
The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Fast 3D Wavelet Transform on Multicore and

Manycore Computing Platforms

V. Galiano · O. López-Granado · M.P.

Malumbres · H. Migallón

Received: date / Accepted: date

Abstract Three-dimensional wavelet transform (3D-DWT) has focused the
attention of the research community, most of all in areas such as video water-
marking, compression of volumetric medical data, multispectral image coding,
3D model coding and video coding. In this work, we present several strategies
to speed-up the 3D-DWT computation through multicore processing. An in
depth analysis about the available compiler optimizations is also presented.
Depending on both the multicore platform and the GOP size, the developed
parallel algorithm obtains efficiencies above 95% using up to four cores (or
processes), and above 83% using up to twelve cores. Furthermore, the extra
memory requirements is under 0.12% for low resolution video frames, and un-
der 0.017% for high resolution video frames. In this work, we also present
a CUDA based algorithm to compute the 3D-DWT using the shared mem-
ory for the extra memory demands, obtaining speed-ups up to 12.68 on the
manycore GTX280 platform. In areas such as video processing or ultra high
definition image processing, the memory requirements can significantly de-

This research was partially supported by the Spanish Ministry of Science and Innovation
under grant numbers TIN2011-27543-C03-03, TIN2011-26254 and TIN2010-12011-E.

V. Galiano
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.

O. López-Granado
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.

M.P. Malumbres
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.

H. Migallón
Physics and Computer Architecture Department. Miguel Hernández University, 03202 Elche,
Spain.
Tel.: +34-966658390
Fax: +34-966658814
E-mail: hmigallon@umh.es

2 V. Galiano et al.

grade the developed algorithms, however, our algorithm increases the memory
requirements in a negligible percentage, being able to perform a nearly in-
place computation of the 3D-DWT whereas in other state-of-the-art 3D-DWT
algorithms it is quite common to use a different memory space to store the
computed wavelet coefficients doubling in this manner the memory require-
ments.

Keywords 3D wavelet transform · video coding · parallel algorithms ·

in-place computing · OpenMP · CUDA · GPU

1 Introduction

In the last years, the three-dimensional wavelet transform (3D-DWT) has fo-
cused the attention of the research community, most of all in areas such as
video watermarking [1] and 3D coding (e.g., compression of volumetric med-
ical data [2] or multispectral images [3], 3D model coding [4], and especially,
video coding). 3-D subband video coding is an alternative to the traditional
motion-compensated Discrete Cosine Transform (DCT) coding. The 3D sub-
band coding uses the discrete wavelet transform (DWT), which achieves better
energy compaction, instead of the DCT.

Podilchuk, et al., utilized 3-D spatio-temporal subband decomposition and
geometric vector quantization (GVQ) [5]. Taubman and Zakhor presented a
full color video coder based on 3-D subband coding with camera pan com-
pensation [6]. The embedded zerotree wavelet (EZW) algorithm developed by
Shapiro [7], the set partitioning in hierarchical trees (SPIHT) algorithm de-
veloped by Said and Pearlman [8] and the lower tree wavelet encoder (LTW)
developed by Oliver and Malumbres [9] exploit the similarity between different
wavelet subbands based on a wavelet tree structure. They provide remarkably
good performance on 2-D images, with low computational complexity. Then,
an adapted version of an image encoder can be used, taking into account the
new dimension. For instance, the two dimensional (2D) embedded zero-tree
(IEZW) method has been extended to 3D IEZW for video coding by Chen
and Pearlman[10], and showed promise of an effective and computationally
simple video coding system without motion compensation, obtaining excellent
numerical and visual results. A 3D zero-tree coding through modified EZW
has also been used with good results in compression of volumetric images[11].
In [12] and [13], instead of the typical quad-trees of image coding, a tree with
eight descendants per coefficient is used to extend both SPIHT and LTW
image encoders to 3D video coding.

Several attempts have been made in order to accelerate the DWT, es-
pecially the 2D DWT, exploiting both multicore architectures and graphic
processing units (GPUs). In [14], a SIMD algorithm runs the 2D-DWT on
a GeForce 7800 GTX using Cg and OpenGL, with a remarkable speed-up.
A similar effort in [15] combined Cg and the 7800 GTX to report a 1.2x-
3.4x speed-up versus a CPU counterpart. In [16], a CUDA implementation for
the 2D-FWT runs more than 20 times faster than the sequential C version

Fast Parallel 3D Wavelet Transform 3

on a CPU, and it is more than twice as fast as the optimized OpenMP and
Pthreads versions implemented on multicore CPUs. In a previous work [17],
we presented both multicore and GPU implementations for the 2D-DWT ob-
taining speed-ups up to 7.1 and 8.9 on a multicore platform using eight and
ten processes, respectively when compared to the CPU sequential algorithm.

This work extends our analysis to the 3D-DWT, analyzing the compiler
flags impact as well as the different optimizations applied. We analyze the
computational behavior in order to set the optimal performance parameters.
Furthermore, we compare our results to the ones obtained in a recent 3D-DWT
implementation presented in [18].

The rest of the paper is organized as follows. Section 2 presents the founda-
tions of the 3D-DWT. Sections 3 and 4 describe our implementation proposals
on multicore and manycores respectively, while in Section 5 we analyze their
performance. Finally in Section 6 some conclusions are drawn.

