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Abstract

The Jaya algorithm is a recent heuristic algorithm for solving optimisation problems.

It involves a random search for the global optimum, based on the generation of new

individuals using both the best and the worst individuals in the population, thus moving

solutions towards the optimum while avoiding the worst current solution. In addition

to its performance in terms of optimisation, a lack of control parameters is another

very important advantage of this algorithm. However, the number of iterations needed

to reach the optimal solution, or close to it, may be very high, and the computational

cost can hamper compliance with time requirements. In this work, a chaotic 2D map

is used to accelerate convergence, and parallel algorithms are developed to alleviate

the computational cost. The parallel algorithms developed here are based both on a

multipopulation structure and on an improved (computational) use of the chaos map.
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1. Introduction

Optimisation algorithms are used to find the optimal value, or a value as close

to this as possible, for a given function called the cost function. Depending on the

intrinsic characteristics of the cost function, finding this value can be a challenge, and

depending on the search pattern used, the optimisation algorithm can be trapped in local5
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optimums. Population-based algorithms, such as the one considered in this work, are

also iterative algorithms, and depending on the number of iterations to be performed,

the computational cost can increase dramatically.

When deterministic methods are applied to solve an optimisation problem, a se-

quence of points tending to the optimal value is generated based on the analytical prop-10

erties of the problem to be solved. In this case, the optimisation problem becomes a

problem of linear algebra, i.e. the gradient of the cost function is used in many cases to

solve the optimisation problem. Although deterministic methods can be used to solve

the problems of optimisation of many functions [1], for large-scale problems, and espe-

cially non-differentiable, non-convex and nonlinear objective functions, deterministic15

methods are either unable to reach the solution or the computational cost prevents their

use. A number of heuristic methods have been proposed to overcome these drawbacks,

where the solution obtained is acceptable and the computational cost is reasonable.

In most cases, meta-heuristic methods employ guided search techniques in which cer-

tain random processes are used to solve the problem. Although it cannot be formally20

demonstrated that the optimum value obtained is the solution to the problem, they have

been shown via experiment to be robust.

In the past few decades, several well-known meta-heuristic optimisation algorithms

based on natural phenomena have been proposed: for example, the particle swarm op-

timisation (PSO) algorithm [2] and its variants are based on the social behaviour of fish25

schooling or bird flocking; the artificial bee colony (ABC) algorithm [3] was inspired

by the foraging behaviour of honey bees; the shuffled frog leaping (SFL) [4] algorithm

imitates the collaborative behaviour of frogs; the ant colony optimisation (ACO) algo-

rithm [5] imitates the foraging behaviour of ant colonies; the evolutionary strategy (ES)

algorithm [6] is based on the processes of mutation and selection seen in evolution; ge-30

netic programming (GP) [7] and evolutionary programming (EP) [8] are techniques for

evolving programs based on the selection of individuals for reproduction (crossover)

and mutation; the firefly (FF) algorithm [9] was inspired by the flashing behaviour

of fireflies; the gravitational search algorithm (GSA) [10] was based on Newtons law

of gravity; the biogeography-based optimisation (BBO) algorithm [11] improves so-35

lutions stochastically and iteratively; the grenade explosion method (GEM) algorithm
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[12] is based on the characteristics of the explosion of a grenade; genetic algorithms

(GA) [13] and their variants reflect the process of natural selection; the artificial im-

mune algorithm (AIA) [14] is based on the behaviour of the human immune system;

differential evolution (DE) [15] and its variants attempt to iteratively improve a candi-40

date solution with respect to a given measure of quality; the simulated annealing (SA)

algorithm [16] is based on the annealing process in metallurgy; the tabu search (TS)

algorithm [17] employs meta-heuristic local search methods; the teaching-learning-

based optimisation (TLBO) algorithm [18] is based on the processes of teaching and

learning; and the harmony search algorithm (HSA) [19] was inspired by the process of45

musical performance.

None of these algorithms are free of limitations in terms of their evolution pro-

cess, and some of them are easily trapped in local minima. However, a key aspect of

the behaviour of these algorithms is the correct adjustment of the control parameters,

since the effectiveness of these algorithms depends heavily on the correct setting of50

these fixed control parameters [18]; for example, PSO needs the cognitive and social

parameters and inertia weights to be adjusted; GA needs the crossover probability, mu-

tation probability, selection operator, etc. to be set; the SA algorithm needs the initial

annealing temperature and cooling schedule to be tuned; BBO needs the probability

of habitat modification, mutation probability, habitat elitism parameter and population55

size to be set; ABC needs the number of bees and limits to be defined; HSA needs the

harmony memory consideration rate, the number of improvisations, etc. to be adjusted;

and BBO needs the immigration rate, emigration rate, etc. to be set. In contrast, both

TLBO and the Jaya optimisation algorithm used in this work can overcome this draw-

back, since both algorithms only need general parameters to be established, such as the60

population size and number of iterations (or number of generations) or the stopping

criteria.

These algorithms are suitable for solving large-scale industrial problems. For ex-

ample, in [20] authors take advantage of the lack of control parameters of the Jaya

algorithm to optimise the coefficients of proportional plus integral controller and filter65

parameters of photovoltaic fed distributed static compensator, where Jaya improves the

performance of the TLBO, note that the latter also lacks control parameters; and in [21]
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Jaya is modified for efficiently solving the maximum power point tracking problem of

photovoltaic systems. In [22], the ABC algorithm is used to solve the welded beam

problem, the pressure vessel problem, the tension-compression spring problem, the70

speed reducer design and the gear train design. Jaya has also been used, for example,

to optimise the automatic application of carbon fiber reinforced polymer composites

in various production processes [23]; to analyse the effects of the parameters of the

submerged arc welding process on the geometry of the weld seam [24]; to optimise

sensor placement and damage identification in laminated composite structures [25]; to75

design a proportional-integral-derivative controller for automatic generation control of

an interconnected power system [26]; to identify the parameters of photovoltaic models

used for simulation, evaluation and control of such systems; etc. It can also be used

to solve problems commonly used in industrial applications, for example for generali-

zed sparse non-negative matrix factorization [27] or for matrix factorization methods,80

applied in [28, 29] to large-scale collaborative filtering recommender systems. More-

over, parallel optimisation algorithms have been used, for example, to optimise the

tool path of numerical control machines [30]; to allocate generation and transmission

resources in an electricity market [31]; or to control the flow distribution generated by

the heliostat field of the receiving system of a solar power plant [32].85

Two of the most widely used techniques for improving these algorithms are hy-

bridisation and the use of chaos theory. Hybridisation involves the use of more than one

search technique to improve the behaviour of the optimisation process (see for example

