
The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Parallel strategies for 2D Discrete Wavelet

Transform in shared memory systems and GPUs

V. Galiano · O. López · M.P.

Malumbres · H. Migallón

Received: date / Accepted: date

Abstract In this work we analyze the behavior of several parallel algorithms
developed to compute the two dimensional discrete wavelet transform using
both OpenMP over a multicore platform and CUDA over a GPU. The pro-
posed parallel algorithms are based on both regular filter-bank convolution
and lifting transform with small implementations changes focused on both the
memory requirements reduction and the complexity reduction. We compare
our implementations against sequential CPU algorithms and other recently
proposed algorithms like the SMDWT algorithm over different CPUs and the
Wippig&Klauer algorithm over a GTX280 GPU. Finally, we analyze their be-
havior when algorithms are adapted to each architecture. Significant execution
times improvements are achieved on both multicore platforms and GPUs. De-
pending on the multicore platform used we achieve speed-ups of 1.9 and 3.4
using two and four processes, respectively when compared to the sequential
CPU algorithm, or we obtain speed-ups of 7.1 and 8.9 using eight and ten
processes. Regarding GPUs, the GPU convolution algorithm using the GPU

This research was partially supported by the Spanish Ministry of Science and Innovation
under grant numbers TIN2011-27543-C03-03 and TIN2011-26254.

V. Galiano
Physics and Computer Architecture Department. Miguel Hernández University, 03202 Elche,
Spain.
Tel.: +34-966658394
Fax: +34-966658814
E-mail: vgaliano@umh.es

O. López
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.

M.P. Malumbres
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.

H. Migallón
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.



2 V. Galiano et al.

shared memory obtains speed-ups up to 20 when compared to the CPU se-
quential algorithm.

Keywords wavelet transform · image coding · parallel algorithms · CUDA ·

GPU · OpenMP

1 Introduction

During the last years, several image compression schemes emerged in order
to overcome the known limitations of block-based algorithms that use the
Discrete Cosine Transform (DCT) [1], the most widely used compression tech-
nique at that moment. Some of these alternative proposals were based on more
complex techniques, like vector quantization and fractal image coding, while
others simply proposed the use of a different and more suitable mathematical
transform, the Discrete Wavelet Transform (DWT). Wavelet transforms have
proven to be very powerful tools for image compression and many state-of-the-
art image codecs, including the JPEG2000 image coding standard, employ a
wavelet transform in their algorithms (see for example [2,3]).

Unfortunately, despite the benefits that the wavelet transform entails, some
other problems are introduced. Wavelet-based image processing systems are
typically implemented by memory-intensive algorithms, with higher execution
time than other transforms. In the usual DWT implementation [4], the image
decomposition is computed by means of a convolution filtering process and
so, its complexity rises as the filter length increases. Moreover, in the regular
DWT computation, the image is transformed at every decomposition level first
row by row and then column by column, and hence it must be kept entirely
in memory.

The lifting scheme [5,6] is probably the best-known algorithm to compute
the wavelet transform in a more efficient way. Since it uses less computations
than the equivalent convolution filter, it provides theoretical faster implemen-
tation of the DWT. This scheme also provides memory reduction through
in-place computing of wavelet coefficients.

Other wavelet transform algorithms has been proposed in order to reduce
memory requirements such as line based [7] and block-based [8] wavelet trans-
form approaches, that perform wavelet transformation at image line and block
level respectively. These approaches increase flexibility when applying wavelet
transform and significantly reduce the memory requirements. In this work, we
dismiss both line based and block-based algorithms because these algorithms
are focused on the memory requirements reduction but not on the complex-
ity reduction. Moving on to another proposal, in [9] authors present a novel
way of computing the wavelet transform called Symmetric Mask-based Dis-
crete Wavelet Transform (SMDWT) where wavelet transform is computed as
a matrix convolution, using a matrix masks for each wavelet subband type.