2 Three Dimensional Wavelet Transform

The DWT is a multiresolution decomposition scheme for input digital signals,
see detailed description in [19]. The source signal is firstly decomposed into
two frequency subbands, low-frequency (low-pass) subband and high-frequency
(high-pass) subband. For the classical DWT, the forward decomposition of a
signal is implemented by a low-pass digital filter H and a high-pass digital
filter G. Both digital filters are derived using the scaling function Φ(t) and the
corresponding wavelet functions at different frequency scales Ψ(t). The system
downsamples the signal to half of the filtered results in the decomposition
process. If four-tap and non-recursive FIR filters are considered, the transfer
functions of H and G can be represented as follows:

H(z) = h0 + h1z
−1 + h2z

−2 + h3z
−3 (1)

G(z) = g0 + g1z
−1 + g2z

−2 + g3z
−3 (2)

To use the wavelet transform for volume and video processing we must im-
plement a 3D version of the analysis and synthesis filter banks. In the 3D case,
the 1D analysis filter bank is applied in turn to each of the three dimensions.
If the data is of size N1 by N2 by N3, then after applying the 1D analysis filter
bank to the first dimension we have two subband data sets, each of size N1

2
by

N2 by N3. After applying the 1D analysis filter bank to the second dimension
we have four subband data sets, each of size N1

2
by N2

2
by N3. Applying the

1D analysis filter bank to the third dimension gives eight subband data sets,
each of size N1

2
by N2

2
by N3

2
(see Fig. 1).

After applying the 3D-DWT on a group of video pictures (GOP), a 2D
spatial DWT and a 1D temporal DWT, we obtain eight first level wavelet
subbands (typically named as LLL1, LHL1, LLH1, LHH1, HLL1, HHL1,
HLH1, HHH1). Further wavelet decompositions can be done, focusing on the
low-frequency subband (LLL1), achieving in this way a second-level wavelet
decomposition, and so on (see example in Fig. 2).

4 V. Galiano et al.

X

W
L

W
H

W
LLL

W
LHL

W
LL

W
LH

W
LLH

W
LHH

W
HLL

W
HHL

W
HL

W
HH

W
HLL

W
HHL

W
HLH

W
HHH

Fig. 1 The resolution of a 3-D signal is reduced in each dimension

spatial

(a)

,

(b) (b)

Fig. 2 Overview of the 3D-DWT computation in a two-level decomposition using the reg-
ular 3D-DWT algorithm.

In this work we will use the Daubechies 9/7 filter for both the spatial
and temporal decompositions. In addition, the regular filter-bank convolution
is considered to develop the three-dimensional wavelet transform, based on
the results obtained in [17] for the two-dimensional wavelet transform case. In
particular, in [17] we obtained best results, in terms of computational times and
in terms of parallel performance, applying the regular filter-bank convolution
than applying the lifting scheme.

Fast Parallel 3D Wavelet Transform 5

Frame n

Frame 3

Frame 2

Frame 1

First step

S
e

co
n

d
st

e
p

Symmetric extension

Working memory
(only one array per process)

Fig. 3 3D-DWT one level structure computation.

3 Multicore 3D Wavelet Transform

As we have said, the Daubechies 9/7 filter, proposed in [19], has been used
to perform the regular filter-bank convolution in order to develop the parallel
3D-DWT algorithm. In [17] we proposed the convolution-based parallel 2D-
DWT using an extra memory space in order to perform a nearly in-place
computation, avoiding the requirement of twice the image size to store the
computed coefficients. This strategy is also followed to develop the parallel
3D-DWT algorithm.

We want to remark that we use four decomposition levels in order to com-
pute the 3D-DWT, and, as we have said in Section 2, the computation of each
wavelet decomposition level is divided into two main steps. In the first step
the 2D-DWT is applied to each frame of the current GOP, and in the second
step the 1D-DWT is performed to consider the temporal axis. We have used
the symmetric extension technique in order to avoid the border effects on both
the frame borders and the GOP borders.

So, in order to apply the 2D-DWT to each frame we compute the com-
ponents associated to each row, after that, we compute the components as-
sociated to each column. Finally, in the third step, the temporal 1D-DWT,
we compute the components associated to the third dimension, the temporal
dimension (see Fig. 3). The current working data (row, column or array in
temporal axis) are copied into the extra memory reserved to process it over
this memory. We perform all computations over this working memory and,
after the computation is finished, we store the computed coefficients in the
original pixel positions of the source data. As we have said, in order to avoid
the border effects, we perform the symmetric extension in the working memory
previous to start the computation. As we have seen in Section 2, the resolution
of the 3-D signal is reduced in each wavelet decomposition. The computation
to obtain each coefficient is an optimized classical convolution filtering.

6 V. Galiano et al.

Frame Size Processes Extra memory size Increment (%)
(pixels) GOP: 32

1 360 0.0110
2 720 0.0221

352 x 288 4 1440 0.0443
6 2160 0.0665
10 3600 0.1109

1 1288 0.0024
2 2576 0.0049

1280 x 640 4 5152 0.0099
6 7728 0.0148
10 12880 0.0247
1 1928 0.0016
2 3856 0.0032

1920 x 1024 4 7712 0.0065
6 11568 0.0098
10 19280 0.0164

Table 1 Amount of extra memory size.