[33, 34, 35, 36, 37]). This hybridisation, as it is logical, usually improves the quality of

the solution obtained. However, it may make it difficult to adjust the parameters cor-90

rectly and can also increase the computational cost. Chaos theory concerns the study of

chaotic dynamical systems, which can be defined as nonlinear dynamical systems that

are characterised by a high sensitivity to their initial conditions [38, 39]. Many of the

algorithms mentioned here make use of randomness in their search patterns, and this

randomness can be totally or partially replaced by the use of chaos theory, which offers95

a powerful technique for hybridisation. Chaos has been used in meta-heuristic algo-

rithms to: (a) replace random number sequences with sequences generated by chaotic

maps; (b) perform a local search by means of a chaotic map function; and (c) to gener-

4



ate the control parameters in a chaotic way [40].

Some of the works in which chaos has been successfully used to improve meta-100

heuristic optimisation algorithms include the following: in [41, 42], chaos was applied

to the FF algorithm; in [43, 44] it was applied to GA algorithms; in [45, 46], it was

applied to the SA algorithm; in [47, 48], it was applied to the BBO algorithm; in

[49, 50], it was applied to the DE algorithm; in [51], it was applied to ABC algorithm;

and in [52], it was applied to the GSA algorithm.105

The main objective of our work is to develop efficient parallel algorithms based on

the chaotic C-Jaya algorithm. The aim is for these algorithms to be efficient both at

the level of optimisation behaviour and at the level of computational cost. The para-

llel algorithms developed here are based on both multi-population-based algorithms,

a technique already used in several sequential and parallel proposals (see for example110

[53, 54, 55, 56]), and on the 2D chaotic map presented in [57]. Parallel algorithms are

computationally improved and adapted to the use of the 2D chaotic map.

The major contributions of this paper are summarised below. Firstly, we analyse the

use of the 2D cross chaotic map proposed in the Jaya algorithm, both at computational

level and at optimisation behaviour level. The results show a significant improvement115

in optimisation performance, but at the expense of a huge increase in the computational

complexity during the optimisation process. Secondly, to reduce the global computing

time, we develop efficient parallel algorithms based on multi-populations, in which the

increase in computational complexity introduced by the use of the 2D chaotic map re-

duces the intrinsic parallelism that can be exploited, thus reducing parallel scalability.120

Finally, we modify the pattern of use of the chaotic map to develop more efficient and

scalable parallel algorithms, which maintain the remarkable improvement in optimisa-

tion behaviour.

The remainder of this paper is organised as follows: Section 2 presents a brief

description of the Jaya algorithm and the 2D chaotic map used here. In Section 3,125

the parallel algorithms and the improvements we introduce are explained in detail. In

Section 4 we analyse the performance of the proposed parallel algorithms, and finally,

in Section 5, some conclusions are drawn.
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2. Preliminaries

The work presented in the article is based both on the Jaya algorithm presented in130

Section 2.1 and on the use of a 2D chaotic map presented in Section 2.2.

2.1. Jaya algorithm

The Jaya algorithm was presented in [58], in which the results of optimising both

constrained and unconstrained functions are reported. These results show that the Jaya

algorithm behaves better than the most common reference algorithms, and a more de-135

tailed comparative analysis is presented in [59]. The Jaya algorithm is a population-

based algorithm in which the evolution does not depend on function-specific adjust-

ment parameters, and only the size of the population and the maximum number of

evaluations to be performed need to be set.

Once the best and worst individuals of the current population have been identified,140

the basic operation of the Jaya algorithm consists of a search for the global optimum,

which is achieved by moving toward the best individual and avoiding the worst. This

strategy is implemented by obtaining a new individual following Equation (1), in which

r1,j and r2,j are uniformly distributed random numbers, and j refers to the design

variable of the specific cost function to be optimised.145

x
′

j = xj + r1,j (xj,best − |xj|)− r2,j (xj,worst − |xj|) (1)

Jaya is an iterative algorithm in which Equation (1) is applied at each iteration

to each individual in the current population. If the new individual is better than the

old one, it is exchanged; otherwise, it is discarded. Algorithm 1 describes this pro-

cess. Different executions are performed in this type of algorithm, since the intrinsic150

randomness of these algorithms may cause unsatisfactory execution (see line 2). A

random initial population is computed (lines 3–8). At each iteration (line 9), after

searching for the best and worst individuals in the population (line 10), new individu-

als are computed, and are inserted into the population as replacements if they are better
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than the previous ones. The value of each variable for the new individual is trimmed if155

necessary (lines 16–21).

The use of chaotic maps is proposed in order to increase the diversity of the pop-

ulation, and thus avoid a possible premature convergence at a local minimum and ac-

celerate the convergence. When a chaotic map is used, the randomness of Equation (1)

(provided by the two random numbers) is replaced by a sequence of numbers that can160

be generated from a random starting point. In this work, we use the chaotic map pre-

sented in [57], and this is briefly described in Section 2.2.