In this paper, we develop optimized parallel algorithms based on the meth-
ods introduced in [4] and [5], and we analyze their performance when imple-
mented over both multicore and GPU architectures. The main goals of the



Parallel strategies for 2D-DWT 3

performed optimizations are to obtain low memory requirements, due to the
nearly in-place computation of the DWT, as well as good computational times,
exploiting multicore architectures, i.e. shared memory platforms. After that,
we will adapt the scheme introduced in the multicore algorithms in order to
develop CUDA-based DWT algorithms. Algorithms developed on Graphics
Processing Units (GPU) require an efficient use of memory to exploit their ar-
chitecture in an efficient way. The developed algorithms are focused in the use
of the different memories of the GPU. We have also compared our CUDA pro-
posals against the algorithm proposed in [10], based in the use of textures and
developed using OpenGL [11], in both computation performance and memory
requirements.

2 Discrete Wavelet Transform

The DWT is a multiresolution decomposition scheme for input digital signals,
see detailed description in [4]. The source signal is firstly decomposed into
two frequency subbands, low-frequency (low-pass) subband and high-frequency
(high-pass) subband. For the classical DWT, the forward decomposition of a
signal is implemented by a low-pass digital filter H and a high-pass digital
filter G. Both digital filters are derived using the scaling function Φ(t) and the
corresponding wavelet functions at different frequency scales Ψ(t). The system
downsamples the signal to half of the filtered results in the decomposition
process. If four-tap and non-recursive FIR filters are considered, the transfer
functions of H and G can be represented as follows:

H(z) = h0 + h1z
−1 + h2z

−2 + h3z
−3 (1)

G(z) = g0 + g1z
−1 + g2z

−2 + g3z
−3 (2)

One of the drawbacks of the DWT is that it doubles the memory require-
ments because it is implemented as a filter. The lifting scheme [5] reduces the
memory requirements and the number of operations needed to perform the
wavelet transform if compared with the usual filtering algorithm (also known
as convolution algorithm). The order of this reduction depends on the type of
wavelet transform, as shown in [12].

A special case of wavelet filter is the Daubechies 9/7 filter. This filter has
been widely used in image compression [3,13], and it has been included in the
JPEG2000 standard [2]. The algorithms presented in this paper are focused
on this filter.

Recently, in [9], authors presented a novel way of computing the wavelet
transform trying to reduce the computational complexity for the wavelet fil-
tering process, which the authors have called Symmetric Mask-based Discrete
Wavelet Transform (SMDWT). This algorithm computes the wavelet trans-
form as a matrix convolution, using four matrix derived from the 2D-DWT
of Daubechies 9/7 floating point lifting-based coefficients. The 2D lifting-
based Wavelet Transform (LDWT) scheme requires vertical and horizontal 1D



4 V. Galiano et al.

LDWT calculations, and each of the 1D LDWT requires four steps: splitting,
prediction, updating, and scaling. Conversely, the four subband 2D SMDWT
can be yielded using four independent matrices of size 7× 7, 7× 9, 9× 7 and
9× 9 for the Daubechies 9/7 filter. The interest in this algorithm is based on
both the way it computes the DWT which unlike the traditional DWT and
LDWT algorithms, it computes each subband independently through a four
matrix convolution, and the theoretical low computation complexity.

3 Implementation of the Wavelet Transform on a Multicore CPU

In order to develop the optimized parallel 2D-DWT, we have used the regular
filter-bank convolution, based on Daubechies 9/7 filter, proposed in [4]. On the
other hand, we have used the lifting scheme proposed by Sweldens in [5] to
develop the optimized parallel 2D LDWT. Typical convolution-based wavelet
transform implementations require twice the image size to store the resulting
coefficients. In our convolution-based implementation an extra memory space
to store the current image row/column is required, which allows us a nearly
in-place computation, also due to the way we perform the decimation process.
We compute it just in the filtering process, applying the low pass filter to the
even pixels and the high pass filter to the odd ones. In the lifting-based wavelet
transform, we need the memory space to store a copy of both one row and
one column. Note that, the SMDWT algorithm requires twice the image size
space to perform the four mask filtering process, and to store the resulting
coefficients.