If we consider the first step (i.e. the 2D-DWT applied to each video frame),
the extra memory size depends on both, the row size or column size (the
largest one), and the number of processes in the parallel algorithm. The extra
memory must include the pixels required to perform the symmetric extension,
therefore, for the Daubechies 9/7 filter we must extend with four elements on
each border. As we can see in Fig. 3, the extra memory stores the working
data row, the working data column and the working array of the temporal
axis of the first stage of the 2D-DWT, the second stage of the 2D-DWT, and
the 1D-DWT in the temporal axis, respectively, plus the pixels required to
perform the symmetric extension.

Table 1 shows the extra memory size (in pixels) and the percentage of
memory increase for several video frame resolutions and number of processes
used in the parallel algorithm. Note that each process stores its own working
pixels which are not shared with other processes. The worst case in Table 1,
attending at memory increase, is a very small value equal to 0.1109%. If the
GOP size is larger than the row or column size, the amount of required extra
memory is fixed by the GOP length. For the results in Table 1 the percentage
has been obtained considering a GOP size equal to 32.

In the second step of the 3D-DWT (i.e. the temporal 1D-DWT), we perform
the symmetric extension in order to avoid the border effects in the temporal
domain. In all experiments performed the maximum GOP size considered is
128, therefore the extra memory used in the first step is enough to be reused
in the second step.

We have used the OpenMP [20] paradigm in order to develop the parallel
3D-DWT algorithm. The multicore platforms used in our tests are:

– Intel Core 2 Quad Q6600 2.4 GHz, with 4 cores.
– HP Proliant SL390 G7 with two Intel Xeon X5660, each CPU with six

cores at 2.8 GHz.

Fast Parallel 3D Wavelet Transform 7

We analyze some OpenMP-based techniques to parallelize the two main
steps. The techniques tested to parallelize the 3D-DWT algorithm are:

– Automatic OpenMP parallel loops.
– Parallel sections.
– Load balancing according to the thread rank.

In all experiments performed the parallel sections technique has not ob-
tained good results, then we do not use this technique in the following at-
tempts. Therefore we present some parallel options following the above ap-
proximations, the automatic OpenMP parallel loops and the load balancing
according to the thread rank. It is important to remark that using both parallel
sections technique and automatic OpenMP parallel loops, the extra memory
size needed does not depend on the number of parallel processes used. In both
cases, all processes work with the same working memory.

We have tested the following four options:

– Option A: The initial 2D-DWT applied to each video frame is computed by
all processes which cooperate in the task, such that a process computes a
block of contiguous rows and a block of contiguous columns. The temporal
1D-DWT is computed assigning a block of contiguous columns to each
process according to its parallel rank.

– Option B: In the first step only one process computes the initial 2D-DWT
of each video frame. The temporal 1D-DWT is computed assigning a block
of columns to each process according to its parallel rank.

– Option C: The initial 2D-DWT is computed as in option A. The temporal
1D-DWT is computed using automatic OpenMP parallel loops.

– Option D: The initial 2D-DWT is computed as in option A. The temporal
1D-DWT is computed parallelizing the row procedure instead of the column
procedure, that is assigning a block of contiguous rows to each process
according to its parallel rank.

In Fig. 4 we present results in order to analyze the parallel strategies de-
scribed. The best performance, in all experiments performed, is achieved by
balancing the computational load according to the thread rank, as we can see
in Fig. 4.

Fig. 4 presents results for a grayscale video frame size of 1280× 640 pixels
and a GOP size equal to 64 on the multicore HP Proliant SL390, using the
ICC compiler with -fast flag compiler option and varying the number of pro-
cesses. Note that each core computes only one process. We can observe that
option A obtains good efficiencies and scalability, while for the other options,
the efficiency degrades as the number of processes increases. The automatic
OpenMP loops degrades the performance and the scalability. Note that in this
case all processes must use the same extra working memory.

Fig. 5 presents the parallel structure used in the option A in order to
balance the computational load. As we have said, in the first stage, each process
computes a group of adjacent rows, after that, each process computes a group
of adjacent columns, at this point the 2D-DWT transform has been performed.

8 V. Galiano et al.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Number of Processes

T
im

e
(s

.)

Option A 0.85 0.56 0.42 0.27 0.21 0.16

Option B 0.95 0.64 0.49 0.34 0.28 0.31

Option C 1.32 1.09 1.02 0.97 1.00 1.06

Option D 1.32 1.07 0.96 0.95 0.95 0.97

2 Proc. 3 Proc. 4 Proc. 6 Proc. 8 Proc. 10 Proc.

Fig. 4 Computational times for the multicore 3D-DWT algorithm. Compiler: ICC. Com-
piler flags: -fast -openmp. Frame size: 1280× 640. Multicore HP Proliant SL390.

Frame n

First stage 2D-DWT Second stage 2D-DWT

Frame 3

Frame 2

Process 1

Process p

Process 2

Frame n Process 1

Process 2

Frame 3

P
ro

c
e

s
s

1

P
ro

c
e

s
s

2

P
ro

c
e

s
s

p

Frame 2

P
ro

c
e

s
s

p

P
ro

c
e

s
s

p

P
ro

c
e

s
s

p

Frame 1

P 1 P 2 P p

P 1 P 2

Frame 1

P p

P p

P 1 P 2 P p

P 1 P 2 P p

Third stage (temporal 1D)

P 1 P 2 P p

P 1 P 2 P p

P 2P 1 P p

P 1 P 2 P p

P 1 P 2 P p

Group of rows

Group of columns

One row

Fig. 5 Parallel structure for the optimal parallel option.

