative contribution of this
component on total message latency is smaller. Hence, the
influence of ITB overhead is also smaller. On the contrary,

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

TABLE 2
Factor of Throughput Increase between UD, DFS, and SMART Routing for Different Traffic Patterns

Message size is 512 bytes.

Fig. 9. Average message latency versus accepted traffic. UD, DFS, UD_MITB, UD_ITB, and DFS_ITB routing. Message size is 512 bytes. Uniform

distribution. Network size is (a) 16 switches, (b) 32 switches, and (c) 64 switches.

Fig. 10. Link utilization. Network size is 32 switches. Message size is 512 bytes. Traffic is 0.03 flits/ns/switch. Uniform distribution. (a) UD_MITB,

(b) UD_ITB, and (c) DFS_ITB.

the relative importance of ITB overhead for short messages
is higher. Additionally, the latency penalty depends on the
number of ITBs needed to guarantee deadlock freedom.
This is also shown in Table 4 where the average latency
penalty is lower when using ITBs with DFS or the minimum
number of ITBs with UD (UD_MITB). Finally, the latency
overhead incurred by ITBs is partially offset by the shorter
paths allowed by the mechanism.

Table 5 shows the factor of throughput increase for the
hot-spot, bit-reversal, local, and combined traffic patterns.
We observe that the in-transit buffer mechanism always
increases, on average, network throughput of UD and DFS
routing. In particular, when the combined traffic pattern is
used, UD_ITB improves over UD by factors of 1.26, 1.65,
and 2.31 for 16, 32, and 64-switch networks, respectively.
Also, DFS_ITB improves over DFS by factors of 1.14, 1.35,
and 1.56 for 16, 32, and 64-switch networks, respectively.

6.4.3 In-transit Buffers on SMART

Smart-routing is not based on spanning trees. Moreover, its
main goal is to balance network traffic. In fact, we have

already seen the good traffic balancing achieved by this
routing algorithm (Fig. 8c). Therefore, it seems that in-transit
buffers will have little to offer to smart-routing. Fig. 11 shows
the performance results for SMART and BALANCED_ITB
routing for the uniform distribution of message destinations
on 16 and 32-switch networks. In 64-switch networks,
SMARTrouteswerenot availabledue to its high computation
time.We observe that, for smart-routing, the in-transit buffer
mechanism also increases network throughput. For a 32-
switch network, BALANCED_ITB routing increases network
throughput by a factor of 1.33.

Table 6 shows average results for 20 topologies (10 topol-
ogies for each network size). We observe that the in-transit
buffer mechanism always improves over SMART (except
for one 16-switch network where it obtains the same
network throughput).

Wehave already shown that traffic iswell balancedamong
all the linkswhen SMART routing is used (see Fig. 8c). Fig. 12
shows traffic balancing among all the links for SMART and
BALANCED_ITB routing at 0.03 flits/ns/switch. The ob-
tainedresults areverysimilar inbothcases. SMARTrouting is
quite good in balancing traffic among all the links and,
therefore, the in-transit buffer mechanism does not improve
network throughput by balancing traffic even more.

To fully understand the better performance achieved by
BALANCED_ITB routing, we focus now on network
contention. For this reason, we plot the link blocked time
for both routing algorithms. Blocked time is the percentage
of time that the link stops transmission due to flow control.
This is a direct measure of network contention. Fig. 13a and
Fig. 13b show the link blocked time for a 32-switch network

FLICH ET AL.: APPLYING IN-TRANSIT BUFFERS TO BOOST THE PERFORMANCE OF NETWORKS WITH SOURCE ROUTING 13

TABLE 3
Factor of Throughput Increase when Using In-Transit Buffers on

the UD and DFS Routing

Uniform distribution. Message size is 512 bytes.

TABLE 5
Factor of Throughput Increase when Using In-Transit Buffers on the UD and DFS Routing for Different Traffic Patterns

Message size is 512 bytes.

TABLE 4
Percentage of Message Latency Increase for Very Low Traffic when Using In-Transit Buffers on UD and DFS Routing

Uniform distribution.

for SMART and BALANCED_ITB routing, respectively.
Traffic is near 0.05 flits/ns/switch. We observe that SMART
has some links blocked more than 10 percent of the time,
some particular links being blocked more than 20 percent of
the time. On the other hand, when using in-transit buffers,
blocked time is kept lower than 5 percent for all the links for
the same traffic point. Fig. 13c shows the link blocked time
when BALANCED_ITB routing is at its saturation point
(0.06 flits/ns/switch). Thus, we observe that the
BALANCED_ITB routing saturates due to network conten-
tion rather than traffic unbalancing.