2.2. 2D chaotic map

The 2D chaotic map used here [57] balances the exploitation and exploration phases

that are characteristic of heuristic optimisation algorithms. Note that the exploitation165

phase is related to the convergence ratio, while the exploration phase is related to the

algorithms ability to explore different regions in a search space. In order to balance

both of these phases, the new individuals in Algorithm 1 are obtained by using a ran-

dom individual (xrand) from the current population, in addition to the current best and

current worst individuals. Moreover, the new individual can be obtained in three diffe-170

rent ways, using Equations (2), (3) and (4). In these equations, as described above,

xrand is a random individual, and x ,best and x ,worst are the current best and worst

individuals, respectively, of the population. Each ch ,j is the absolute value of a chaotic

variable from the 2D cross chaotic map, and SF is a scaling factor that takes a value of

one or two.175

x
′

j = ch1,jx
rand
j + ch2,j

(
xj − ch3,jxrandj

)
+ ch4,j

(
xj,best − ch5,jxrandj

)
(2)

x
′

j = ch1,jx
rand
j + ch2,j

(
xj − ch3,jxrandj

)
+ ch4,j

(
xj,worst − ch5,jxrandj

)
(3)

x
′

j = ch1,jxj,best + ch2,j
(
xrandj − SFxj,best

)
(4)
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Algorithm 1 Jaya algorithm
1: Set parameters (Iterations and PopulationSize) and define cost function

2: for l = 1 to Runs do

3: for i = 1 to PopulationSize {Create Initial Population X:} do

4: for j = 1 to V ARS do

5: xij =MinV alue+ (MaxV alue−MinV alue) ∗ rand[0,1]
6: end for

7: Compute and store F (xij) {Function evaluation}

8: end for

9: for l = 1 to Iterations do

10: Search for best and worst individuals

11: for i = 1 to PopulationSize {Create New Population X’:} do

12: for j = 1 to V ARS do

13: Obtain 2 random numbers (rand1,2[0,1] )

14: x
′i
j = xij + rand1,j

(
xij,best −

∣∣xij∣∣)− rand2,j (xij,worst − ∣∣xij∣∣)
15: { Check the bounds of x

′i
j }

16: if x
′i
j < MinV alue then

17: x
′i
j =MinV alue

18: end if

19: if x
′i
j > MaxV alue then

20: x
′i
j =MaxV alue

21: end if

22: end for

23: Compute F (x
′i) {Function evaluation}

24: if F (x
′i) < F (xi) then

25: Replace solution in population

26: end if

27: end for

28: end for

29: end for

30: Obtain Best Solution and Statistical Data
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The construction of the 2D chaotic map is shown in Algorithm 2. In the exper-

iments performed here, the initial conditions for generating the 2D chaotic map are

x1 = 0.2, y1 = 0.3, k = i and maxDimMap = 500. The computed values xi and yi

are in the range [−1, 1].

Algorithm 2 2D Chaotic map
1: Initialize x1

2: Initialize y1

3: Initialize maxDimMap

4: for i = 1 to maxDimMap do

5: xi+1 = cos(k ∗ arccos(yi))

6: yi+1 = 16x5i − 20x3i + 5xi

7: end for

In each iteration of Algorithm 1, the three possible options (Equations (2), (3) and180

(4)) to obtain the new iterate are not all computed, and only one of them is used at each

iteration, as shown in Algorithm 3.

It is also worth mentioning that the initial population is not computed as in the

original Jaya algorithm (see lines 4–6 of Algorithm 1), and instead uses the chaotic

map, as shown in lines 3–9 of Algorithm 4.185

3. Proposed parallel algorithms

The parallel algorithms developed here are based on the use of sub-populations.

However, due to the computational characteristics of the chaotic algorithm, it is not

possible to obtain high efficiency using the same parallel strategies as those used in

[54]. It can be predicted, as discussed in Section 2.2, that the computational cost per190

iteration will depend on the computational cost of the function to be optimised, the

selection of the chaotic values to be used and their extraction from the chaotic map.

A general flowchart of the parallel algorithms developed here is shown in Figure 1.

The most important steps and improvements introduced to accelerate the algorithm are

detailed below.195

9



Algorithm 3 Selection of the population update option
1: Obtain two ordered integer random numbers and one chaotic number:

2: a = min(rnd1,rnd2)

3: b = max(rnd1,rnd2)

4: chj are randomly selected chaotic values

5: Select between equations (2), (3) or (4):

6: if chj < a then

7: x
′

j = ch1,jx
rand
j + ch2,j

(
xj − ch3,jxrandj

)
+ ch4,j

(
xj,best − ch5,jxrandj

)
8: end if

9: if a < chj < b then

10: x
′

j = ch1,jx
rand
j + ch2,j

(
xj − ch3,jxrandj

)
+ ch4,j

(
xj,worst − ch5,jxrandj

)
11: end if

12: if chj > b then

13: x
′

j = ch1,jxj,best + ch2,j
(
xrandj − SFxj,best

)
14: end if

First, we analyse the decisions made regarding the efficient use of memory. Our

algorithms are based on sub-populations, and all of them divide the individuals of

the whole population among the available computing processes, thus creating sub-

populations. It is worth noting that these algorithms are executed on a multicore com-

puting platform, i.e., in a shared memory computer architecture. However, each pro-200

cess (or thread) in the initial step copies the sub-population that has been assigned to it

to its local private memory. In contrast, the chaotic optimisation algorithm considered

here is based on a 2D cross chaotic map, for which the calculation is shown in Algo-

rithm 2. To ensure efficient behaviour of the parallel algorithms, the chaotic map must

be stored in global memory, and there is no overhead due to contention in memory205

writing.

In Algorithm 3, up to three individuals (the best, worst and a random individual)

from the current population may be needed to generate a new individual. Since we

avoid using extra memory to store the new sub-population, a copy of these individ-

uals must be stored during the generation of the new sub-population, allowing these210
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Figure 1: General flowchart of the proposed parallel algorithms.

new individuals to replace others in the same sub-population if they represent improve-

ments. Algorithm 4 shows the computation of both the initial population and the sub-
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population sizes. Both processes are performed sequentially before the parallel region

is spawned.

Algorithm 4 Computing of the initial population and sub-population sizes
1: Set parameters (Iterations and PopulationSize) and define cost function

2: Set the number of computing processes (NoC)

3: for i = 1 to PopulationSize do

4: for j = 1 to V ARS do

5: Obtain rnd: random integer value in range [1,maxDimMap]

6: xij =MinV alue+ (MaxV alue−MinV alue) ∗ ch(rnd)

7: end for

8: Compute and store F (xi)

9: end for

10: SubPopSize = PopulationSize/NoC

11: for i = 1 to NoC do

12: SubPopSizeArray[i] = SubPopSize

13: if i <= (PopulationSize%NoC) then

14: SubPopSizeArray[i] + +

15: end if

16: end for

The first step in the parallel region is to copy the assigned sub-population to local215

memory, and then to search for the best and worst individuals in the sub-population.

