
The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

A highly scalable parallel encoder version of the
emergent JEM video encoder

H. Migallón · M. Mart́ınez-Rach · O.
López-Granado · V. Galiano · M.P.
Malumbres · Glenn Van Wallendael

Received: date / Accepted: date

Abstract In 2016, 73% of total internet traffic came from video transmission
and this percentage is expected to reach 82% by 2021. These figures show the
importance of using video compression standards that maximize video qual-
ity while minimizing the necessary bandwidth. In 2013, the HEVC standard
was released accounting for an approximate 50% bit-rate saving compared
to H.264/AVC while maintaining the same reconstruction quality. To address
increases in video IP traffic, a new generation of video coding techniques is re-
quired that achieve higher compression rates. Compression improvements are
being implemented in a software package known as the Joint Exploration Test
Model. In this work, we present two parallel JEM model solutions specifically
designed for distributed memory platforms for both All Intra and Random
Access coding modes. The proposed parallel algorithms achieved high levels

This research was supported by the Spanish Ministry of Economy and Competitiveness under
Grant TIN2015-66972-C5-4-R, co-financed by FEDER funds.(MINECO/FEDER/UE)

H. Migallón
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.
Tel.: +34-966658390
Fax: +34-966658814
E-mail: hmigallon@umh.es

M. Mart́ınez-Rach
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.

O. López-Granado
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.

V. Galiano
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.

M.P. Malumbres
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.

Glenn Van Wallendael
Multimedia Lab, Ghent University, Belgium.



2 H. Migallón et al.

of efficiency, in particular for the All Intra mode. They also showed great
scalability.

Keywords JEM, Video coding, Parallel algorithms, Multicore, Performance

1 Introduction

High Efficiency Video Coding (HEVC) [17] was developed in 2013 by the
Joint Collaborative Team on Video Coding (JCT-VC) to replace the H.264/-
Advanced Video Coding (AVC) standard [10]. The HEVC standard achieves a
bit rate saving of almost 50% compared to the previous video coding standard,
but at a cost of high computational complexity during the encoding [14].

According to the ’The Zettabyte Era: Trends and Analysis’ Cisco report
[6], IP video traffic represented 73% of total IP traffic in 2016, and is expected
to reach 82% by 2021. This means that each second, a million minutes of
video content travels through the network. The report also predicts a constant
increase in novel services such as Video-on-Demand (VoD), Live internet video,
as well as Virtual Reality (VR) and Augmented Reality (AR). Thus, VoD
traffic will double by 2021 mainly due to the increasing number of consumers
and greater video resolution (4K and 8K). There is also intense interest in live
video streaming of sports events, such as soccer or American football where
major teams are installing several 4K and 5K resolution cameras (more than
20) around the stadiums to transmit a 360o view of the matches.

To address this increase in video IP traffic, a new generation of video
coding techniques is required to achieve higher compression rates than the ones
obtained by previous standards. Since the release of HEVC, both the ITU-
T Video Coding Expert Group (VCEG) and the ISO/IEC Moving Picture
Expert Group (MPEG) have been studying new video coding technologies
with a compression capability that significantly exceeds that of HEVC, with
the aim of developing a new video coding standard. To do so, a framework
of collaboration has been created called the Joint Video Exploration Team
(JVET).

These compression enhancements are being implemented by the JVET in
a software package known as the Joint Exploration test Model (JEM) [5].
Its main purpose is to investigate gains from additional coding tools in the
video coding layer. It should be noted that the main purpose of JEM is not
to establish a new standard, but to study which new modifications beyond
HEVC will be worthy of interest in terms of compression performance. The
main goal of this possible new coding standard is to achieve bit rate savings
between 25% to 30% compared to HEVC [2,15].

Experimental results using the All Intra (AI) configuration [12] show that
the new model (JEM 3.0) achieves an 18% bit rate reduction, but at the ex-
pense of an extremely high increase in computational complexity (60x) with
respect to HEVC. On the other hand, with the Random Access (RA) configura-
tion, JEM obtains on average a bit rate reduction of 26% with a computational
complexity increment of (11x).