Let us analyze the introduced overhead. Table 7 shows
the percentage of latency increase for low traffic. For
512-byte messages, latency increase is less than 3 percent
for all the topologies evaluated. For 32-byte messages, some
higher penalty in latency is observed, but it is always lower
than 14 percent.

For other traffic patterns, BALANCED_ITB routing also
increases, on average, network throughput over SMART
routing. Table 8 shows the factors of throughput increase
for the hot-spot, bit-reversal, local, and combined traffic
patterns. When the combined traffic pattern is used,
BALANCED_ITB routing increases, on average, network
throughput by a factor of 1.14 for 32-switch networks.

As a final conclusion of this section we conclude that, by
using in-transit buffers on UD and DFS routing, network
throughput is increased. As network size increases, higher
improvements are obtained because in-transit buffers avoid
congestion near the root switch, always providing dead-
lock-free minimal paths and balancing network traffic. Also,
when applied to SMART, higher throughput is achieved. In
this case, improvements are achieved by the inherent
property of the mechanism in lowering network contention.
On the other hand, average message latency is slightly
increased. However, this increase is only noticeable for

short messages and small networks. Therefore, our mechan-
ism increases throughput over all routing algorithms for
networks with source routing.

6.5 Simulation Results: A New Routing Algorithm

Now, we focus on the new routing algorithm that will be
specifically designed taking into account ITBs. First, we
evaluate the load balancing feature of our routing algorithm
(the standard deviation method described before). Later, we
focus on reducing network contention by using different
quantities of ITBs.

6.5.1 Load Balancing Behavior

In order to isolate the benefits achieved only by the traffic
balancingmethod, we use theminimum number of ITBs that
guarantee deadlock freedom (cycles are searched and broken
by ITBs). This routing algorithm will be referred to as BMIN
(paths are Balanced and MINimal ITBs are used). We will
compare it with the best routing algorithm evaluated in the
previous section (BALANCED_ITB). In order to differentiate
both routing algorithms, BALANCED_ITB will be now
referred to as BSMART (paths balanced the same way as
in the smart-routing algorithm). Also, as a reference, we will
use a random traffic balancing algorithm in order to
measure the benefits of our proposed traffic balancing
algorithm. This algorithm will compute all the possible
minimal paths and will select the final set of paths
randomly. This routing algorithm will also use the mini-
mum number of in-transit buffers and will be referred to as
RANDOM.

Fig. 14 shows the performance results for the different
routing algorithms using 16, 32, and 64-switch networks.
Message size is 512 bytes. Uniform distribution of message
destinations is used. Notice that the BSMART routing
algorithm is not shown for 64-switch networks as it was not
available.

We observe that BMIN and BSMART routing achieve a
higher network throughput than the one achieved by the
RANDOM routing for all network sizes. Fig. 15a and
Fig. 15b show the link utilization when traffic is 0.066 flits/
ns/switch in a 32-switch network for the BSMART and
BMIN routing algorithms, respectively. At this traffic point,
they are reaching saturation. Links are sorted by utilization.
We observe that the traffic balance achieved by BSMART
(Fig. 15a) is better than the one achieved by BMIN (Fig. 15b).
However, this better balancing does not have an important

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Fig. 11. Average message latency versus accepted traffic. SMART and BALANCED_ITB routing. Message size is 512 bytes. Uniform distribution.

Network size is (a) 16 switches and (b) 32 switches.

TABLE 6
Factor of Throughput Increase when Using In-Transit Buffers

on SMART Routing

Uniform distribution. Message size is 512 bytes.

impact on network performance (as shown in Fig. 14).
Moreover, BSMART shows a slight decrease in performance
with respect to BMIN routing algorithm. This behavior is
due to network contention. BSMART uses, on average,
0.32 ITBs per message, whereas BMIN uses a bit more, 0.38.
BMIN uses more ITBs because it introduces more cycles in
the CDG.