And in the third stage a group of temporal arrays with a group of adjacent
columns of each row is assigned to each process. Obviously, as each process
computes a different row, column or temporal array, each process works with
its own extra memory space increasing the memory requirements as we increase
the number of processes in the parallel execution. The optimal choice, the
option A, has been used in the rest of the experiments shown in this paper.

We have also analyzed the behavior depending on the compiler and the flags
used to build the 3D-DWT algorithm. We have tested the ICC [21] compiler, a
corporate tool from Intel, and the GCC [22] compiler, which is a free compiler
developed by the GNU project. In the multicore HP Proliant SL390 compilers
available are the GCC 4.1.2 and the ICC 12.0.0, however in the multicore
Q6600 the only available compiler is the GCC 4.4.3. Fig. 6 shows the compiler
efficiency, respect to the best option, for a grayscale video frame size of 1280×
640 pixels and a GOP size equal to 64 on the multicore HP Proliant SL390.
The best option is obtained using the ICC compiler and the -fast flag (note
that -fast is a shorthand that includes the flags -O3 -ipo -static -xHOST -no-

prec-div). Note that the efficiencies showed in Fig. 6 are computed respect to
the computational time obtained using the ICC compiler and the compiler flag
-fast and the number of processes used in each experiment. Also in Fig. 6 we

Fast Parallel 3D Wavelet Transform 9

0.0

0.2

0.4

0.6

0.8

1.0

Number of Processes

C
o

m
p

il
e

r
E

ff
ic

ie
n

c
y

icc -fast 1.00 1.00 1.00 1.00 1.00 1.00

icc -O3 0.96 0.96 0.96 0.96 0.96 0.95

icc 0.49 0.50 0.50 0.51 0.52 0.51

gcc -O3 0.97 0.99 0.97 0.96 0.97 0.98

gcc 0.48 0.52 0.53 0.55 0.55 0.59

1 Proc. 2 Proc. 4 Proc. 8 Proc. 10 Proc. 12 Proc.

Fig. 6 Compiler efficiency for the multicore 3D-DWT algorithm. Frame size: 1280 × 640.
Multicore HP Proliant SL390.

can observe that the performance of both compilers remains unchanged as we
increase the number of processes. This conclusion can be applied to the use
of the different compiler flags. It is important to remark that both compilers
offer the same performance when we use the same optimization flags and the
ICC compiler obtains a slight performance increase applying the -fast flag .

4 Manycore 3D Wavelet Transform

In order to develop the algorithm presented in Section 3 on a manycore GPU
architecture we must consider the GPU model we are going to use. So in
the CUDA parallel programming model [23,24], an application consists of a
sequential host program, that may execute parallel programs known as kernels
on a manycore platform. Considering CUDA as development tool, a kernel is
an Single Program Multiple Data (SPMD) computation that is executed using
a large number of parallel threads organized into a set of blocks namely grid.

In order to develop and run the CUDA algorithm we have tested the fol-
lowing three options:

– Option I: The initial 2D-DWT applied to each video frame is computed
by two different kernels, the first one performs the horizontal process and
the second one performs the vertical process. Each thread computes pixels
with stride equal to the number of threads per block on both dimensions.
The temporal 1D-DWT is computed only by one kernel that computes the
elements corresponding to one column, this kernel is executed the number
of rows times.

– Option II: In the initial 2D-DWT each thread computes adjacent pixels on
both dimensions, all threads cooperate to compute the coefficients of each
frame. The temporal 1D-DWT is computed as in option I.

– Option III: The initial 2D-DWT is computed as in option I. The temporal
1D-DWT is computed by one kernel with a two dimensional grid of blocks,
equal to the frame dimensions, such a way that each block computes one
element.

10 V. Galiano et al.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Video Frame Resolution

T
im

e
(s

.)

Option I 0.04 0.29 0.78

Option II 0.04 0.35 0.88

Option III 0.09 0.48 1.28

352x288 1280x640 1920x1024

Fig. 7 Computational times for the manycore 3D-DWT algorithm. GOP size: 64. GTX280.

In most cases the horizontal and/or vertical dimension is greater than the
maximum number of threads per block, so, each thread must compute more
than one coefficient. On the other hand, the considered GOP size is always
lower than the maximum number of threads per block, therefore in this case
each thread computes only one coefficient. Hence, the number of threads per
block in the 1D-DWT computation depends on the GOP size considered. In
order to compute the 2D-DWT we have run several tests with different number
of threads per block, from 16 up to the maximum (512). After analyzing test
results, performance results do not change with values ranging from 64 to 256
threads per block. We can conclude the results are not affected using values
from 64 to 256.

The platform used to test the manycore algorithm is the NVIDIA GTX
280 GPU that contains 30 multiprocessors with 8 cores in each multiprocessor,
1 GB of global memory and 16 KB of shared memory by block (or SM), this
device is available on the multicore Intel Core 2 Quad Q6600 2.4 GHz.

Fig. 7 presents results for several grayscale video frame resolutions and a
GOP size equal to 64 on the GTX280 platform. We can observe that option I
is the optimal choice, obtaining in some cases a significant improvement. All
results presented for the manycore 3D wavelet transform do not include the
communication times between host and GPU. Note that the 3D-WDT is the
first step of a more complex process, such as a video codec.