A highly scalable parallel encoder version of the emergent JEM video encoder 3

This increase in high complexity makes it necessary to introduce accelera-
tion techniques and leverage hardware architectures to reduce encoding time.
As JEM is still not fully deployed, only a few articles have been published
on the subject, and most of them focus on rate distortion (R/D) comparisons
between JEM, HEVC and AV1 codecs [8]. Recently, a proposal [7] was put
forward to accelerate the Motion Estimation (ME) stage. In this latter paper,
the authors proposed a pre-analysis algorithm designed to extract motion in-
formation from a frame, later used in the ME module to speed up the encoder.
They thus showed that around 27% of the reference frames could be skipped
and that more than 62% of time was saved on the integer ME operation with
a negligible impact of 0.11% on the Bjøntegaard delta rate (BD-rate).

In this paper, we present a JEM model parallel encoder specifically de-
signed for distributed memory platforms for both All Intra (AI) and Ran-
dom Access (RA) coding modes, especially suited for video editing and video
broadcast applications respectively. We performed several experimental tests
to illustrate the behaviour of the parallel versions in terms of efficiency and
scalability.

The rest of this paper is organized as follows: in Section 2, a brief descrip-
tion of the coding tools introduced in the new JEM video coding standard
is presented; in Section 3, a JEM video standard is compared with respect
to the previous HEVC standard; in Section 4, the parallel algorithms for RA
and AI coding modes of the JEM video coding standard are described; in Sec-
tion 5 we present test results of the parallel algorithms. We draw conclusions
in Section 6.

2 Description of the algorithm of the Joint Exploration Test Model
(JEM)

As the JEM codec is based on the HEVC reference software, called HM, the
overall architecture of the JEM codec is quite similar to that of the HEVC
HM codec. Both codecs use closed-loop prediction with motion compensation
from previously decoded reference frames, or intra prediction from previously
decoded areas of the current frame. The improvements to the coding layer by
JEM were related to the following aspects:

– Picture partitioning. In HEVC, each video sequence frame is divided
into a set of non-overlapping blocks[17], where each block corresponds to a
quad tree structure called CTU [18]. These structures (CTUs) can in turn
be partitioned into coding units (CU), prediction units (PU) and trans-
form units (TU). PUs store prediction information such as Motion Vectors
(MVs) and can range from 64x64 to 8x8 using either symmetrical or asym-
metrical sizes. For this purpose, HEVC defines eight possible partitions for
each CU size: 2Nx2N, 2NxN, Nx2N, NxN, 2NxnU, 2NxnD, nLx2N and
nRx2N.
In the JEM, the highest coding level is called the Coding Tree Unit (CTU)
as in HEVC. One of the main changes in the JEM is that block splitting



4 H. Migallón et al.

below the CTU level can be performed either by quad and/or binary split
steps. This partition method is called quad tree plus binary tree (QTBT).
This structure gives more flexibility to block partition shapes to better
match the local characteristics of the video sequence. The organization
in Coding Units (CU), Prediction Units (PU) and Transform Units (TU)
is thus no longer needed [11]. In QTBT, CUs can have either square or
rectangle shapes like PUs in HEVC. Each CTU, which can measure up to
256x256 pixels, is first partitioned by a quad-tree structure in squared CUs
as in the HEVC. Leaf nodes can then be further partitioned by a binary
tree structure. In this binary tree, each CU can be split into two horizontal
or vertical halves.

– Spatial prediction. To detect finer edge directions, the directional intra
modes are extended from 33, as defined in the HEVC, to 65 modes. These
dense directional intra prediction modes apply to all block sizes from both
luma and chroma intra predictions, while in the HEVC only luma intra
prediction is computed. To adapt the greater number of directional intra-
modes, an intra-mode coding acceleration method is defined with 6 Most
Probable Modes instead of the 3 used in the HEVC.

– Temporal prediction. Regarding inter-prediction, with QTBT, each CU
can have one set of motion information for each prediction direction at the
most. Despite this, two sub-CU level motion vector prediction methods are
studied by splitting a large CU into sub-CUs and deriving motion informa-
tion for all the sub-CUs of the large CU. Temporal motion vector prediction
is also supplemented by more advanced mechanisms and by increasing the
resolution of the reference vectors. Furthermore, Overlapped Block Motion
Compensation (OBMC) and Local Illumination Compensation (LIC) are
used.