Algorithm 5 shows how these processes are performed within a given parallel region.

3.1. CP-CJaya parallel algorithm

Two different parallel strategies for accelerating the optimisation algorithm were

developed. In the first one, called the CP-CJaya (Communicated Parallel Chaotic Jaya)220

algorithm, the different processes share information, and coordination processes be-

tween them are therefore necessary. Hence, in this strategy, as can be seen in Algorithm

6, after having searched for the best and worst individuals in each sub-population, all

the threads must be coordinated in order to select the global best and global worst in-
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Algorithm 5 Copy of sub-population and search for the best and the worst.
1: Inside a parallel region:

2: Identify thread Tid in range [1, NoC]

3: MySubPopSize = SubPopSizeArray[Tid]

4: Allocate memory in private memory for population of size MySubPopSize

5: IniSubPop = 0

6: for i = 1 to Tid− 1 do

7: IniSubPop+ = SubPopSizeArray[i]

8: end for

9: EndSubPop = IniSubPop+ SubPopSize

10: Copy sub-population (IniSubPop− EndSubPop) into private memory

11: Search for local best (LBest) and local worst (LWorst)

dividuals. Copies of both individuals are stored in global memory to allow access by225

all threads. Algorithm 6 includes two synchronisation points (lines 11 and 24), and

between these two points there are two critical regions in which the code is executed

sequentially by all threads, i.e. with mutual exclusion. As mentioned above, up to three

individuals can be used to create a new generation, i.e. in addition to the best and worst,

another individual is randomly chosen. In the latter case, in order to avoid increasing230

the number of communications and coordination processes, it is randomly chosen by

each thread from the individuals in its sub-population, and is stored in private memory.

The communications and coordination processes in Algorithm 6 cause a loss of

parallel efficiency if they are performed at each iteration, and to solve this problem,

we include flags to detect whether it is necessary to update the best or worst global235

individual. As shown in Algorithm 7, if the best global individual is to be updated, it is

not necessary to include synchronisation, and only a critical region is needed; however,

a synchronisation point is needed in order to check whether the worst global individual

needs to be updated, and this point cannot be removed (line 20 of Algorithm 8). If the

worst global individual is to be updated, the process includes a search for the worst240

local individual, two synchronisation points (lines 24 and 30) and a critical region;

these procedures are only performed if the flag F G GWorst is set.
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Algorithm 6 CP-CJaya: initial search for the global best and global worst.
1: Allocate memory in shared memory for GBest (Global Best)

2: Allocate memory in shared memory for GWorst (Global Worst)

3: Inside a parallel region:

4: Identify thread Tid in range [1, NoC]

5: Allocate memory in private memory for xrand

6: Obtain rnd: random integer value in range [1,MySubPopSize]

7: Copy rnd individual to xrand

8: Master thread:

9: Copy LBestTid to GBest

10: Copy LWorstTid to GWorst

11: Sync Barrier

12: All threads in parallel CRITICAL region:

13: {

14: if LBestTid is better than GBest then

15: Copy LBestTid to GBest

16: end if

17: }

18: All threads in parallel CRITICAL region:

19: {

20: if LWorstTid is worse than GWorst then

21: Copy LWorstTid to GWorst

22: end if

23: }

24: Sync Barrier
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Algorithm 7 CP-CJaya: search for the global best based on flags.
1: Flag to find the worst in shared memory: F G GWorst = false

2: Inside a parallel region:

3: Identify thread Tid in range [1, NoC]

4: Flag to find the best in private memory: F P Gbest = false

5: for i = 1 to SubPopSize do

6: Generate x
′i

7: if F (x
′i) < F (xi) then

8: Replace solution in population

9: if F (x
′i) < F (LBestTid) then

10: Update LBestTid

11: if F (x
′i) < F (GBest) then

12: F P Gbest = true

13: end if

14: end if

15: if i == LWorstTid then

16: F G GWorst = true

17: end if

18: end if

19: end for

20: if F P Gbest == true then

21: CRITICAL region:

22: if F (LBestTid) < F (GBest) then

23: Copy LBestTid to GBest

24: end if

25: F P GBest = false

26: end if
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Algorithm 8 CP-CJaya: search for the global worst based on flags.
1: Flag to find the worst in shared memory: F G GWorst = false

2: Inside a parallel region:

3: Identify thread Tid in range [1, NoC]

4: Flag to find the best in private memory: F P Gbest = false

5: for i = 1 to SubPopSize do

6: Generate x
′i

7: if F (x
′i) < F (xi) then

8: Replace solution in population

9: if F (x
′i) < F (LBestTid) then

10: Update LBestTid

11: if F (x
′i) < F (GBest) then

12: F P Gbest = true

13: end if

14: end if

15: if i == LWorstTid then

16: F G GWorst = true

17: end if

18: end if

19: end for

20: Sync Barrier

21: if F G GWorst == true then

22: Search for LWorstTid

23: SINGLE thread: Copy LWorstTid to GWorst

24: Sync Barrier

25: CRITICAL region:

26: if F (LWorstTid) > F (GWorst) then

27: Copy LWorstTid to GWorst

28: end if

29: SINGLE thread: F G GWorst = false

30: Sync Barrier

31: end if

16



3.2. NCP-CJaya parallel algorithm

The second strategy, called the NCP-CJaya (Non-Communicated Parallel Chaotic

Jaya) algorithm, was developed with the goal of removing all synchronisation points.245

Algorithm 9 shows the NCP-CJaya algorithm, in which the three individuals used to

create a new generation are stored in private memory. Hence, no global memory space

is used except that used to store the chaotic map, as mentioned above.

In both strategies, CP-CJaya and NCP-CJaya, domain decomposition is imple-

mented in order to develop parallel algorithms. Load balancing is especially important250

in the CP-CJaya algorithm, as the synchronisation barriers can lead to high idle times

if the load is not properly balanced. In contrast, NCP-CJaya, which does not include

synchronisation barriers, is more versatile and allows load balancing techniques to be

applied.