The main difference between both routing algorithms
is that BSMART uses a linear programming solver when
computing paths, whereas our routing algorithm uses an
iterative process that is faster. This is an important issue
in systems that are prone to changes in network topology
(i.e., COWs).

Fig. 15c shows the link utilization for the RANDOM
routing algorithm when is reaching saturation (0.053 flits/
ns/switch) using the same network topology (32 switches).
We can see that it achieves aworse traffic balance than BMIN
and BSMART. This difference affects the final performance,
as Fig. 14b shows. In particular, BMIN and BSMART increase
RANDOM throughput by a factor of 1.3. This result indicates
that an effortmust bemade in balancingnetwork traffic.With

a simpleandeasy traffic balancingalgorithm,good results are

achieved, with additional efforts (BSMART) yielding no

further improvements.
Table 9 shows average results for other randomly

generated topologies. It shows the minimum, maximum,

and average factor of throughput increase when using the

BMIN routing algorithm with respect to the BSMART and

RANDOM routing algorithms, respectively. With respect to

the BSMART routing algorithm, BMIN achieves nearly the

same throughput. Therefore, with an easy traffic balancing

algorithm (BMIN), we can achieve the performance

obtained by a sophisticated and time-consuming load

balancing algorithm (BSMART). The BMIN algorithm

requires less computation time than BSMART, even when

considering the entire set of possible paths, for all graphs

considered in our analysis.

FLICH ET AL.: APPLYING IN-TRANSIT BUFFERS TO BOOST THE PERFORMANCE OF NETWORKS WITH SOURCE ROUTING 15

Fig. 12. Link utilization. Network size is 32 switches. Traffic is 0.03 flits/ns/switch. Message size is 512 bytes. Uniform distribution. (a) SMART and

(b) BALANCED_ITB routing.

Fig. 13. Blocked Time. Network size is 32 switches. Message size is 512 bytes. Uniform distribution. Traffic is (a), (b) 0.05 flits/ns/switch and (c) 0.06

flits/ns/switch. (a) SMART and (b), (c) BALANCED_ITB.

TABLE 7
Percentage of Message Latency Increase for Very Low Traffic

when Using In-Transit Buffers on SMART Routing

Uniform distribution.

TABLE 8
Factor of Throughput Increase when Using In-Transit Buffers

on SMART Routing for Different Traffic Patterns

Message size is 512 bytes.

Also, with respect to the RANDOM routing algorithm,
BMIN always improves network throughput (on average by
a factor of 1.21 for 16-switch networks). However, as
network size increases, improvements are, on average, the
same. This is because the RANDOM routing algorithm is
fully scalable (always uses minimal paths) and the only
difference with respect to BMIN is the balancing algorithm.

The main drawback of using ITBs is the added latency to
messages. However, this penalty is only noticeable in low
network traffic loads and especially in short messages [9].
For medium and high network traffic loads, the better
traffic handling hides the higher latency of messages that
use ITBs. Table 10 shows the percentage of latency increase
when using the BMIN routing algorithm with respect to the
UD, SMART, BSMART, and RANDOM routing algorithms,
respectively, in low traffic loads (UD and SMART routings
are included to see the latency penalty over routings that do
not use ITBs). Message sizes of 32 and 512 bytes are used.
Also, a combination of both message sizes are considered
under the term bimodal (70 percent of messages are 32-bytes
long, whereas 30 percent are 512-byte long). We can see
that the latency penalty is higher than 10 percent only

when short messages are used on medium and large
networks (32 and 64 switches) and with respect to the UD
and SMART routing. However, when traffic with different
message sizes (bimodal) is used, the average latency
penalty incurred over UD and SMART is significantly
reduced (under 9 percent for all networks).

For the rest of the routing algorithms, the latency
increase remains under 10 percent for all networks and all
message sizes. These routing algorithms also use ITBs and,
therefore, all of them expose the same latency penalty.

As stated earlier, the load balancing algorithms usually
rely on an expected traffic pattern (usually the uniform
one), but different traffic patterns can appear in the
network. To investigate this, we also evaluate the routing
algorithms under different traffic patterns. Table 11 shows
the factor of throughput increase when using the BMIN
routing algorithm with respect to the other routing
algorithms under different traffic patterns.