We have used OpenMP [14] paradigm in order to develop the parallel al-
gorithms. The multicore platforms used are: 1) an Intel Core 2 Quad Q6600
2.4 GHz, with 4 cores and 2) a HP Proliant SL390 G7 with two Intel Xeon
X5660, each CPU with six cores at 2.8 GHz. In this algorithm a block of
rows and a block of columns has been assigned to one thread in each core
to compute the wavelet transform. Therefore each thread would require the
aforementioned amount of extra memory. Remark that the objective of this
buffer is to compute the wavelet transform, so we could store the final wavelet
coefficients in the same memory space occupied by the image, avoiding dou-
bling the memory requirements. The amount of extra memory used by each
algorithm depends on the number of cores used. We have worked in our tests
with different grayscale image sizes: 512× 512, 2048× 2048, and 4096× 4096
pixels, using floating point precision for each pixel. The worst case is for the
smallest image, requiring less than 2% of extra memory overhead, being for the
rest of the images less than 1%. As mentioned, the extra memory size needed
by the SMDWT algorithm is the size of the image. The operating system run-
ning on both multicore platforms is a Linux-based one for 64 bit systems. The
compiler flags used in GNU compiler to exploit the multicore architectures are:
“-O3 -m64 -fopenmp”, while the ones used to avoid multicore architecture are:
“-O3 -m64”.



Parallel strategies for 2D-DWT 5

0.0

0.2

0.4

0.6

0.8

1.0

Image size

E
ff

ic
ie

n
c

y

Lift-1CPU 0.987 0.998 0.988

Conv-1CPU 0.961 1.007 1.008

Lift-2CPU 0.892 0.996 0.969

Conv-2CPU 0.973 0.973 0.951

Lift-4CPU 0.329 0.683 0.853

Conv-4CPU 0.296 0.589 0.768

512 x 512 2048 x 2048 4096 x 4096

Fig. 1 Efficiency for multicore wavelet transform algorithms. Multicore Q6600.

We have tuned the algorithms to obtain the best performance on multicore
architectures, taking into account that these algorithms are characterized by
an intensive use of memory. We have tested several OpenMP-based strategies
in order to develop the multicore algorithm such us varying the schedule op-
tion, the use of parallel sections and to assign the block size depending on the
thread rank. The best results are obtained by assigning the block size depend-
ing on the thread rank, achieving a slight improvement. In Figure 1 we show
the efficiency obtained in the multicore Q6600 platform, for both convolution-
based and lifting-based 2D-DWT using 1, 2 and 4 cores, for three different
image sizes and six wavelet decomposition levels. The reference computational
time to compute the efficiency showed in Figure 1 is the sequential compu-
tational time of each parallel algorithm. As it can be seen, we obtain a good
behavior for high resolution images using 4 cores and close to the ideal using
2 cores. However, for small images (low resolution images) the behavior is not
good due to the relationship between the computational load and the memory
accesses. Note that by increasing the number of threads, the access to memory
becomes a bottleneck because the number of entities that use the memory is
higher.

Figure 2 presents the speed-up obtained using the multicore HP Proliant
SL390 G7 and up to 12 cores. Note that, in this case the architecture provides
a high-bandwidth memory access, through the Intel QPI Speed 64GT/s. We
are able to avoid, using that architecture and for a more number of processes,
the bottleneck observed in the Q6600 multicore platform. The multicore HP



6 V. Galiano et al.

0.0

2.0

4.0

6.0

8.0

10.0

Number of processes

S
p

e
e

d
-u

p

Conv. 9/7 2048x2048 1.93 3.56 5.66 6.51 7.03 4.03

Lift. 9/7 2048x2048 1.86 3.62 4.96 6.69 7.79 4.29

Conv. 9/7 4096x4096 1.96 3.79 5.35 6.90 7.47 7.34

Lift. 9/7 4096x4096 1.99 3.92 5.71 7.15 8.86 8.75

2 Proc. 4 Proc. 6 Proc. 8 Proc. 10 Proc. 12 Proc.

Fig. 2 Speed-up for multicore wavelet transform algorithms. Multicore HP Proliant SL390
G7.

Proliant SL390 G7 offers greater computing power, but it specially offers a
significant higher bandwidth memory access. As Figure 2 shows, we obtain
good values of speed-up even using 8 and 10 cores, depending on the image
resolution.

Moreover, we have compared our algorithms against the SMDWT proposal
introduced in Section 2, on both multicore platforms. We have developed a
parallel algorithm of this reference algorithm. In Figure 3 we present a com-
parison, using the Q6600 multicore platform, between our convolution-based
and lifting-based algorithms, and the SMDWT algorithm, using 2 and 4 cores.
As it can be seen, our convolution implementation has better times than the
lifting one, and both algorithms are 2.5 times as fast as the SMDWT algorithm.