– Transform improvements. In JEM, in addition to the Discrete Co-
sine Transform (DCT)-II and the 4x4 Discrete Sine Transform (DST)-VII
used in the HEVC for transform coding, an Adaptive Multiple Transform
(AMT) scheme has been chosen to encode the inter and intra residuals. It
uses different DCT and DST families from the ones used in HEVC. Further-
more, an intra mode dependent non-separable secondary transform (NSST)
is defined. JEM also implements a specific Signal Dependent Transform
(SDT), which determines the best transform basis from already decoded
neighbouring samples.

– Loop filter. In JEM, an Adaptive Loop Filter (ALF) with block-based
filter adaption is applied. For the luma component, according to the direc-
tion and activity of local textures, one filter is selected among 25 filters for
each 2×2 block [4]. ALF aims to reduce visible artifacts such as ringing and
blurring by reducing the mean absolute error between the original image
and the reconstructed image. Further, a bilateral filter is operated directly
following the inverse transform, denoising flat areas in combination with
edge preservation.

– Entropy coding. In the HEVC, the entropy coder used is Context-based
Adaptive Binary Arithmetic Coding (CABAC). JEM uses an enhanced



A highly scalable parallel encoder version of the emergent JEM video encoder 5

version of CABAC with modified context modelling for transform coeffi-
cients, a multi-hypothesis probability estimation with context-dependent
updating speed, and an adaptive initialization of models.

3 Comparative analysis between HEVC and JEM

In this section, we present a comparison in terms of R/D (Rate/Distortion)
and encoding time between HEVC and JEM encoding standards using both
the AI and RA coding modes in their sequential versions. Four video sequences
described in Table 1 with different resolutions were used in our study. The ref-
erence encoder software was JEM 7.0 [5] and for the previous HEVC standard,
the HM 16.3 [9] was used.

Table 1 Test video sequences.

Video Acronym Resolution Frame Num. of Video
sequence rate (Hz) frames time (s)

People on Street PEOPON 2560x1600 30 150 5
Park Scene PKSCNE 1920x1080 24 240 10
Four People FOURPE 1280x720 60 600 10
Party Scene PARTYS 832x480 50 500 10

Table 2 shows the BD-rate, which represents the percentage of bit rate
variation between two sequences with the same objective quality [3]. Therefore,
a negative value implies that the proposal improves the coding efficiency of
the baseline encoder. As illustrated, the JEM encoder outperformed the HEVC
encoder. The maximum gain in the AI coding mode was 18.88% and it was
obtained for the highest resolution video sequence. The average BD-rate gain
for the AI coding mode was 13.9% for the tested video sequences. Looking at
the results for the RA coding mode, the JEM encoder obtained better results
than the HEVC. The maximum gain in the RA coding mode was 31.6% for the
’Four People’ video sequence, the average gain for all tested video sequences
being 28.82%.

Table 2 also shows the average encoding time increase required by the JEM
encoder with respect to the HEVC one for both AI and RA coding modes. As
shown, the JEM encoder required, on average, 41 times the total time required
by HEVC software to encode the tested sequences in the AI coding mode, and
7 times the time in the RA coding mode. To illustrate the huge complexity
increase of the JEM encoder, to encode 150 frames of the ’People on Street’
video sequence with a QP value of 22 in AI coding mode, the JEM encoder
required 95.5 hours, whereas the HEVC encoder only needed 1.71 hours.

Based on previous results, big efforts must be undertaken to speed-up the
total encoding time of the new JEM video coding model.

In this paper, we present two parallel versions of the JEM encoder specif-
ically designed for digital cinema (AI) and video on demand (RA). In the



6 H. Migallón et al.

Table 2 Comparison between HEVC and JEM encoders in terms of R/D and complexity

AI mode RA mode
Video BD-Rate Increase in BD-Rate Increase in
sequence (%) encoding time (%) encoding time

PEOPON -18.88% 44.53x -31.00% 8.71x
PKSCNE -13.31% 44.99x -26.10% 6.51x
FOURPE -17.60% 34.58x -31.60% 4.46x
PARTYS -5.84% 44.99x -26.60% 8.54x

case of the RA coding mode parallel versions, we used Instantaneous Decoder
Refresh (IDR) intra pictures instead of typical Clean Random Access (CRA)
intra pictures used in the sequential version. As explained in [16], an IDR
picture clears the contents of the reference picture buffer and thus all the
following pictures can be decoded without references to any frame preceding
the IDR picture. Contrary to IDR pictures, and to improve coding efficiency,
CRA pictures allow pictures that follow the CRA picture in decoding order
but precede them in output order to use pictures decoded before the reference
CRA picture and still allow similar clean random access functionality as an
IDR picture.