3.3. Improved computing performance (ICP) technique255

The use of the chaotic map presented in Section 2.2 increases the computational

cost of the Chaotic Jaya sequential algorithm compared to the original Jaya sequential

algorithm. The selection of the population update option shown in Algorithm 3, leads to

computational cost increase and may decrease the parallel performance of the parallel

algorithms proposed.260

It should be noted that the random numbers a and b used in Algorithm 3 are calcu-

lated before each new individual is generated, while the other five random values are

obtained to compute of each variable for each new individual. In order to reduce the

computational cost and improve the parallel efficiency in computing each variable for

each new individual, only one new chaotic number is extracted from the chaotic map,265

and the other four are reused. In this way, only one new random value needs to be

obtained for the extraction of only one chaotic value. This modification in the use of

the chaotic map is called ICP (Improve Computational Performance), and it is shown

in Algorithm 10.
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Algorithm 9 NCP-CJaya: parallel region without synchronizations.
1: Inside a parallel region:

2: Allocate memory in private memory for LBest (Local Best)

3: Allocate memory in private memory for LWorst (Local Worst)

4: Allocate memory in private memory for xrand

5: Flag to find the worst in private memory: F P LWorst = false

6: Flag to find the best in private memory: F P LBest = false

7: Find and store LBest and LWorst

8: Obtain rnd: random integer value in range [1,MySubPopSize]

9: Copy individual to xrand

10: for i = 1 to SubPopSize do

11: Generate x
′i

12: if F (x
′i) < F (xi) then

13: Replace solution in population

14: if F (x
′i) < F (LBestTid) then

15: Update LBestTid

16: F P LBest = true

17: end if

18: if i == LWorstTid then

19: F P LWorst = true

20: end if

21: end if

22: if F P LBest == true then

23: Update LBest

24: F P LBest = false

25: end if

26: if F P LWorst == true then

27: Find and store LWorst

28: F P LWorst = false

29: end if

30: end for
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Algorithm 10 Improved computing performance (ICP) applied to the selection of the

population update option
1: Obtain two ordered integer random numbers and one chaotic number:

2: a = min(rnd1,rnd2)

3: b = max(rnd1,rnd2)

4: {Initially chj are randomly selected chaotic values}

5: for i = 5 to 2 do

6: chj = chj−1

7: end for

8: ch1 new randomly selected chaotic value

9: Select between equations (2), (3) or (4):

10: if chj < a then

11: x
′

j = ch1,jx
rand
j + ch2,j

(
xj − ch3,jxrandj

)
+ ch4,j

(
xj,best − ch5,jxrandj

)
12: end if

13: if a < chj < b then

14: x
′

j = ch1,jx
rand
j + ch2,j

(
xj − ch3,jxrandj

)
+ ch4,j

(
xj,worst − ch5,jxrandj

)
15: end if

16: if chj > b then

17: x
′

j = ch1,jxj,best + ch2,j
(
xrandj − SFxj,best

)
18: end if
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4. Numerical experiments270

In this section, the parallel chaotic Jaya algorithms presented in Section 3 are anal-

ysed in terms of their parallel performance and optimisation behaviour. The reference

algorithm presented in [58] and the proposed parallel algorithms were implemented in

the C programming language, and the GCC v.4.8.5 compiler [60] was used. The para-

llel approaches were designed for shared memory parallel platforms using the OpenMP275

API v3.1 [61]. The parallel computing platform used was equipped with two Intel Xeon

X5660 processors, each of which contained six processing cores at 2.8 GHz, and hy-

perthreading was not activated. The performance was analysed using 18 unconstrained

functions, as listed in Tables 1 and 2.

Table 1: Benchmark functions.

Id. Name Dim. (V) Domain (Min, Max)

F1 Sphere 30 −100, 100

F2 SumSquares 30 −10, 10

F3 Beale 2 −4.5, 4.5

F4 Easom 2 −100, 100

F5 Zakharov 10 −5, 10

F6 Schwefel problem 1.2 10 −100, 100

F7 Rosenbrock 30 −30, 30

F8 Branin 2 x1 : −5, 10;x2 : 0, 15

F9 Bohachevsky 1 2 −100, 100

F10 Booth 2 −10, 10

F11 Michalewicz 2 2 0, π

F12 Bohachevsky 2 2 −100, 100

F13 Bohachevsky 3 2 −100, 100

F14 GoldStein-Price 2 −2, 2

F15 Hartman 3 3 0, 1

F16 Ackley 30 −32, 32

F17 Langermann 2 2 0, 10

20



F18 Langermann 10 10 0, 10

Table 2: Benchmark functions.

Id. Function

F1 f =

V∑
i=1

x2i

F2 f =

V∑
i=1

ix2i

F3 f = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2

+(2.625− x1 + x1x
3
2)

2

F4 f = − cos(x1) cos(x2) exp
(
−(x1 − π)2 − (x2 − π)2

)
F5 f =

V∑
i=1

x2i +

(
V∑
i=1

0.5ixi

)2

+

(
V∑
i=1

0.5ixi

)4

F6 f =

V∑
i=1

 i∑
j=1

xj

2

F7 f =

V−1∑
i=1

(
100(xi+1 − x2i )2 + (xi − 1)2

)
F8 f =

(
x2 − 5.1

4π2x
2
1 +

5
πx1 − 6

)2
+ 10

(
1− 1

8π

)
cosx1 + 10

F9 f = x21 + 2x22 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7

F10 f = (x1 − 2x2 − 7)2 + (2x1 + x2 − 5)2

F11 f = −
2∑
i=1

sinxi

(
sin

(
ix2i
π

))20

F12 f = x21 + 2x22 − 0.3 cos(3πx1) cos(4πx2) + 0.3

F13 f = x21 + 2x22 − 0.3 cos(3πx1 + 4πx2) + 0.3

F14 f =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)

][
30 + (2x1 − 3x2)

2(18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)
]

F15 f = −
4∑
i=1

ci exp

− 3∑
j=1

aij(xj − pij)2


F16 f = −20 exp

−0.2
√√√√ 1

V

V∑
i=1

x2i

− exp

(
1
V

V∑
i=1

cos(2πxi)

)
+ 20 + e
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F17

F18
f = −

5∑
i=1

ci

exp
− 1

π

V∑
j=1

(xj − aij)2
 cos

π V∑
j=1

(xj − aij)2


An analysis of the computational costs of both the original Jaya algorithm and the280

chaotic algorithm was performed first. Table 3 shows the sequential computational

times for a population size of 240, where the number of iterations was 50, 000 and

the number of independent executions was 30. The results shown in Table 3 indicate

that the computational cost of the chaotic algorithm is generally higher than that of the

original algorithm. In addition, the sequential implementation shown in Algorithm 3285

has some drawbacks in terms of efficient parallel development, such as the computing

of up to seven random numbers (to calculate a and b and to select the chaotic values)

and the extraction of up to five values from the chaotic map.