Figure 4 presents the comparison showed in Figure 3 using the HP Proliant
SL390 GT. We can extend the conclusions obtained, up to the maximum
number of available cores, with the multicore Q6600, however if we increase
the number of cores, the efficiency of the SMDWT algorithm decreases faster
than using our algorithms.

4 Implementation of the Wavelet Transform on a GPU

In Section 3 we have compared the execution times and the speed-up obtained
by our algorithms against several relevant and recent algorithms. Our shared
memory parallel convolution-based algorithm presents the best performance



Parallel strategies for 2D-DWT 7

0.0

0.2

0.4

0.6

0.8

1.0

Image size

T
im

e
(s

.)

Conv-2CPU 0.003 0.070 0.324

Lift-2CPU 0.002 0.105 0.463

SMDWT-2CPU 0.013 0.208 0.844

Conv-4CPU 0.004 0.051 0.184

Lift-4CPU 0.003 0.087 0.287

SMDWT-4CPU 0.014 0.123 0.455

512 x 512 2048 x 2048 4096 x 4096

Fig. 3 Computational times for multicore wavelet transform algorithms. Multicore Q6600.

according to the results shown in Section 3. We question in this section if a bet-
ter performance of this algorithm can be achieved using a Graphical Processor
Unit (GPU). The GPU architecture is based on a set of multiprocessor units
called streaming multiprocessors (SM), containing each one a set of processor
cores called streaming processors (SP). CUDA is a heterogeneous computing
model that involves both the CPU and the GPU. In the CUDA parallel pro-
gramming model [15,16], an application consists of a sequential host program,
that may execute parallel programs known as kernels on a parallel device,
i.e. a GPU. A kernel is an Single Program Multiple Data (SPMD) computa-
tion that is executed using a large number of parallel threads organized into
a grid of blocks. The threads of each block can cooperate among themselves
using a barrier synchronization. Threads may access data from multiple mem-
ory spaces. Each thread has a private local memory. Each thread block has a
shared memory visible to all threads of the block and with the same lifetime as
the block. Finally, all threads have access to the same global memory. There
are also two additional read only memory spaces accessible by all threads:
the constant and texture memory spaces. Texture memory also offers different
addressing modes.

So, in order to develop our algorithms presented in Section 3 to run on
GPU architecture we must consider the GPU model we are going to use. We
use the NVIDIA GTX 280 GPU that contains 30 multiprocessors with 8 cores
in each multiprocessor, 1 GB of global memory and 16 KB of shared memory
by block (or SM).



8 V. Galiano et al.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Number of processes

T
im

e
(s

.)

SMDWT 2048x2048 0.297 0.151 0.079 0.056 0.045

Lift. 9/7 2048x2048 0.130 0.070 0.036 0.026 0.019

Conv. 9/7 2048x2048 0.111 0.058 0.031 0.020 0.017

SMDWT 4096x4096 1.190 0.605 0.313 0.218 0.171

Lift. 9/7 4096x4096 0.742 0.373 0.189 0.130 0.104

Conv. 9/7 4096x4096 0.530 0.270 0.140 0.099 0.077

1 Proc. 2 Proc. 4 Proc. 6 Proc. 8 Proc.

Fig. 4 Computational times for multicore wavelet transform algorithms. Multicore HP
Proliant SL390 G7.

Firstly, we will define our GPU-based algorithm, named as CUDA-Conv
9/7, as the reference algorithm. It will only use shared memory space to store
the buffer that will contain a copy of the working row/column data. The
constant memory space is used to store the filter taps h[n] and g[n].

We call each CUDA kernel with a one-dimensional number of thread blocks,
NBLOCKS, and a one-dimensional number of threads by block, NTHREADS.
In the horizontal DWT filtering process, each image row is stored in the shared
memory by the threads. After that, in the vertical filtering, each column is
processed in the same way. The row or column size determines the NBLOCKS
parameter, which must be greater or equal to the image width in the horizontal
step or the image height in the vertical step. One of the main goals in the
proposed CUDA-based methods is to reduce memory requirements, so we will
store the resulting wavelet coefficients in the original image memory space.

As there are different memory spaces available in GPUs, it would be of
interest to compute the DWT using different memory locations to determine
their impact in the algorithm runtime performance. In this sense, we have also
implemented the DWT convolution using different ways of accessing to the
three memory spaces from the threads: global memory, texture memory and
shared memory.