To show the effect of using IDR pictures instead of CRA pictures in R/D,
Table 3 illustrates the BD-rate increase when using IDR pictures instead of
CRA pictures at different intra periods. As expected, the use of IDR pictures
produced an increase in the final bit rate, especially for the lowest intra period.
Although a small increment was introduced by the IDR pictures, they allowed
us to break frame dependencies at each intra period, making the distribution
of Group of Pictures (GOPs) possible between different computing nodes in
the parallel versions.

Table 3 R/D comparison between IDR and CRA intra frames at different Intra periods in
the JEM encoder

Video IntraPeriod 32 IntraPeriod 48 IntraPeriod 64
sequence BD-Rate (%) BD-Rate (%) BD-Rate (%)

PEOPON 5.5% 4.1% 2.8%
PKSCNE 13.3% 7.6% 5.8%
FOURPE 11.8% 8.0% 6.2%
PARTYS 10.4% 6.9% 4.8%

4 Parallel Algorithms

We designed and developed parallel algorithms of the JEM video coding model
based on a GOP structure for both RA and AI coding modes, namely PJEM-



A highly scalable parallel encoder version of the emergent JEM video encoder 7

GOP-RA and PJEM-GOP-AI respectively. The characteristics of a GOP de-
pends on the selected coding mode. A GOP consists of a single I-frame when
the AI coding mode is used, whereas for the RA coding mode, a GOP consists
of 16 B-frames, i.e. frames that use both spatial and temporal redundancy in
the encoding procedure. The RA coding mode periodically inserts an I-frame,
i.e. the coding mode is changed from B-frame to I-frame. This period is known
as ’Intra Period’ and is specified as an integer number of frames. The ’Intra
Period’ has two restrictions: first, the value has to be a multiple of the GOP
size, and second, a minimum value of at least two GOPs (in number of frames)
is required when IDR is used as ’Decoding Refresh Type’. As mentioned above,
an I-frame of IDR type implies that none of the consecutive frames will use
temporal redundancy with frames prior to that I-frame.

As the GOP structure is quite different for each mode, we developed spe-
cific algorithms. Both algorithms consisted in one manager process and a set
of encoding processes. The manager process distributes the workload among
the encoding processes as they become idle, thus balancing the workload. The
parallel algorithms were developed in order to use hybrid memory comput-
ing platforms, therefore the computing platform was managed through MPI
(Message Passing Interface).

The algorithm developed for the RA coding mode is shown in Algorithms 1
and 2, which respectively describe the parallel encoding procedure and the
manager procedure. MPI processes are identified with a natural number be-
tween zero and the total number of processes minus one, and the manager
process is always the last MPI process. Moreover, both the encoding pro-
cess 0 and the manager process are mapped on a single computing node,
and, if necessary, in the same core. Algorithm 1 shows the parallel encoding
procedure for the PJEM-GOP-RA algorithm. The encoding processes receive
DecodingRefreshType and IntraPeriod parameters from the manager pro-
cess, because both parameters depend on the block structure and they are
computed by the manager process. Next, each encoding process requests the
first GOP block (group of consecutive GOPs) to be encoded in the manager
process. In lines 9–11 and 22–24 a GOP block is encoded, i.e. a group of
NumGOPsPerBlock ∗GOPSize frames are encoded. The first frame of this
group of frames must be an IDR I-frame, since the previous encoded frames,
if any, are almost certainly not the previous frames at temporal level. In fact,
the previous frames at temporal level have most likely been or will be encoded
by another process. Therefore, even the initial IDR I-frame allows us to break
temporal dependencies.

In Algorithm 2, the first frame of a block of GOPs is guaranteed to be
an IDR-frame, setting the DecodingRefreshType parameter equal to 2 (all
I-frames will be of IDR type), while also setting the IntraPeriod parameter
equal to the size in frames of the GOP block. These two parameters and the
number of GOPs in one block must be transmitted to all encoding processes.
Algorithm 2 is divided into three main parts, the first one distributes the initial
workload, the second one stores the bitstreams received and distributes the re-
maining workload, and the third one sends the signal to all encoding processes



8 H. Migallón et al.

Algorithm 1 PJEM-GOP-RA: Parallel algorithm for encoding processes.
1: Define configuration parameters
2: Encoding processes:
3: {
4: Receive (from broadcasting) DecodingRefreshType, IntraPeriod and