Although the higher computational cost of the Chaotic Jaya sequential algorithm,

shown in Table 3, compared to the original sequential Jaya algorithm, is undoubtedly290

offset by the acceleration in convergence, the use of the chaotic map was computation-

ally analyzed and modified to accelerate the parallel algorithms proposed in Section 3,

by using the ICP technique.

Results shown in Table 4 show that the version including the improved computing

performance (ICP) technique, presented in Section 3.3, significantly improved com-295

putational times of the Chaotic Jaya sequential algorithm (whose results are shown in

Table 3). It can be observed in Tables 3 and 4 that the computational cost increase

(with respect to the original sequential Jaya algorithm) of the Chaotic Jaya sequential

algorithm is reduced by including the ICP technique. Even in some cases (negative

values from table 4) the Chaotic Jaya sequential algorithm with the ICP technique is300

computationally less expensive than the original sequential Jaya algorithm.

The behaviour of the algorithm that includes optimisation to improve computa-

tional performance (ICP) is shown in Table 5. This table shows the number of function

evaluations required to obtain an error of less than 1e− 1. The optimisation algorithm

was run 10 times, and Table 5 shows the maximum, minimum and average values of305

the number of cost function evaluations for a population of size 240. The error for the

Rosenbrock function (F7) was 1e2, and it can be seen that the behaviour does not differ
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Table 3: Comparison sequential computational times.

Time (s.)

Original Jaya Chaotic Jaya Increment (%)

F1 186.3 1227.7 559%

F2 193.6 1241.1 541%

F3 45.7 76.1 67%

F4 43.6 79.6 83%

F5 123.5 478.8 288%

F6 353.9 1556.8 340%

F7 202.4 625.1 209%

F8 27.7 59.0 113%

F9 29.3 52.9 81%

F10 16.4 43.7 167%

F11 92.8 141.3 52%

F12 26.7 49.7 87%

F13 27.6 50.8 84%

F14 20.8 46.6 124%

F15 76.6 116.6 52%

F16 162.1 357.1 120%

F17 154.2 188.6 22%

F18 239.7 400.2 67%

23



Table 4: Comparison sequential computational times respect to the version with improved computing per-

formance (ICP).

Time (s.)

Original Jaya Chaotic Jaya (ICP) Increment (%)

F1 186.3 884.9 375%

F2 193.6 898.4 364%

F3 45.7 49.0 7%

F4 43.6 49.6 14%

F5 123.5 255.7 107%

F6 353.9 1224.3 246%

F7 202.4 240.7 19%

F8 27.7 31.0 12%

F9 29.3 25.7 -12%

F10 16.4 16.5 1%

F11 92.8 109.7 18%

F12 26.7 22.0 -17%

F13 27.6 22.7 -18%

F14 20.8 19.5 -6%

F15 76.6 77.9 2%

F16 162.1 167.2 3%

F17 154.2 169.1 10%

F18 239.7 269.5 12%
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markedly from one algorithm to another. Table 5 shows slight decreases in optimisa-

tion performance in some cases, however, the high decrease in computational costs

compensates for these slight decreases (see Tables 3 and 4).310

Table 5: Comparison of the number of cost function evaluations respect to the version with improved com-

puting performance (ICP).

Number of functions evaluations (error < 10e− 1)

Chaotic Chaotic (ICP)

Average Maximum Minimum Average Maximum Minimum

F1 5232 6240 3840 5328 6240 4560

F2 4752 5520 4080 4320 6240 3120

F3 552 960 480 552 720 480

F4 2808 4800 720 3264 9120 1920

F5 3216 4320 1680 3096 5520 960

F6 10416 12720 7440 9360 12000 7200

F7 (*) 3912 4560 2880 3936 5280 2880

F8 960 2640 480 1176 3840 480

F9 2376 3600 1680 2880 2160 1200

F10 1656 3120 720 2613 5760 480

F11 1032 2160 480 1224 2640 480

F12 2016 2640 1200 1752 2400 960

F13 1800 2640 960 1512 2160 960

F14 1848 3120 960 2256 3600 1200

F15 672 1200 480 936 2160 480

F16 4920 6240 4080 4488 6000 3360

F17 504 720 480 480 480 480

F18 480 480 480 480 480 480

Table 6 shows a significant improvement in the ratio of convergence between the

chaotic algorithm and the original Jaya algorithm for the functions that required more

iterations. For the functions that required fewer iterations, the improvement was sig-

nificant in some cases, while in others the behaviour was similar. A more exhaustive
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comparative analysis with respect to other algorithms can be found in [57].315

Table 6: Comparison of the number of cost function evaluations respect to the original Jaya algorithm.

Number of functions evaluations (error < 10e− 1)

Original Chaotic Chaotic (ICP)

F1 532560 5232 5328

F2 441750 4752 4320

F3 780 552 552

F4 44580 2808 3264

F5 240960 3216 3096

F6 152576 10416 9360

F7 (*) 644760 3912 3936

F8 690 960 1176

F9 8880 2376 2880

F10 1710 1656 2613

F11 810 1032 1224

F12 7980 2016 1752

F13 8190 1800 1512

F14 8220 1848 2256

F15 600 672 936

F16 293550 4920 4488

F17 510 504 480

F18 480 480 480

In order to analyse the parallel behaviour of the two parallel algorithms developed

here, experiments were performed with 30 independent executions and population sizes

of 240, 120 and 60. Tables 7 and 8 show the speed-up achieved by CP-CJaya when

no improvements were applied and when performance computing improvement was

included, respectively.320

From both tables, it can be seen that very good acceleration is obtained for the

functions of higher computational cost, even with 10 processes, for a population size
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of 240. As the population size decreases, the speed-up decreases. Note, for example,

that for a population of 60 individuals and 10 processes, the sub-population size is

only six individuals, which makes the communication and coordination processes more325

expensive than the computing time.