In order to clarify the optimal CUDA algorithm developed, we want to
remark that the GOP video sequence is stored in the GPU global memory, and
the working memory (that stores the current data row, data column or array
in the temporal axis) is stored in the GPU shared memory (see Fig. 8). On the
other hand, we are translating the strategy of the multicore algorithm to the
manycore algorithm. As we have said, we have tested three options to develop
de 3D-DWT CUDA algorithm, and the best results are obtained following the
option I (see Fig. 7). We have developed three basic kernels in the optimal
algorithm. The first one computes the first stage of the 2D-DWT, the second
one computes the second stage of the 2D-DWT and the third one computes the
1D-DWT in the temporal axis. As we can see in Fig. 8, each block of threads

Fast Parallel 3D Wavelet Transform 11

Symmetric extension

NB: Number of Blocks of threads

GPU Shared Memory

Block 1

Block 2

Block NB

Block 1

Block 2

Block NB

Block 1

Block 2

Block NB

GPU Global Memory

Block 1

Block 2

Block NB

Fig. 8 Parallel structure for the GPU algorithm.

computes the components associated to one row, if the number of blocks is
less than the column dimension each block must to compute more than one
row. Note that, the computation is performed over the working memory (i.e.
the shared memory), and then all threads of one block must to cooperate in
order to copy the current data row (or column or array in temporal axis)
from global memory to shared memory. We can extend the row computation
structure showed in Fig. 8, to the computation of both the column computation
and the array in the temporal axis computation.

As we have said, the first stage in the kernels computations is to move
the data from global memory to shared memory. Best results are obtained
when each thread moves pixels with stride equal to the number of threads by
block in the kernel (see Fig. 9), if the working data dimension is greater than
the number of threads by block. Moreover, we must perform the symmetric
extension on both borders, being performed by the lower rank threads in the
first border and by the higher rank threads in the second border.

5 Performance Evaluation

In this section we discuss the behavior of the parallel algorithm described in
previous sections and we compare it against a recent optimized multicore pro-
posal presented in [18]. Fig. 10 presents the 3D-DWT computational times and
their associated efficiencies for a video frame resolution of 1280× 640 varying
the GOP size and the number of processes. Fig. 10(a) shows the good compu-
tation behavior of the parallel algorithm. In the 3D-DWT there is an intensive
use of the memory, therefore the improvement in the use of the cache memory
and data locality justifies the efficiencies greater than 1 showed in Fig. 10(b).
Efficiency values correspond to executions on the multicore Q6600 platform.
However, in Fig. 11(b) this fact is not observed for the multicore HP Proliant
SL390 due to the higher memory access performance respect to the multicore
Q6600. The HP Proliant SL390 architecture provides a high-bandwidth mem-
ory access, through the Intel QPI Speed 64GT/s, therefore, the global perfor-
mance improvement is less significant than in the Q6600 platform. In Fig. 11

12 V. Galiano et al.

Symmetric extension

NT: Number of Threads by Block

GPU Shared Memory

Block 2

Block NB

Block 1

Block 2

Block NB

Block 1

Block 2

Block NB

GPU Global Memory

T_1 … T_M … T_NT T_1 … T_M … T_NT T_1 … T_M … T_NT

Fig. 9 Memory copy from global memory to shared memory.

we also present the computational times and their associated efficiencies for
the multicore HP Proliant SL390. The efficiencies obtained on both platforms
are similar, however, comparing data obtained from video frames of different
resolutions we can conclude that the behavior on the multicore Q6600 becomes
worse than on the multicore HP Proliant SL390, as the GOP size increases,
i.e. when the global memory size increases. Note that the data presented in
figures 10(b) and 11(b) correspond to different video frame resolutions.

The GOP size is an important parameter in the 3D-DWT computation,
when applied to video coding, because the average video quality increases as
we increase the GOP size due to the minor GOP boundary effect. However, the
computational load and memory requirements increase. Ideally, the GOP size
would be equal to the total number of video frames, since this is not possible
due to the device memory restrictions, we must select the GOP size attending
to both the video quality and the computational time. As we can see in figures
10(a) and 11(a) the computational time increases as the GOP size increases.
The minimum GOP size in our algorithm is 16 due to the four wavelet de-
composition levels performed in the 3D-DWT (24). In Fig. 12 we show the
percentage of increment in computational time, respect to the computational
time with GOP size equal to 16. Regarding results presented in figures 10 and
11, we can conclude that the optimal value for the GOP size is equal to 64
or 128, being the final decision independent of the platform and probably we
must set this parameter by considering if the memory requirements is a critical
parameter or not.

Note that the number of frames (or pictures) computed is the GOP size
value. Therefore when the GOP size increases, the border effects in the tempo-
ral axis decrease, and, obviously the computational time increases due to the

Fast Parallel 3D Wavelet Transform 13

0.0

2.0

4.0

6.0

8.0

Number of Processes

T
im

e
(s

.)

GOP: 16 0.57 0.36 0.26 0.21

GOP: 32 1.15 0.64 0.45 0.36

GOP: 64 2.70 1.27 0.89 0.71

GOP: 128 7.17 3.01 2.59 1.80

1 Proc. 2 Proc. 3 Proc. 4 Proc.

(a) Time (s.).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Number of Processes

E
ff

ic
ie

n
c

y

GOP: 16 1.00 0.79 0.74 0.66

GOP: 32 1.00 0.90 0.86 0.80

GOP: 64 1.00 1.06 1.01 0.95

GOP: 128 1.00 1.19 0.92 1.00

1 Proc. 2 Proc. 3 Proc. 4 Proc.

(b) Efficiency.