NumGOPsPerBlock parameters
5: GOPBlockRead = 0
6: Send MPI message requesting new work
7: Receive MPI message with BlockGOPToEncode
8: Move file pointer to frame BlockGOPToEncode ∗NumGOPsPerBlock ∗GOPSize
9: for i = 1 to NumGOPsPerBlock do

10: Encode GOP
11: end for
12: while true do
13: Send MPI message with bitstream size of NumGOPsPerBlock GOPs encoded
14: Send MPI message with bitstream data and requesting new work
15: Receive MPI message with BlockGOPToEncode and EndSignal
16: if EndSignal == True then
17: Break while
18: else
19: Disk file displacement (in number of frames):
20: (BlockGOPToEncode−GOPBlockRead) ∗NumGOPsPerBlock ∗GOPSize
21: Move file pointer to new initial frame of the new GOP
22: for i = 1 to NumGOPsPerBlock do
23: Encode GOP
24: end for
25: GOPBlockRead = BlockGOPToEncode
26: end if
27: end while
28: }

to stop the encoding procedure. The manager process must compose the final
bitstream correctly. This reordering procedure is explained in Algorithm 4.

Algorithms 3 and 4 describe the parallel algorithm developed for the AI
coding mode, for the parallel encoding processes and the manager process
respectively. As shown in Algorithm 3, the encoding processes start the en-
coding procedure immediately, without requesting a workload to the manager
process. The initial frame encoded by each MPI process corresponds to the
frame in the same order as the MPI rank of the encoding process. When the
frame encoding has ended, the process will send the bitstream and will re-
quest the order of the new frame to be encoded. If the manager process replies
0, the encoding process ends the encoding procedure and waits for the MPI
execution to terminate.

Algorithm 4 shows the management procedure to distribute the encoding
work and compose the final bitstream. Worthy of note, this algorithm, like
Algorithm 2, includes an intrinsic work balancing procedure, because the en-
coding work is assigned according to the demand. Therefore, since the order
of reception of the encoded frames (bitstreams) may not be the right order,
the manager process has to reorder the received bitstreams. Algorithm 4 is
divided into two main parts: the first distributes the workload and stores the



A highly scalable parallel encoder version of the emergent JEM video encoder 9

Algorithm 2 PJEM-GOP-RA: Manager process algorithm.
1: Set DecodingRefreshType = 2
2: Read NumGOPsPerBlock
3: Set IntraPeriod = NumGOPsPerBlock ∗GOPSize
4: Manager process:
5: {
6: Broadcast DecodingRefreshType, IntraPeriod and NumGOPsPerBlock parame-

ters
7: Obtain the number of TotalGOPBlocks
8: BlockGOPToEncode = 0
9: for i = 1 to NumMPIProcesses− 1 do

10: Receive MPI message requesting new work
11: Send MPI message with BlockGOPToEncode
12: BlockGOPToEncode + +
13: end for
14: for i = BlockGOPToEncode to TotalGOPBlocks do
15: Receive MPI messages encoded data
16: Send MPI message with BlockGOPToEncode
17: Store encoded data in final bitstream or in temporal memory
18: Take data from temporal memory, if any, to be added to the final bitstream
19: BlockGOPToEncode + +
20: end for
21: for i = 1 to NumMPIProcesses− 1 do
22: Receive MPI message with bitstream size
23: Receive MPI messages encoded data
24: Store encoded data in final bitstream or in temporal memory
25: Take data from temporal memory, if any, to be added to the final bitstream
26: Send MPI message with EndSignal = True
27: end for
28: }

Algorithm 3 PJEM-GOP-AI: Parallel algorithm for encoding processes.
1: Define encoding configuration parameters
2: Encoding processes:
3: {
4: FrameRead = MPIRank
5: Move file pointer to frame FrameRead
6: Read frame from disk file
7: Encode as I-frame
8: while true do
9: Send MPI message with bitstream size

10: Send MPI message with bitstream data and requesting new frame to encode
11: Receive MPI message with FrameToEncode
12: if FrameToEncode == 0 (No remaining work) then
13: Break while
14: else
15: Move file pointer to frame FrameToEncode
16: Read frame from disk
17: FrameRead = FrameToEncode
18: Encode as I-frame
19: end if
20: end while
21: }



10 H. Migallón et al.

bitstreams received, and the second sends the ’end of work’ signal to all en-
coding processes.