Since the sequential reference algorithm is the same in both figures, it can be seen

that the ICP use in algorithm CP-CJaya (Table 8) improves the behaviour of the parallel

algorithm CP-CJaya without the ICP technique (Table 7). Note that lower intensity im-

provements are obtained for small sub-populations, for example, when sub-population330

size equals 6 (population size of 60 using 10 processes).

Tables 9 and 10 show the speed-up achieved by the parallel algorithm NCP-CJaya.

Data shown in both tables have been calculated using the same sequential reference

algorithm as that used in Tables 7 and 8, i.e. the Chaotic Jaya sequential algorithm.

Comparing Table 9 with Table 7, and comparing Table 10 with Table 8, it can be335

observed that the parallel behaviour of the NCP-CJaya algorithm significantly improves

the parallel behaviour of the CP-CJaya, if the ICP technique is not used (Tables 7 and

9 ) and if the ICP technique is used (Tables 8 and 10). Comparing Table 9 and Table

10 it can be seen that the parallel behaviour of the NCP-CJaya algorithm using the

ICP technique (Table 10) improves significantly with respect to non-use of ICP (Table340

9), even for a small sub-population equal to 6 (population size equal to 60 using 10

threads). As said, the speed-up results show good behaviour, even for 10 processes and

small population sizes. In some cases, super-speed-up results are shown, i.e. a value

greater than the number of processes. This is due both to the efficiency of the cache

memory and, more importantly, to the fact that the costs of the reference algorithm and345

the parallel algorithm are not exactly the same.

Table 11 shows the sequential computational times of chaotic Jaya for variation in

the population size, and shows that the computational cost ratio is not proportional to

the size of the population. The computational cost associated with each thread will

therefore depend on the size of its sub-population.350

Finally, it should be noted that in most experiments with the NCP-CJaya algo-

rithm, the speed of convergence improves as the number of processes increases. This

behaviour is related to the fact that in general, the CJaya algorithm behaves better for
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Table 7: Speed-up of method CP-CJaya without IPC

Pop. Size: 240 Pop. Size: 120 Pop. Size: 60

N. of threads N. of threads N. of threads

2 6 10 2 6 10 2 6 10

F1 1.83 5.12 8.18 1.73 4.70 7.22 1.54 3.95 5.82

F2 1.86 5.09 8.21 1.70 4.52 6.92 1.47 3.84 5.59

F3 1.82 3.87 4.52 1.75 3.04 2.92 1.71 2.20 1.84

F4 1.76 4.24 5.19 1.95 3.63 3.47 1.59 2.30 1.99

F5 1.70 4.54 7.26 1.24 3.31 4.69 0.84 2.04 2.64

F6 1.92 5.37 8.61 1.92 5.35 8.29 1.81 4.80 7.21

F7 1.97 5.43 8.27 1.95 5.19 7.30 1.87 4.81 6.13

F8 1.88 4.08 4.62 1.75 2.94 2.68 1.53 1.99 1.59

F9 1.85 3.85 4.35 1.74 2.82 2.49 1.79 1.85 1.40

F10 1.82 3.65 3.81 1.70 2.54 2.09 1.43 1.54 1.20

F11 1.77 3.89 5.00 1.73 3.39 3.79 1.66 2.73 2.66

F12 1.81 3.80 4.16 1.72 2.69 2.33 1.48 1.79 1.37

F13 1.86 3.85 4.24 1.73 2.80 2.38 1.54 1.75 1.36

F14 1.85 3.78 4.02 1.71 2.60 2.19 1.54 1.79 1.33

F15 1.88 4.59 6.08 1.84 3.75 4.13 1.70 3.13 2.94

F16 1.96 5.28 7.87 1.92 4.90 6.66 1.87 4.48 5.44

F17 1.95 5.07 7.13 1.91 4.35 5.10 1.80 3.54 3.62

F18 1.94 5.26 7.94 1.94 4.90 6.73 1.89 4.35 5.30
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Table 8: Speed-up of method CP-CJaya with IPC

Pop. Size: 240 Pop. Size: 120 Pop. Size: 60

N. of threads N. of threads N. of threads

2 6 10 2 6 10 2 6 10

F1 2.52 6.62 10.59 2.33 6.10 9.13 2.03 5.07 7.11

F2 2.55 6.76 10.55 2.25 5.89 8.69 1.96 4.83 6.74

F3 2.71 5.19 5.16 2.70 3.73 3.31 2.20 2.48 1.85

F4 2.90 5.68 6.49 2.95 4.70 4.07 2.32 2.77 2.15

F5 2.23 6.06 9.14 1.70 4.19 5.83 1.09 2.44 3.02

F6 2.44 6.84 10.81 2.52 6.66 10.35 2.30 5.96 8.42

F7 4.92 12.13 17.84 4.88 10.91 12.70 4.53 8.89 9.65

F8 3.39 5.99 5.92 3.36 3.77 3.02 2.41 2.31 1.69

F9 3.51 5.96 5.33 3.09 3.51 2.81 2.42 2.14 1.48

F10 3.95 5.70 4.92 3.37 3.30 2.39 2.44 1.88 1.30

F11 2.28 4.82 5.88 2.37 4.12 4.32 2.08 3.17 2.88

F12 3.67 5.84 5.42 3.15 3.40 2.67 2.50 2.02 1.46

F13 3.55 6.01 5.54 3.26 3.67 2.74 2.40 1.95 1.43

F14 3.94 6.01 5.32 3.27 3.46 2.52 2.64 2.07 1.46

F15 2.88 6.53 7.83 2.85 4.95 4.77 2.49 3.78 3.23

F16 4.08 10.09 13.98 3.97 8.66 10.09 3.66 6.92 7.36

F17 2.20 5.82 7.96 2.26 4.81 5.69 2.11 3.84 3.79

F18 2.97 7.75 11.30 2.94 6.96 8.84 2.81 5.84 6.29
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Table 9: Speed-up of method NCP-CJaya without IPC