In the CUDA-Mem 9/7 called method, the original image is stored in the
GPU global memory and the buffer required to perform the filtering process
of columns is stored in the GPU global memory too. In Figure 5, we illustrate



Parallel strategies for 2D-DWT 9

LL


LH
H
�4
�9
�
1st Step:

Input in Global Memory


Buffer in Global  Memory


1st Step:  Horinzontal Filter
 ����3

7


even row:

Low-Pass Filter H


L
�3
�7
�
odd row:

High-Pass Filter G


HL


2st Step:

Output in Global Memory


2st Step:  Vertical Filter


HH


even col.:

Low-Pass Filter H
���4
9


odd col.:

High-Pass Filter G


Fig. 5 CUDA-Mem 9/7 method (global memory).

H

Buffer in Global  Memory


L

LL


LH
H
�4
��
Input in Texture Memory
 Buffer  Data in Texture Memory


1st Step:  Horinzontal Filter
 ����3

7


even row:

Low-Pass Filter H


L
�3
�
7

�

odd row:

High-Pass Filter G


HL


Output in Global Memory


3st Step:  Vertical Filter


HH


even col.:

Low-Pass Filter H
������4
9


odd col.:

High-Pass Filter G


2nd Step: Memory Copy to Texture


9


Fig. 6 CUDA-Text 9/7 method (texture memory).

the algorithm implemented in two steps. First, each thread computes only one
pixel applying the horizontal convolution and saving the output in the buffer
memory. The low pass filter and the high pass filter are applied to the even and
odd rows, respectively. The results are stored in the low and high frequency
area of the image. In the second step, the vertical convolution is computed
and the results are stored in the original memory space, the results are also
splitted in low and high frequencies by columns.

In the second method called CUDA-Text 9/7, whose behavior is shown
in Figure 6, the original image is stored in the GPU texture memory space
while the buffer required to perform the filtering process of rows/columns is
stored in the GPU global memory. We must remark that texture memory is
a read only memory, so an intermediate step is needed. After the horizontal
convolution, the output data must be copied to the texture memory space.
This copy must be done transferring data from GPU to CPU and after that,
from CPU to GPU.

Finally, the third method called CUDA-Sep 9/7 stores the original image
in the GPU global memory but computes the filtering steps from the shared
memory. As it can be seen in Figure 7, a block of the image is loaded into a
shared memory array with BLOCKSIZE pixels. The number of thread blocks,
NBLOCKS, or tiles depends on BLOCKSIZE and image dimensions. Note



10 V. Galiano et al.�image_width / (BLOCKSIZE+1)   Tiles


BLOCKSIZE


4


im
ag

e_
he

ig
ht

   
 T

ile
s
�A


p

r

o

n


A

p

r

o

n


A

p

r

o

n


A

p

r

o

n


A

p

r

o

n


A

p

r

o

n


A

p

r

o

n


A

p

r

o

n


A

p

r

o

n


A

p

r

o

n


A

p

r

o

n


A

p

r

o

n


A

p

r

o

n
�9

(a) Shared memory for row filter.

image_width Tiles


im
ag

e_
he

ig
ht

/ (
B

L
O

C
K

SI
Z

E
+

1)
T

ile
s


Apron


Apron


Apron


Apron


Apron


Apron


Apron

Apron


Apron


Apron

Apron


Apron


��3

7


B
L

O
C

K
SIZ

E



(b) Shared memory for column filter.

Fig. 7 Shared Memory for Daubechies 9/7 filter.

that, around the loaded image block there is an apron of neighbor pixels of the
width of the filter radius (where filter radius is the half of the filter length minus
1) that is required in order to properly filter the image block. These regions are
showed in Figure 7(a) and 7(b) as shaded pixels. In both subfigures, the values
of the filter radius and the filter length corresponding to the Daubechies 9/7
filter are represented. We can reduce the number of idle threads by reducing
the total number of threads per block and also using each thread to load
multiple pixels into shared memory. This ensures that all threads are active
during the computation stage. Note that the number of threads in a block
must be a multiple of the warp size (32 threads on GTX 280) for optimal
efficiency.