Fig. 10 3D wavelet algorithm. Compiler: GCC. Compiler flags: -O3 -openmp. Frame size:
1280× 640. Multicore Q6600.

larger number of frames to be computed. In Fig. 13 we present the computa-
tional time per frame corresponding to Fig. 12 data. We can observe that the
parallel algorithm improves its behavior when both the number of processes
and the GOP size increase. We want to remark that setting the GOP size equal
to 256, for medium and high resolution video frames, the results obtained are
not good due to the global memory size requirement. Setting the GOP size
equal to 128 reduces the border effects while setting the GOP size equal to
64 reduces the memory requirements. Both GOP size values obtain the best
results, as it can be seen in Fig. 13, in terms of computation times per frame.

We have presented an exhaustive analysis of our parallel algorithm, show-
ing its behavior according to the possible modifications of all parameters. As
we have seen, the parallel algorithm obtains good efficiency, with the proper
parameters setting, using the available cores, up to 12 in the multicore HP
Proliant SL390 and up to 4 in the multicore Q6600. At this time we will per-
form a comparative analysis against the recent 3D-DWT algorithm presented
in [18], which presents some interesting optimization techniques. Both algo-
rithms under comparison use different methods to compute the 3D-DWT, in

14 V. Galiano et al.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Number of Processes

T
im

e
(s

.)

GOP: 16 1.20 0.85 0.45 0.23 0.19 0.17

GOP: 32 2.38 1.40 0.72 0.38 0.32 0.30

GOP: 64 4.89 2.64 1.34 0.69 0.56 0.49

GOP: 128 10.71 5.20 2.65 1.38 1.14 1.03

1 Proc. 2 Proc. 4 Proc. 8 Proc. 10 Proc. 12 Proc.

(a) Time (s.).

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Number of Processes

E
ff

ic
ie

n
c

y

GOP: 16 0.71 0.66 0.66 0.62 0.58

GOP: 32 0.85 0.82 0.79 0.75 0.66

GOP: 64 0.93 0.91 0.88 0.87 0.83

GOP: 128 1.03 1.01 0.97 0.94 0.87

2 Proc. 4 Proc. 8 Proc. 10 Proc. 12 Proc.

(b) Efficiency.

Fig. 11 3D wavelet algorithm. Compiler: ICC. Compiler flags: -fast -openmp. Frame size:
1920× 1024. Multicore HP Proliant SL390.

particular the reference algorithm uses the Daubechies W4 filter instead of the
Daubechies 9/7 filter used in our algorithm. It should be noted that our algo-
rithm performs four decomposition levels to compute the 3D-DWT, while the
reference algorithm presented in [18] performs only one decomposition level.
Therefore, the optimization techniques used in both algorithms can not be the
same. Furthermore we use the symmetric extension technique to avoid bound-
ary effects, while the reference algorithm does not apply any specific technique
for this purpose.

The platforms used to test both algorithms are very similar. Our platform
has an Intel Q6600 quad-core processor and the reference algorithm has been
run on an Intel Q6700 quad-core processor, i.e. the reference algorithm has
been tested on a platform with a slightly higher performance. Fig. 14 shows
the computational times to compute the 3D-DWT for several video frame
sizes, using 4 processes and a GOP size equal to 64. The results provided of
the reference algorithm depend substantially on the compiler, as we can see
in Fig. 14(b), while our algorithm shows a lower compiler dependency, as it
showed in Fig. 6. The results shown in Fig. 14(a) are obtained with the GCC
compiler, because our multicore Q6600 does not provide the ICC compiler.
The computational times presented in Fig. 14 are obtained for different video

Fast Parallel 3D Wavelet Transform 15

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

Number of Processes

In
c

re
m

e
t

o
f

T
im

e
(%

)

GOP: 32 166 164 166 144 152

GOP: 64 308 295 287 264 240

GOP: 128 603 584 572 519 454

2 Proc. 4 Proc. 8 Proc. 10 Proc. 12 Proc.

(a) Frame size: 1280× 640.

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

Number of Processes

In
c

re
m

e
t

o
f

T
im

e
(%

)

GOP: 32 166 160 165 166 172

GOP: 64 312 296 304 292 285

GOP: 128 615 585 608 593 592

2 Proc. 4 Proc. 8 Proc. 10 Proc. 12 Proc.

(b) Frame size: 1920× 1024.

Fig. 12 Increment of time (%) respect to the GOP size equal to 16. Compiler: ICC. Com-
piler flags: -fast -openmp. Multicore HP Proliant SL390.

frame resolutions, because we work with standard video frame resolutions and
the reference algorithm works with square video frame resolutions.

In Fig. 15 we analyze the algorithm throughput as the number of megapix-
els per second in both algorithms. We can conclude that our algorithm shows a
greater performance degradation as the video frame resolution increases. This
is due to the previously discussed differences, both the number of wavelet de-
composition levels and the symmetric extension performed in our algorithm.
Techniques used to improve the reference algorithm do not improve the per-
formance of our algorithm. Note that we use an extra amount of memory to
store the working data as showed in Table 1. We want to remark that our algo-
rithm avoids the use of twice the video size to store the computed coefficients
through this working memory.