Pop. Size: 240 Pop. Size: 120 Pop. Size: 60

N. of threads N. of threads N. of threads

2 6 10 2 6 10 2 6 10

F1 2.05 6.64 12.66 2.08 8.70 17.65 2.11 8.65 14.29

F2 2.00 6.62 12.71 2.14 8.71 16.85 2.29 8.71 15.61

F3 1.99 5.19 8.63 1.74 5.17 8.40 1.75 5.01 8.30

F4 1.91 5.27 9.28 1.90 5.70 9.28 1.96 5.31 8.68

F5 2.11 7.37 18.07 2.17 8.72 14.77 2.10 7.33 11.97

F6 1.99 5.78 9.92 1.99 7.47 16.76 1.98 10.59 17.60

F7 2.00 5.47 9.29 1.98 5.30 9.55 1.82 5.68 9.39

F8 1.97 5.14 8.55 1.75 5.12 8.49 1.77 5.16 8.43

F9 1.91 5.09 8.37 1.89 5.15 8.53 1.85 5.44 8.93

F10 1.75 5.21 9.09 1.78 5.44 8.80 1.79 5.28 8.53

F11 1.93 5.21 8.59 1.75 4.80 8.53 1.74 5.10 8.48

F12 1.75 4.94 8.07 1.84 5.18 8.55 1.75 5.23 8.05

F13 1.78 5.20 8.53 1.77 5.22 8.48 1.74 5.16 8.59

F14 1.76 5.20 8.82 1.77 5.23 8.56 1.83 5.21 8.37

F15 1.92 5.18 8.67 1.76 5.21 8.63 1.78 5.20 8.92

F16 1.97 5.23 8.71 1.82 5.25 9.03 1.75 5.17 8.63

F17 1.90 5.22 8.69 2.00 5.23 8.94 1.75 5.22 9.13

F18 1.99 5.31 8.71 1.93 5.20 8.65 1.77 5.27 8.76
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Table 10: Speed-up of method NCP-CJaya with IPC

Pop. Size: 240 Pop. Size: 120 Pop. Size: 60

N. of threads N. of threads N. of threads

2 6 10 2 6 10 2 6 10

F1 2.96 10.23 18.12 3.22 16.35 42.36 4.52 22.80 32.15

F2 3.01 11.00 20.40 3.30 16.87 43.03 4.39 20.75 31.70

F3 3.08 8.90 9.37 2.73 7.83 12.34 2.70 7.40 11.25

F4 3.61 10.39 9.80 3.48 9.40 14.29 2.81 7.92 12.41

F5 4.01 20.57 21.96 6.17 19.47 32.57 4.39 12.50 18.45

F6 2.53 7.46 11.42 2.70 10.56 36.06 3.25 17.62 27.63

F7 5.23 14.53 15.47 4.94 13.93 20.35 4.91 11.98 17.58

F8 3.84 10.38 10.05 3.30 9.21 14.63 3.29 8.80 13.40

F9 4.04 10.91 11.02 3.54 9.60 15.52 3.30 9.44 14.60

F10 5.11 14.10 11.99 4.59 11.54 17.65 4.07 10.04 14.52

F11 2.63 7.49 8.98 2.64 6.74 10.94 2.49 6.46 10.27

F12 4.33 11.37 13.67 3.77 10.17 16.58 3.64 9.45 14.16

F13 4.11 11.30 11.14 3.72 10.17 16.54 3.61 9.81 14.60

F14 4.62 13.25 11.63 4.44 11.26 17.31 3.98 10.38 15.25

F15 3.07 8.54 8.24 3.08 8.27 13.43 2.63 7.35 11.81

F16 4.34 12.05 11.79 3.79 10.33 16.45 4.05 9.95 15.31

F17 2.38 6.68 7.15 2.33 6.19 9.97 2.06 5.98 9.85

F18 3.03 8.65 9.88 2.97 7.88 12.76 2.89 7.56 12.12
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Table 11: Sequential computational times (s.).

Population size

240 120 60

Cjaya 895.82 394.71 156.81

Increment (respect pop. size = 60) 5.71 2.52

Increment (respect pop. size = 120) 2.27

Cjaya (ICP) 1227.48 573.55 234.50

Increment (respect pop. size = 60) 5.23 2.45

Increment (respect pop. size = 120) 2.14

small populations. In fact, it is able to obtain an optimal value of the function with

populations of only six individuals. Table 12 demonstrates this behaviour, and shows355

the maximum number of iterations needed to obtain an optimal value with a tolerance

of 1e− 1.

5. Conclusions

Two parallel proposals are presented here for accelerating the heuristic optimisation

algorithm Jaya using a chaotic 2D map. For both proposals, a strategy to reduce the360

computational cost by varying the strategy of use of the chaotic map is analysed, and

the results are validated with respect to the optimisation behaviour. These parallel

proposals are analysed in detail, both at the level of parallel performance and at the level

of optimisation behaviour. In addition to verifying that the chaotic map used improves

the ratio of convergence, we demonstrate that parallel algorithms can even improve the365

convergence speed. Although the CP-CJaya algorithm offers less scalability, the NCP-

CJaya algorithm offers optimal scalability. In future work, we will develop hybrid

versions at the level of chaotic maps and the number and size of the sub-populations in

order to accelerate convergence without losing parallel efficiency.
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Table 12: Maximum number of cost function evaluations with improved computing performance (ICP).

Tolerance 1e− 1

Maximum number of functions evaluations

Pop. Size = 240 Pop. Size = 120 Pop. Size = 60

F1 6240 3360 1020

F2 6240 2040 900

F3 720 240 120

F4 9120 1800 480

F5 5520 1680 1140

F6 12000 3720 1560

F7 (*) 5280 2520 1200

F8 3840 600 420

F9 2160 720 540

F10 5760 4080 900

F11 2640 360 1140

F12 2400 1200 540

F13 2160 720 300

F14 3600 2760 10680

F15 2160 1320 660

F16 6000 2280 960

F17 480 480 120

F18 480 240 120
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