Parallel strategies for 2D-DWT 11

To achieve higher efficiency and higher memory throughput, the GPU at-
tempts to coalesce accesses from multiple threads into a single memory transac-
tion. If all threads within a warp (32 threads) simultaneously read consecutive
words then single large read of the 32 values can be performed at optimum
speed. In the CUDA-Sep 9/7 algorithm, the convolution process is separated
in two stages: 1) the row filtering stage and 2) the column filtering stage. Each
row/column filtering stage is separated into two sub-stages: a) the threads load
a block of pixels of one row/column from the global memory into the shared
memory, and b) each thread computes the filter over the data stored in the
shared memory and stores the results in the global memory. We must not for-
get about the cases when a row or column processing tile becomes clamped by
image borders, and initialize clamped shared memory array indices with cor-
rect values. In this case, threads also must load in shared memory the values
of adjacent pixels in order to compute the pixels located in borders (named as
Apron area in Figure 7).

In Figure 8, we compare computational times to obtain the 2D-DWT using
the four proposed CUDA-based algorithms. We want to remark that in all
experiments reported we have used floating point precision. We can observe
that the results obtained by the CUDA-Conv 9/7 algorithm are similar to the
results obtained by CUDA-Mem 9/7 and CUDA-Text 9/7 algorithms, but
the CUDA-Conv 9/7 algorithm has the lowest memory requirements because
the image is overwritten with the wavelet coefficients while the CUDA-Mem
9/7 and CUDA-Text 9/7 algorithms need to double memory requirements.
On the other hand, the best performance is achieved by the CUDA-Sep 9/7
algorithm because in this algorithm we optimize the memory access and we
achieve optimal memory throughput in the shared memory. As we can observe,
efficient use of shared memory access let us to achieve the best performance.
Data for the 4096×4096 image size is not presented because the shared memory
is not large enough to store a row/column of the image including the symmetric
extension. The available shared memory in the GTX280 GPU is 16384B, the
needed shared memory for a 4096 × 4096 image size is 4104 pixels, that is
16416B. Note that we use the symmetric extension in order to avoid the border
effects, therefore we need to extend the maximum size of filter divided by 2
at both ends, being for the particular case of the Daubechies 9/7 filter 4
pixels at both ends. In the 4096× 4096 case it would be necessary to splitting
the row/column, which in fact is the same scheme as the CUDA-Mem 9/7
algorithm.

In order to compare our CUDA DWT implementations with other propos-
als, in Figure 9 we show the frame rate obtained by our algorithms and by the
algorithm proposed in [10], illustrated as Wippig&Klauer. The Wippig&Klauer
algorithm is based on the definition of fragment shader and the use of a tex-
ture of twice the image size for the temporary and final results. Authors aim
to achieve better performance using low level graphics programming through
the OpenGL API, being in this case most of graphics hardware supported.
The Wippig&Klauer algorithm is a direct implementation of the filter banks
by a block (fragment shader). Furthermore, the border effects are prevented



12 V. Galiano et al.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Image size

T
im

e
(s

.)

CUDA-Conv 9/7 0.001 0.007

CUDA-Mem 9/7 0.001 0.006 0.024

CUDA-Text 9/7 0.002 0.008 0.027

CUDA-Sep 9/7 0.001 0.003 0.009

512 x 512 2048 x 2048 4096 x 4096

Fig. 8 Computational times for proposed algorithms on the GTX280.

by indirect accessing to image positions stored in the texture memory and us-
ing separate kernels for that purpose. All these algorithms have been tested in
the same GPU (GTX 280) and with six wavelet decomposition levels. For high
resolution images, no data are described in the cited paper [10]. However, for a
2048×2048 image size all our algorithms achieve better performance than the
Wippig&Klauer proposal, in particular the CUDA-Sep 9/7 algorithm which
obtains a framerate 52 times as fast as the Wippig&Klauer algorithm. Remark
that the Wippig&Klauer algorithm performs twice the operations than our al-
gorithms, because of the translation-invariant DWT used in that algorithm.