Algorithm 4 PJEM-GOP-AI: Manager process algorithm.
1: Manager process:
2: {
3: Obtain the number of TotalFramesToEncode
4: FrameToEncode = NumMPIProcesses
5: FrameToStore = 0
6: for i = 0 to NumMPIProcesses− 2 do
7: FrameEncodedInProcess[i] = i
8: end for
9: for i = NumMPIProcess to TotalFramesToEncode do

10: Receive MPI message with bitstream size
11: MPIProcessReceiving = MPIProcessOfPreviousMessage
12: Receive MPI message with bitstream data from process MPIProcessReceiving
13: if FrameEncodedInProcess[MPIProcessReceiving] == FrameToStore then
14: FrameToStore + +
15: Store bitstream received in final bitstream
16: repeat
17: TestF lag = False
18: for all bitstreams stored in temporal memory do
19: if NumFrameOfBitstream == FrameToStore then
20: Store bitstream received in final bitstream
21: Remove bitstream from temporal memory
22: TestF lag = True
23: FrameToStore + +
24: Break ForEach
25: end if
26: end for
27: until TestF lag == True
28: else
29: Store bitstream received in temporal memory
30: end if
31: Send MPI message with FrameToEncode
32: FrameEncodedInProcess[MPIProcessReceiving] == FrameToEncode
33: FrameToEncode + +
34: end for
35: for i = 1 to NumMPIProcesses− 1 do
36: Receive MPI message with bitstream size
37: Receive MPI message with bitstream data
38: Send MPI message with FrameToEncode = 0
39: end for
40: }

5 Numerical experiments

In this section we analyze both the parallel behaviour and the encoding per-
formance of the parallel proposals. The reference encoder software is JEM 7.0
[5], and to perform the tests, the GCC v.4.8.5 compiler [1] and MPI v2.2 [13]
were used. The parallel platform used was composed of HP Proliant SL390 G7



A highly scalable parallel encoder version of the emergent JEM video encoder 11

computing nodes, where each node was equipped with two Intel Xeon X5660
processors. Each X5660 included six processing cores at 2.8 GHz. Moreover,
a QDR Infiniband was used as a communication network. In the experiments
performed, only one MPI process was mapped in each computing node, i.e. a
strict distributed memory platform was used.

As mentioned above, DecodingRefreshType and IntraPeriod parameters
must be set according to the parallel algorithm for the RA coding mode. The
first parameter sets all I-frames as IDR frames, and the second one should be
increased depending on the GOP block size (NumGOPsPerBlock parame-
ter). Table 4 compares the parallel algorithms in terms of R/D (Rate/Distor-
tion). The reference algorithm in Table 4 is the sequential algorithm with
I-frames of CRA type instead of IDR, and an IntraPeriod parameter equal
to 32. As illustrated in TableTable 4, using the minimum GOP block size
(equal to 2), the average BD-rate increase is equal to 10.2%, but with a lower
complexity. When the GOP block size is increased, the BD-rate increment is
reduced whereas computational complexity becomes similar.

Table 4 PJEM-GOP-RA: Comparison between parallel and sequential JEM encoders in
terms of (R/D) and computational complexity increment.

Video Number of GOPs per block
sequence 2 3 4

PEOPON

BD-Rate(%)

11,8% -8,1% -18,1%
PKSCNE 13,3% 0,2% -3,1%
FOURPE 10,4% -0,9% -6,2%
PARTYS 5,5% 2,6% 0,0%

PEOPON

Inc. Complexity(%)

-3.3% -3.0% -3.5%
PKSCNE -5.0% -2.9% -0.6%
FOURPE -5.7% -2.7% -1.0%
PARTYS -3.1% -0.5% -0.8%

Before addressing the results on the efficiency of the PJEM-GOP-RA par-
allel algorithm, Table 5 illustrates the maximum number of processes allowed
depending on the NumGOPsPerBlock parameter (2, 3 or 4)) which sets the
value of the Intraperiod parameter (32, 48 or 64). Therefore, the parallel effi-
ciency analysis will be performed using a lower number of processes. Worthy
of note, if longer sequences were used, the encoding performance analysis will
still be valid for a larger number of processes.