With the hot-spot and bit-reversal traffic patterns, BMIN
achieves nearly the same throughput as BSMART. Also,
when comparing with RANDOM, BMIN achieves smaller
benefits (7 percent and 12 percent on average, respectively,
for 32-switch networks).

For the local traffic pattern, nearly the same throughput
is achieved with all the routing algorithms. The important
issue here is that the ITB mechanism does not decrease
network throughput with a local traffic pattern.

Finally, with a combined traffic pattern, the BMIN routing
algorithm obtains nearly the same benefits as described for
the uniform traffic pattern. As the traffic pattern changes,
path lengths change. With ITBs, the longer the path, the
greater the improvement over alternative routing algorithms.
Also, as path length is reduced (local traffic pattern), fewer

16 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Fig. 14. Average message latency versus accepted traffic. BSMART, BMIN, and RANDOM routing. Uniform distribution. Message size is 512 bytes.

Network size is (a) 16 switches, (b) 32 switches, and (c) 64 switches.

Fig. 15. Link utilization. Network size is 32 switches. Message size is 512 bytes. Traffic is (a), (b) 0.066 and (c) 0.053 flits/ns/switch. (a) BSMART,

(b) BMIN, and (c) RANDOM.

TABLE 9
Factor of Throughput Increase when Using BMIN with Respect

to BSMART and RANDOM

Uniform distribution. Message size is 512 bytes.

ITBs are needed and, therefore, throughput of the different
routing algorithms will be very similar.

6.5.2 Network Contention Behavior

Now, we focus on the second part of the routing algorithm
(network contention control). For this, we proposed four
algorithms to assign ITBs in the network while breaking
cycles (see Section 5.2). Each of them use different numbers
of ITBs. We will refer to them as B33, B50, B66, and BMAX.
Also, we will compare them with the BMIN routing
evaluated before. Notice that BMIN, B33, B50, B66, and
BMAX use the new load balancing algorithm and the main
difference between them is the number of ITBs used: the
minimum possible, 33 percent, 50 percent, 66 percent, and
the maximum possible, respectively.

Fig. 16 shows the performance results for the different
routing algorithms using 512-byte messages and a uniform
traffic pattern.

We observe that, for the 16-switch topology, the worst
routing algorithms (in terms of network throughput) are
UD and SMART. However, the best routing algorithm is
BMAX, followed by B66 and B50. Finally, B33 achieves
better network throughput than BMIN. Therefore, we can
conclude that, as more ITBs are used, a higher network
throughput is achieved. BMAX increased BMIN network
throughput by a factor of 1.27. However, it is worth to say

that differences in network throughput are short. In terms
of message latencies, we can see that the use of more ITBs
increases average message latency.

For 32 and 64-switch networks (Fig. 16b and Fig. 16c), we
obtain similar conclusions. As we can see, network
throughput reached by B50, B66, and BMAX is practically
the same. Therefore, the increase in network throughput is
not directly related to the number of ITBs. With a
moderated number of ITBs (B50) we can reach roughly
the same network throughput as with the maximum
number of ITBs (BMAX) with a lower latency penalty.
Finally, we can see that BMIN network throughput is
increased by BMAX in factors of 1.36 y 1.5 in 32 and 64-
switch networks, respectively.

By using more ITBs, routings reduce network contention.
Fig. 17 shows the percentage of blocked time of links using
different routing algorithms. Network size is 32 switches
and traffic is 0.066 flits/ns/switch (where BMIN is reaching
saturation).

We can see how, as the number of ITBs is increased,
network links exhibit a lower blocking time. By using BMIN
(Fig. 17a), there are network links blocked more than
14 percent of time. These links contribute to overall network
saturation. When we put more ITBs in the network with the
B50 routing (Fig. 17c), all linksareblocked less than10percent
of the time.Themore ITBsweput, thebetter. BMAX (Fig. 17e)
is the extreme case where ITBs are put in all the switches.
We observe that 95 percent of the links are blocked less than
7 percent of the total time. Therefore, the ITB mechanism
also helps in increasing network throughput by reducing
network contention. But, on the other hand, the latency
penalty (studied later) should be taken into account. The
lower the number of ITBs used, the lower this penalty. We
observe that the B50 routing algorithm reaches nearly the
same network throughput as BMAX by using half the ITBs
with respect to BMAX.