As mentioned both algorithms use different filters in order to compute the
3D-DWT, which means that the computational load per pixel differs on both
algorithms. Therefore in Fig. 16 we present results in terms of GFLOPS. We
have computed the GFLOPS of the experiments reported in [18] considering
the video frame resolution, the GOP size and the Daubechies W4 filter. At-
tending to the results obtained using the same compiler, our algorithm is able
to compute up to 4 times more GFLOPS than the reference algorithm. Ana-

16 V. Galiano et al.

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Number of Processes

T
im

e
(s

.)
/f

ra
m

e

GOP: 16 0.0261 0.0193 0.0101 0.0055 0.0053 0.0055

GOP: 32 0.0261 0.0160 0.0083 0.0046 0.0038 0.0042

GOP: 64 0.0269 0.0148 0.0075 0.0040 0.0035 0.0030

GOP: 128 0.0274 0.0145 0.0074 0.0039 0.0034 0.0031

1 Proc. 2 Proc. 4 Proc. 8 Proc. 10 Proc. 12 Proc.

(a) Frame size: 1280× 640.

0.0

0.0

0.0

0.1

0.1

0.1

Number of Processes

T
im

e
(s

.)
/f

ra
m

e

GOP: 16 0.0748 0.0529 0.0283 0.0142 0.0120 0.0108

GOP: 32 0.0743 0.0439 0.0226 0.0117 0.0099 0.0093

GOP: 64 0.0764 0.0413 0.0209 0.0108 0.0088 0.0077

GOP: 128 0.0837 0.0407 0.0207 0.0108 0.0089 0.0080

1 Proc. 2 Proc. 4 Proc. 8 Proc. 10 Proc. 12 Proc.

(b) Frame size: 1920× 1024.

Fig. 13 Computational time per frame. Compiler: ICC. Compiler flags: -fast -openmp.
Multicore HP Proliant SL390.

lyzing different compilers, our algorithm increases the GFLOPS using the free
compiler GCC respect to the corporate ICC compiler.

Finally we analyze the manycore algorithm. Fig. 17 presents the speed-up
for various grayscale video frame resolutions and GOP sizes on the GTX280
platform. The speed-up is computed with respect to the computational times
obtained using one core of the platform Q6600 platforms plus GTX280. The
speed-ups obtained for medium and high resolution images allows us to ap-
ply the CUDA 3D-DWT algorithm to improve the performance of a video
coder based on the 3D-DWT. Missing data in Fig. 17 corresponds to the case
where the required global memory is greater than the memory available in the
GTX280 (1GB). This fact confirms the importance of the in-place computa-
tion of our algorithm.

It should be noted that the average GFLOPS obtained in the manycore
GTX280, for medium and high resolution images is around 4 GFLOPS, ob-
taining a significant improvement respect the data shown in Fig. 17 using the
optimal number of threads.

Fast Parallel 3D Wavelet Transform 17

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

Video Frame Resolution

T
im

e
(s

.)

Time (s.)/GCC 0.07 0.71 2.01 18.26

352 x 288 1280 x 640 1920 x 1024 3840 x 2048

(a) Developed algorithm. Multicore Q6600.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Video Frame Resolution

T
im

e
(s

.)

Time (s.)/GCC 0.39 1.59 6.40

Time (s.)/ICC 0.16 0.66 2.84

512 x 512 1024 x 1024 2048 x 2048

(b) Reference algorithm. Multicore Q6700.

Fig. 14 Computational times for 3D wavelet algorithm. GOP size: 64. Number of processes:
4.

6 Conclusions

We have presented the multicore-based algorithm developed using the OpenMP
paradigm, that performs the 3D discrete wavelet transform and the manycore-
based algorithm developed using CUDA. We have analyzed the behavior of the
proposed algorithms when running on two different shared-memory platforms
and on the GPU GTX280. Furthermore, we have compared our algorithm
against a recent multicore algorithm proposed in [18]. The multicore-based
algorithm obtains speed-ups closely ideal depending on the video frame reso-
lution and the GOP size, running on a relatively low computing power platform
as the Q6600 multicore platform, when compared to the sequential CPU algo-
rithm. When running on the HP Proliant SL390 G7 platform, our algorithm
obtains good efficiencies even using the maximum number of available cores,
depending on the video frame resolution and the GOP size. In this case the ef-
ficiencies achieved are greater than 83%. Furthermore, we do not require twice
the video size to compute the 3D-DWT and the increased memory, even up
to 12 processes, is negligible. This characteristic is especially important when
considering the manycore algorithm, and moreover the manycore algorithm
obtains significant improvements respect to the multicore algorithm one.

18 V. Galiano et al.

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

5.00E+01

6.00E+01

7.00E+01

8.00E+01

9.00E+01

1.00E+02

Video Frame Resolution

M
e

g
a

p
ix

e
l/
s

.

Megapixel/s. (GCC) 93.76 73.86 62.73

352x288 1280x640 1920x1024

(a) Developed algorithm. Multicore Q6600.

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

1.20E+02

Video Frame Resolution

M
e

g
a

p
ix

e
l/
s

.

Megapixel/s. (GCC) 42.72 42.13 41.91

Megapixel/s. (ICC) 107.48 102.40 94.91

352x288 1280x640 1920x1024

(b) Reference algorithm. Multicore Q6700.

Fig. 15 Megapixels per second for 3D wavelet algorithm. GOP size: 64. Number of pro-
cesses: 4.

References

1. P. Campisi and A. Neri. Video watermarking in the 3D-DWT domain using perceptual
masking. In IEEE International Conference on Image Processing, pages 997–1000,
September 2005.