Tabletab:EfficiencyRA shows the average efficiency for all QP values used
(22, 27, 32, 37), obtained by the PJEM-GOP-RA parallel algorithm. The effi-
ciency is on average 88%. As shown, when all computational work is divided
into a small number of blocks, the computational load can become unbalanced
and the parallel algorithm is not able to balance the workload. However, par-
allel efficiency increases for higher resolution video sequences.



12 H. Migallón et al.

Table 5 PJEM-GOP-RA: Maximum number of processes.

Video sequence Number of GOPs per block
(Number of frames) (Intra period)

2 (32) 3 (48) 4 (64)

PEOPON (150) 4 pr. 3 pr. 2 pr.
PKSCNE (240) 7 pr. 5 pr. 3 pr.
FOURPE (600) 18 pr. 12 pr. 9 pr.
PARTYS (500) 15 pr. 10 pr. 7 pr.

Table 6 PJEM-GOP-RA: Parallel efficiency.

Video Num. GOPs Intra Number of processes
sequence per block period 2 pr. 3pr. 4pr.

PEOPON
2 32 88% 97% 95%
3 48 99% 99% N/A
4 64 95% N/A N/A

PKSCNE
2 32 77% 74% 77%
3 48 87% 93% 92%
4 64 77% 93% N/A

FOURPE
2 32 91% 84% 83%
3 48 90% 90% 87%
4 64 83% 91% 90%

PARTYS
2 32 87% 83% 80%
3 48 88% 91% 87%
4 64 80% 89% 77%

Table 7 shows parallel efficiencies when a ’Four People’ sequence is encoded
using 6, 8 and 10 processes. As can be seen, the parallel efficiency of the PJEM-
GOP-RA parallel algorithm increased with the number of GOPs per block.

Table 7 PJEM-GOP-RA: Parallel efficiency. Four People video sequence.

Number of Number of GOPs per block
processes 2 3 4

6 81.7% 88.6% 86.9%
8 79.1% 81.9% 86.7%
10 77.6% 79.1% N/A

Table 8 shows the efficiency obtained by the PJEM-GOP-AI parallel algo-
rithm using between 10 to 30 processes. As the number of processes exceeded
the number of computing nodes in the test parallel platform used, several
processes were mapped in the same computing node. Good efficiencies were
obtained in all cases, and in several of them they were almost ideal. When the
JEM reference software was used to encode using the AI mode, the computa-
tional cost was too high and, therefore, the computational cost of the manager
process did not affect the global efficiency. With the efficiencies shown in Ta-
ble 8, in most cases, we obtained very high, almost ideal speed-ups so the



A highly scalable parallel encoder version of the emergent JEM video encoder 13

coding times were reduced as many times as the number of coding processes,
as long as the number of Blocks was sufficient to be distributed among all the
processes. Furthermore, the manager process was able to balance the comput-
ing work because a work block assigned to each process was composed of a
single frame. Similar conclusions can be drawn for Algorithm PJEM-GOP-RA,
when the number of work blocks (GOP block) is high enough.

Table 8 PJEM-GOP-AI: Parallel efficiency.

Video Number of MPI processes
sequence QP 10 16 20 24 30

PEOPON

37 99% 94% 94% 89% 92%
32 99% 94% 94% 89% 92%
27 99% 95% 94% 90% 92%
22 98% 94% 94% 89% 92%

PKSCNE

37 98% 98% 99% 95% 90%
32 97% 97% 94% 93% 91%
27 98% 98% 98% 94% 91%
22 98% 97% 96% 94% 89%

FOURPE

37 99% 98% 98% 96% 91%
32 99% 98% 98% 98% 92%
27 99% 98% 99% 96% 92%
22 98% 98% 97% 95% 91%

PARTYS

37 99% 98% 99% 96% 91%
32 99% 93% 99% 95% 93%
27 99% 94% 98% 95% 93%
22 98% 98% 99% 95% 92%

6 Conclusions

In this paper, we described a new video coding framework called JEM. Due to
the computational needs of this new encoder, we presented a JEM model paral-
lel encoder specifically designed for distributed memory platforms for both All
Intra (AI) and Random Access (RA) coding modes. Two pairs of algorithms
for the coordinator and encoding processes were described for both coding
modes. The experiments we conducted showed there was a close relationship
between the number of processes in the coding process, the number of GOPs
in a sequence, and the size of the block to be distributed to each process.
After comparing sequential and parallel versions, the parallel approach was
found to obtain a good computational performance for AI and RA encoding
modes, but at a slight R/D performance cost. We can conclude that generally
speaking, the greater the number of GOPs per block, the greater the efficiency.
Moreover, the efficiency of parallel versions showed better scalability for the
highest resolution video sequences, and we could use more parallel encoding
processes in order to reduce the overall encoding time.