For other network topologies, similar results have been
obtained. Table 12 shows the minimum, maximum, and
average factors of throughput increase for different network
sizes and different routing algorithms. On average, B50
increases network throughput of BMIN by factors of 1.18,
1.27, and 1.35. Regarding the classical routing algorithms
(UD and SMART), the improvement reaches, in some cases,
on average, factors of 3.77. We also observe that the B50
routing algorithm achieves roughly the same network
throughput as BMAX.

FLICH ET AL.: APPLYING IN-TRANSIT BUFFERS TO BOOST THE PERFORMANCE OF NETWORKS WITH SOURCE ROUTING 17

TABLE 10
Percentage of Latency Increase when Using BMIN with Respect to UD, SMART, BSMART, and RANDOM

Uniform distribution.

TABLE 11
Factor of Throughput Increase when Using BMIN
with Respect to BSMART and RANDOM Routings

for Different Traffic Patterns

Message size is 512 bytes.

Because these routing algorithms (B33, B50, B66, and
BMAX) use many more ITBs than others (BMIN), the
latency penalty has to be evaluated. Table 13 shows the
percentage of latency increase when using the B50 routing
algorithm instead of the UD, SMART, BMIN, and BMAX,
respectively. We observe that, by using many more ITBs, as
B50 does, the latency penalty is increased, on average, up to
50 percent with respect to UD and SMART. But, this
happens only for short messages and in low traffic
conditions. For bimodal traffic, the average latency penalty
is 20 percent on average. Although this penalty should be
taken into account, the great improvements in network
throughput should also be considered.

For the sake of brevity, results for other traffic patterns
are not shown. However, the study has been performed
showing that, for bit-reversal, hot-spot, and combined

traffic patterns, throughput improvements are lower (but

still noticeable). For local traffic pattern, throughput is

never decreased.
In summary, load balance is not the only key contributor

to network performance. Reducing network contention

with ITBs can yield significant improvements in network

throughput. The B50 routing algorithm exploits both issues

and outperforms previous proposals.

7 CONCLUSIONS

In previous papers, we proposed the in-transit buffer

mechanism (ITB) to improve network performance in

networks with source routing. Although the mechanism

was primarily intended for supplying minimal paths in the

up*/down* routing algorithm by removing down ! up

18 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

Fig. 16. Average message latency versus accepted traffic. Uniform distribution. Message size is 512 bytes. Network size is (a) 16 switches,

(b) 32 switches, and (c) 64 switches.

Fig. 17. Blocked time (network contention). Traffic is 0.066 flits/ns/switch. Network size is 32 switches. Message size is 512 bytes. Uniform

distribution. (a) BMIN, (b) B33, (c) B50, (d) B66, and (e) BMAX routing.

TABLE 12
Factor of Throughput Increase when Using B50 with Respect to UD, SMART, BMIN, and BMAX Routings

for the Uniform Distribution

Message size is 512 bytes.

channel dependencies, we have found that it also serves as
a powerful mechanism to reduce network contention and to
obtain a better network traffic balance. Moreover, it can be
applied not only to up*/down*, but to any source-based
routing algorithm.

In this paper, we apply the ITBmechanism to up*/down*,
DFS, and smart-routing schemes, analyzing its behavior in
detail. Also, we have presented a new source-based
routing algorithm. This routing algorithm computes a set
of minimal paths among all the network nodes. Then, it
chooses a subset of them that offers good traffic balance
through a very simple and low time consuming algorithm.
This algorithm is based on the computation of the
standard deviation of the number of paths that cross each
network link. Finally, it guarantees deadlock freedom and
also reduces network contention by a clever ITB allocation
procedure.

Results show that, in general, the in-transit buffer
mechanism improves network performance for all the
analyzed source routing algorithms. We already knew that
up*/down* routing was significantly improved due to the
high number of routing restrictions imposed by this routing
algorithm and the unbalanced traffic nature of the spanning
trees. In this paper, we have demonstrated that, by using
ITBs, improved source routing algorithms, like DFS and
smart-routing, can also take advantage of ITBs. The
improvement can be as high as 85 percent for DFS for a
64-switch network and 33 percent for smart-routing for a
32-switch network, for the uniform distribution of message
destinations.