5 Conclusions

We have presented both multicore-based (convolution and lifting) and CUDA-
based algorithms (convolution) that perform the two dimensional discrete
wavelet transform. We have analyzed the behavior of the proposed algorithms
over a shared-memory multiprocessor and a GPU architecture. Furthermore,
we have compared our multicore-based proposals against a recent algorithm
called SMDWT. The multicore-based algorithms obtain a speed-up above 1.9
when using two processors and above 2.4 and up to 3.4 when using four pro-
cessors, running on a relatively low computing power platform as the Q6600
multicore platform, when compared to the sequential CPU algorithm. But,
when running on the HP Proliant SL390 G7, we obtain good speed-ups even
using the maximum number of available cores, depending on the image res-
olution. Since the best results over a multicore platform have been obtained
by the convolution algorithm which also requires the smaller buffer size, we



Parallel strategies for 2D-DWT 13

0

400

800

1200

1600

2000

Image size

F
ra

m
e

ra
te

(f
p

s
.)

Wippig&Klauer 59.6 7.5

Conv 9/7 1230.0 146.3

Mem 9/7 873.4 158.9 41.6

Text 9/7 612.7 130.7 37.1

Sep 9/7 1913.4 390.6 113.8

512 x 512 2048 x 2048 4096 x 4096

Fig. 9 Framerate for proposed algorithms on the GTX280.

have developed the corresponding GPU-based algorithm using CUDA and im-
plemented the row/column buffer in the GPU shared memory. The speed-up
achieved by the GPU-based algorithm is up to 20 relative to the sequential
implementation in one core (data transfer time is not included). Note that
wavelet transform is only a single first step in an image/video codec and the
wavelet coefficients obtained must be processed according to the final appli-
cation. Also, we have developed several CUDA-based algorithms using the
different available kind of memories in a GPU. Between them, the CUDA-Sep
9/7 algorithm using the GPU shared memory is the fastest one, taking ad-
vantage of the separable properties of the Daubechies 9/7 filter to optimize
the memory coalescence. In conclusion, we would like to point out that 1)
the use of a multicore platform obtains good performance, and 2) we obtain
a high speed-up in a GPU compared to the results obtained in the multicore
platform. The CUDA-based algorithm to chose depends on the parameter to
be optimized, which can be either the computational time or the memory
requirements.

References

1. K. Rao and P. Yip. Discrete cosine transform: Algorithms, advantages, applications. In
Academic Press, USA, 1990.

2. ISO/IEC 15444-1. JPEG2000 image coding system, 2000.
3. A. Said and A. Pearlman. A new, fast and efficient image codec based on set partitioning

in hierarchical trees. IEEE Transactions on Circuits, Systems and Video Technology,
6(3):243–250, 1996.

4. S. G. Mallat. A theory for multi-resolution signal decomposition: The wavelet represen-
tation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):674–
693, July 1989.



14 V. Galiano et al.

5. W. Sweldens. The lifting scheme: a custom-design construction of biorthogonal wavelets.
Applied and Computational Harmonic Analysis, 3(2):186–200, April 1996.

6. W. Sweldens. The lifting scheme: a construction of second generation wavelets. SIAM
Journal on Mathematical Analysis, 29(2):511–546, March 1998.

7. C. Chrysafis and A. Ortega. Line-based, reduced memory, wavelet image compression.
IEEE Transactions on Image Processing, 9(3):378–389, March 2000.

8. Y. Bao and C.C. Jay Kuo. Design of wavelet-based image codec in memory-constrined
environment. IEEE Trans. on Circuits and Systems for Video Technology, 11(5):642–
650, May 2001.

9. Chih-Hsien Hsia, Jing-Ming Guo, Jen-Shiun Chiang, and Chia-Hui Lin. A novel fast
algorithm based on smdwt for visual processing applications. In Circuits and Systems,
2009. ISCAS 2009. IEEE International Symposium on, pages 762 –765, May 2009.

10. D. Wippig and B. Klauer. Gpu-based translation-invariant 2d discrete wavelet transform
for image processing. International Journal of Computers, 5(2):226–234, 2011.

11. R.J. Rost. OpenGL c© Shading Language. Number 2nd edition. Addison-Wesley, 2006.
12. I. Daubechies and W. Sweldens. Factoring wavelet transforms into lifting steps. Fourier

Analysis and Applications, 4(3):247–269, 1998.
13. J.M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE

Transactions on Signal Processing, 41(12), December 1993.
14. OpenMP Architecture Review Board. Openmp c and c++ application program inter-

face, version 2.0. March 2002.
15. J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming with

cuda. In Queue, volume 6, pages 40–53, 2008.
16. NVIDIA Corporation. Nvidia cuda c programming guide, version 3.2.