14 H. Migallón et al.

References

1. GCC, the gnu compiler collection. Free Software Foundation, Inc. http://gcc.gnu.org
(2009-2012)

2. Alshina, E., Alshin, A., Choi, K., Park, M.: Performance of JEM 1 tools analysis. Tech.
rep., JVET-B0044 3rd 2nd JVET Meeting:San Diego, CA, USA (2016)

3. Bjontegaard, G.: Calculation of average PSNR differences between RD-curves. Tech.
Rep. VCEG-M33, Video Coding Experts Group (VCEG), Austin (Texas) (2001)

4. Chen, J., Alshina, E., Sullivan, G.J., Ohm, J.R., Boyce, J.: Algorithm description of
joint exploration test model 3. Technical Report JVET-C1001 (2016)

5. Chen, J., Alshina, E., Sullivan, G.J., Ohm, J.R., Boyce, J.: Algorithm description of
joint exploration test model 7. Technical Report JVET-G1001-v1 (2017)

6. Cisco: Cisco visual networking index: forecast and methodology, 2016-2021. Tech. rep.
(2017). https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/complete-white-paper-c11-481360.html

7. Garćıa-Lucas, D., Cebrián-Márquez, G., Dı́az-Honrubia, A.J., Cuenca, P.: Acceleration
of the integer motion estimation in JEM through pre-analysis techniques. The Journal
of Supercomputing, https://doi.org/10.1007/s11227-018-2352-3 pp. 1–12 (2018)

8. Grois, D., Nguyen, T., Marpe, D.: Performance comparison of AV1, JEM, VP9, and
HEVC encoders. pp. 10396 – 10396 – 12 (2018). DOI 10.1117/12.2283428. URL
https://doi.org/10.1117/12.2283428

9. HEVC Reference Software, https://hevc.hhi.fraunhofer.de/svn/svn HEVCSoftware/
tags/HM-16.3/:

10. ITU-T, ISO/IEC JTC 1: Advanced video coding for generic audiovisual services. ITU-T
Rec. H.264 and ISO/IEC 14496-10 (AVC) version 16, 2012 (2012)

11. (JVET), I.J.V.E.T.: Algorithm description of joint exploratory test model (JEM). Tech.
rep., First JVET meeting, Geneva (2015)

12. Karczewicz, M., Alshina, E.: JVET AHG report: tool evaluation (AHG1). Tech. rep.,
Technical Report JVET-D0001 (2016)

13. MPI Forum: MPI: A Message-Passing Interface Standard. Version 2.2 (2009). Available
at: http://www.mpi-forum.org (Dec. 2009)

14. Ohm, J., Sullivan, G., Schwarz, H., Tan, T.K., Wiegand, T.: Comparison of the coding
efficiency of video coding standards - including high efficiency video coding (hevc).
Circuits and Systems for Video Technology, IEEE Transactions on 22(12), 1669–1684
(2012)

15. Schwarz, H., Rudat, C., Siekmann, M., Bross, B., Marpe, D., T.Wiegand: Coding effi-
ciency complexity analysis of JEM 1.0 coding tools for the random access configuration.
Tech. rep., JVET-B0044 3rd 2nd JVET Meeting:San Diego, CA, USA (2016)

16. Sjoberg, R., Chen, Y., Fujibayashi, A., Hannuksela, M.M., Samuelsson, J., Tan, T.K.,
Wang, Y.K., Wenger, S.: Overview of HEVC high-level syntax and reference picture
management. IEEE Transactions on Circuits and Systems for Video Technology 22(12),
1858–1870 (2012). DOI 10.1109/TCSVT.2012.2223052

17. Sullivan, G., Ohm, J., Han, W., Wiegand, T.: Overview of the high efficiency video cod-
ing (HEVC) standard. Circuits and systems for Video Technology, IEEE Transactions
on 22(12), 1648 –1667 (2012)

18. Sze, V., Budagavi, M., Sullivan, G.: High efficiency video coding (HEVC). Springer
(2014)