On the other hand, the new routing algorithm offers
very good traffic balance behavior. When compared with
smart-routing with ITBs and a random traffic balancing
algorithm, it achieves factors of throughput increases up
to 1.12 and 1.27, respectively for 32-switch networks.
Most important, it is able not only to improve smart-
routing, but also to strongly reduce routing table
computation overhead. In fact, tables for large networks
(64 switches) were rapidly computed. Also, when the new
routing algorithm is combined with a clever strategy to
allocate more ITBs in the network, network contention is
strongly reduced. In particular, it is able to improve
network throughput to unpredecedented levels: up to
4.35, and 1.82 of factor improvements over up*/down*
(64 switches) and smart-routing (32 switches), respec-

tively, for the uniform distribution of message destina-

tions.

ACKNOWLEDGMENTS

This work was supported by the Spanish MCYT under

Grants TIC2000-1151-C07 and 1FD97-2129.

REFERENCES

[1] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.
Seizovic, and W. Su, “Myrinet—A Gigabit per Second Local Area
Network,” IEEE Micro, pp. 29-36, Feb. 1995.

[2] R.V. Bopana and S. Chalasani, “A Comparison ofAdaptive
Wormhole Routing Algorithms,” Proc. 20th Ann. Int’l Symp.
Computer Architecture, May 1993.

[3] L. Cherkasova, V. Kotov, and T. Rokicki, “Fibre Channel Fabrics:
Evaluation and Design,” Proc. 29th Int’l Conf. System Sciences, Feb.
1995.

[4] S. Coll, J. Flich, M.P. Malumbres, P. Lopez, J. Duato, and F.J. Mora,
“A First Implementation of In-Transit Buffers on Myrinet GM
Software,” Proc. Workshop Comm. Architecture for Clusters, Apr.
2001.

[5] W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing in
Multiprocessors Interconnection Networks,” IEEE Trans. Compu-
ters, vol 36, no. 5, pp. 547-553, May 1987.

[6] W.J. Dally, “Virtual-Channel Flow Control,” IEEE Trans. Parallel
and Distributed Systems, vol. 3, no. 2, pp. 194-205, Mar. 1992.

[7] J. Duato, “A Necessary and Sufficient Condition for Deadlock-
Free Adaptive Routing in Wormhole Networks,” IEEE Trans.
Parallel and Distributed Systems, vol. 6, pp. 1055-1067, 1995.

[8] J. Flich, M.P. Malumbres, P. López, and J. Duato, “Performance
Evaluation of a New Routing Strategy for Irregular Networks with
Source Routing,” Proc. Int’l Conf. Supercomputing, May 2000.

[9] J. Flich, P. López, M.P. Malumbres, and J. Duato, “Improving the
Performance of Regular Networks with Source Routing,” Proc.
Int’l Conf. Parallel Processing, Aug. 2000.

[10] J. Flich, P. López, M.P. Malumbres, and J. Duato, “Boosting the
Performance of Myrinet Networks,” IEEE Trans. Parallel and
Distributed Systems, vol. 13, no. 7, July 2002.

[11] GM homepage, http://www.myri.com/GM’, 2001.
[12] J. Kim and A. Chien, “An Evaluation of the Planar/Adaptive

Routing,” Proc. Fourth IEEE Int’l Symp. Parallel and Distributed
Processing, 1992.

[13] P.R. Miller, “Efficient Comunications for Fine-Grain Distributed
Computers,” PhD thesis, Southampton Univ., 1991.

[14] Myrinet, M2-CB-35 LAN cables, http://www.myri.com/
myrinet/product_list.html, 2001.

[15] S.S. Owicki and A.R. Karlin, “Factors in the Performance of the
AN1 Computer Network,” Performance Evaluation Rev., vol. 20,
pp. 167-180, June 1992.

[16] W. Qiao and L.M. Ni, “Adaptive Routing in Irregular Networks
Using Cut-Through Switches,” Proc. 1996 Int’l Conf. Parallel
Processing, Aug. 1996.

FLICH ET AL.: APPLYING IN-TRANSIT BUFFERS TO BOOST THE PERFORMANCE OF NETWORKS WITH SOURCE ROUTING 19

TABLE 13
Percentage of Latency Increase when Using B50 with Respect to UD, SMART, BMIN, and BMAX Routings

for the Uniform Distribution

[17] J.C. Sancho, A. Robles, and J. Duato, “New Methodology to
Compute Deadlock-Free Routing Tables for Irregular Networks,”
Proc. Workshop Comm. and Architectural Support for Network-Based
Parallel Computing, Jan. 2000.