2. P. Schelkens, A. Munteanu, J. Barbariend, M. Galca, X. Giro-Nieto, and J. Cornelis.
Wavelet coding of volumetric medical datasets. IEEE Transactions on Medical Imaging,
22(3):441–458, March 2003.

3. P.L. Dragotti and G. Poggi. Compression of multispectral images by three-dimensional
SPITH algorithm. IEEE Transactions on Geoscience and Remote Sensing, 38(1):416–
428, January 2000.

4. M. Aviles, F. Moran, and N. Garcia. Progressive lower trees of wavelet coefficients:
Efficient spatial and SNR scalable coding of 3D models. Lecture Notes in Computer

Science, 3767:61–72, 2005.

5. C.I Podilchuk, N.S. Jayant, and N. Farvardin. Three dimensional subband coding of
video. IEEE Tran. on Image Processing, 4(2):125–135, February 1995.

6. D. Taubman and A. Zakhor. Multirate 3-D subband coding of video. IEEE Tran. on

Image Processing, 3(5):572–588, September 1994.

7. J.M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE

Transactions on Signal Processing, 41(12), December 1993.

8. A. Said and A. Pearlman. A new, fast and efficient image codec based on set partitioning
in hierarchical trees. IEEE Transactions on Circuits, Systems and Video Technology,
6(3):243–250, 1996.

Fast Parallel 3D Wavelet Transform 19

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Video Frame Resolution

G
F

L
O

P
S

GFLOPS (GCC) 1.85 1.46 1.24

352x288 1280x640 1920x1024

(a) Developed algorithm. Multicore Q6600.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Video Frame Resolution

G
F

L
O

P
S

GFLOPS (GCC) 0.45 0.44 0.44

GFLOPS (ICC) 1.13 1.08 0.99

512x512 1024x1024 2048x2048

(b) Reference algorithm. Multicore Q6700.

Fig. 16 GFLOPS for 3D wavelet algorithm. GOP size: 64. Number of processes: 4.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

Video Frame Resolution

S
p

e
e

d
-u

p

GOP: 16 4.51 7.35 6.75

GOP: 32 5.13 7.71 7.84

GOP: 64 5.36 9.44 11.41

GOP: 128 6.69 12.68

352x288 1280x640 1920x1024

Fig. 17 Speed-up for the manycore 3D-DWT algorithm. GTX280.

9. J. Oliver and M. P. Malumbres. Low-complexity multiresolution image compression
using wavelet lower trees. IEEE Transactions on Circuits and Systems for Video Tech-

nology, 16(11):1437–1444, 2006.

10. Y. Chen and W.A. Pearlman. Three-dimensional subband coding of video using the
zero-tree method. In Visual Communications and Image Processing, volume Proc. SPIE
2727, pages 1302–1309, March 1996.

11. J. Luo, X. Wang, C.W. Chen, and K.J. Parker. Volumetric medical image compression
with three-dimensional wavelet transform and octave zerotree coding. In Visual Com-

munications and Image Processing, volume Proc. SPIE 2727, pages 579–590, March

20 V. Galiano et al.

1996.
12. B.J. Kim, Z. Xiong, and W.A. Pearlman. Low bit-rate scalable video coding with 3D

set partitioning in hierarchical trees (3D SPIHT). IEEE Transactions on Circuits and

Systems for Video Technology, 10:1374–1387, December 2000.
13. O. Lopez, M. Martinez-Rach, P. Piñol, M.P. Malumbres, and J.Oliver. Lower bit-rate

video coding with 3D lower trees (3D-LTW). In IEEE Int. Conf. on Acoustics, Speech,

and Signal Processing, pages 3105–3108, 1998.
14. T.-T. Wong, C.-S. Leung, P.-A. Heng, and J. Wang. Discrete wavelet transform on

consumer-level graphics hardware. Multimedia, IEEE Transactions on, 9(3):668 –673,
april 2007.

15. C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, and F. Tirado. Parallel implementation
of the 2D discrete wavelet transform on graphics processing units: Filter bank versus
lifting. Parallel and Distributed Systems, IEEE Transactions on, 19(3):299 –310, march
2008.

16. J. Franco, G. Bernabé, J. Fernández, M.E. Acacio, and M. Ujaldón. The GPU on the
2D wavelet transform. survey and contributions. In In proceedings of Para 2010: State

of the Art in Scientific and Parallel Computing, 2010.
17. V. Galiano, O. López, M.P. Malumbres, and H. Migallón. Improving the discrete wavelet

transform computation from multicore to gpu-based algorithms. In In proceedings of

International Conference on Computational and Mathematical Methods in Science and

Engineering, 2011.
18. J. Franco, G. Bernabé, J. Fernández, and M. Ujaldón. Parallel 3D fast wavelet transform

on manycore gpus and multicore cpus. Procedia Computer Science, 1(1):1101 – 1110,
2010.

19. S. G. Mallat. A theory for multi-resolution signal decomposition: The wavelet represen-
tation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674–
693, July 1989.

20. OpenMP application program interface, version 3.1. OpenMP Architecture Review

Board. http: // www. openmp. org , 2011.
21. ICC, intel software network. http: // software. intel. com/ en-us/ intel-compilers/ ,

2009-2011.
22. GCC, the GNU compiler collection. Free Software Foundation, Inc. http: // gcc. gnu.

org , 2009-2012.
23. J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming with

cuda. In Queue, volume 6, pages 40–53, 2008.
24. NVIDIA Corporation. Nvidia CUDA C programming guide. version 3.2.