[18] M.D. Schroeder et al., “Autonet: A High-Speed, Self-Configuring
Local Area Network Using Point-to-Point Links,” Technical
Report SRC research report 59, DEC, Apr. 1990.

[19] S.L. Scott and J.R. Goodman, “The Impact of Pipelined Channels
on k-Ary n-Cube Networks,” IEEE Trans. Parallel and Distributed
Systems, vol. 5, no. 1, pp. 2-16, Jan. 1994.

[20] R. Sheifert, Gigabit Ethernet. Addison-Wesley, Apr. 1998.
[21] F. Silla and J. Duato, “Improving the Efficiency of Adaptive

Routing in Networks with Irregular Topology,” Proc. 1997 Int’l
Conf. High Performance Computing, Dec. 1997.

[22] F. Silla, M.P. Malumbres, A. Robles, P. López, and J. Duato,
“Efficient Adaptive Routing in Networks of Workstations with
Irregular Topology,” Proc. Workshop Comm. and Architectural
Support for Network-Based Parallel Computing, Feb. 1997.

José Flich received the MS and PhD degrees in
computer science from the Technical University
of Valencia (Universidad Politecnica de Valen-
cia), Spain, in 1994 and 2001, respectively. He
joined the Department of Computer Engineering
(DISCA), Universidad Politécnica de Valencia in
1998, where he is currently an associate profes-
sor of computer architecture and technology. His
research interests are related to high perfor-
mance interconnection networks for multiproces-

sor systems and clusters of workstations. He is a member of the IEEE.

Pedro López received the BEng degree in
electrical engineering and the MS and PhD
degrees in computer engineering from the
Technical University of Valencia (Universidad
Politecnica de Valencia), Spain, in 1984, 1990
and 1995, respectively. He joined the Depart-
ment of Computer Engineering (DISCA), Uni-
versidad Politécnica de Valencia in 1986, where
he is currently a professor of computer archi-
tecture and technology. He has taught several

courses on computer organization and computer architecture. His
research interests include high performance interconnection networks
for multiprocessor systems and clusters of workstations. He is a
member of the editorial board of Parallel Computing and a member of
the IEEE Computer Society.

Manuel Perez Malumbres received the MS and
PhD degrees in computer engineering from the
Technical University of Valencia (UPV), Spain,
in 1991 and 1996, respectively. He is currently
an associate professor in the Computer Engi-
neering Department (DISCA) at the UPV and his
research and teaching activities are related to
multimedia networking and high-speed net-
works. He is a member of the IEEE.

José Duato received the MS and PhD
degrees in electrical engineering from the
Technical University of Valencia, Spain, in
1981 and 1985, respectively. He is currently
a professor in the Department of Computer
Engineering (DISCA), Technical University of
Valencia (Universidad Politecnica de Valen-
cia), Spain, and adjunct professor in the
Department of Computer and Information
Science, Ohio State University. He is cur-

rently researching multiprocessor systems, networks of workstations,
interconnection networks, and multimedia systems. His theory on
deadlock-free adaptive routing has been used in the design of the
routing algorithms for the MIT Reliable Router, the Cray T3E router, and
the router embedded in the new Alpha 21364 microprocessor. He
coauthored the text Interconnection Networks: An Engineering Ap-
proach with S. Yalamanchili and L.M. Ni. Dr. Duato served as an
associate editor of the IEEE Transactions on Parallel and Distributed
Systems and IEEE Transactions on Computers. He has also been or is
a member of the program committees for several major conferences
(ICPADS, ICDCS, Europar, HPCA, ICPP, MPPOI, HiPC, PDCS, ISCA,
IPPS/SPDP, ISPAN). He was the general cochair for ICPP 2001. He is a
member of the IEEE and the IEEE Computer Society.

Tomas Rokicki received the BSEE degree from
Texas A&M University in 1985 and the PhD
degree in computer science from Stanford
University in 1994. Despite years of research
in fields such as circuit verification and network-
ing, his most noted accomplishment is the
program dvips. When not running in the wonder-
ful California weather, he works as Director of
Technology for Instantis.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

20 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 7, JULY 2003

