
The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Jaya optimization algorithm with GPU-acceleration

A. Jimeno-Morenilla · J.L.

Sánchez-Romero · H. Migallón · H.

Mora-Mora

Received: date / Accepted: date

Abstract The purpose of optimization methods consists in look for an op-
timal value given a specific function within a constrained or unconstrained
domain. These methods are useful for a wide range of scientific and engi-
neering applications. Recently, a new optimization method called Jaya has
generated a growing interest due to its simplicity and efficiency. In this pa-
per we present the Jaya GPU based parallel algorithms developed, we analyze
both the parallel performance and the optimization performance using a well-
known benchmark of unconstrained functions. The results indicate that the
parallel Jaya implementation achieves a significant speed-up for whole bench-
mark, obtaining speed-ups of up to 190x, without disturbing the optimization
performance.

Keywords Jaya, optimization, parallelism, GPU, CUDA

This research was supported by the Spanish Ministry of Economy and Competitiveness under
Grant TIN2015-66972-C5-4-R, co-financed by FEDER funds.(MINECO/FEDER/UE)

A. Jimeno-Morenilla
Department of Computer Technology, University of Alicante, E-03071, Alicante, Spain.
Tel.: +34-965903400 x 2453
Fax: +34-965909874
E-mail: jimeno@dtic.ua.es

J.L. Sánchez-Romero
Department of Computer Technology, University of Alicante, E-03071, Alicante, Spain.

H. Migallón
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.

H. Mora-Mora
Department of Computer Technology, University of Alicante, E-03071, Alicante, Spain.

2 A. Jimeno-Morenilla et al.

1 Introduction

Optimization methods are devoted to find an optimal value for a given func-
tion, generally a minimum. Each function to be optimized has its specific
domain, behaviour and number of variables involved. Indeed, some of these
functions have local minima, so the find of the absolute optimum can become
very difficult.

Optimization methods can be mainly divided into deterministic and heuris-
tic approaches. Deterministic approaches take advantage of the analytical
properties of the function (see [1]). When coping with non-convex or large-
scale optimization problems, determining the global optimum may become a
very complex task. In this case, heuristic methods should be used since they
are usually more flexible and efficient than deterministic ones, and the com-
putational time required to find the optimum can be highly reduced.

Heuristic optimization methods are classified into Evolutionary Algorithms
(EA) and Swarm Intelligence (SI) algorithms. Among the EA methods, it is
worthwhile mentioning Genetic Algorithm (GA), Differential Evolution (DE),
Evolutionary Strategy, and some others. Among the SI methods (see [2]), it
is worthwhile mentioning Particle Swarm Optimization (PSO), Artificial Bee
Colony (ABC), and some others. Other methods based on phenomena in na-
ture have been developed, such as Harmony Search, Biogeography-Based Op-
timization, and some others (see [3,4]). The success of most of the mentioned
algorithms is greatly conditioned by their specific parameters. The proper
tuning of these parameters is a crucial factor for an efficient find of the global
optimum. Recently, two optimization methods have been proposed, namely
TLBO (Teacher-Learner Based Optimization) [5] and Jaya [6,7]. Both opti-
mizations algorithms have the advantage of not needing specific parameter
tuning. They only require general parameters such as the number of iterations
and the population dimension. Although they are very similar, TLBO uses
two phases per iteration, whereas Jaya only performs one phase per iteration.
The Jaya algorithm has generated a growing interest in many scientific and
engineering areas due to its simplicity and efficiency, see for example [8–14]
and some others.

Optimization algorithms have been usually implemented on computer sys-
tems following a traditional and sequential approach. However, most of these
algorithms are feasible to be decomposed into independent tasks and executed
in parallel. In the last years, the performance of parallel hardware architectures
has greatly increased, while their cost has been highly reduced. Nevertheless,
parallelizing an algorithm is not a simple task since it requires a reformula-
tion and adequacy to the specific architecture to be used. Our work is based
on the use of manycore platforms (Graphics Processing Units (GPU)). GPUs
are originally dedicated to graphics processing but, since they have become
massively parallel resources, they are suitable to be applied to other high per-
formance processing tasks. Some research works can be found in the literature
which demonstrate the advantages of executing parallel implementations of op-

Jaya optimization algorithm with GPU-acceleration 3

timization algorithms on both multiprocessors (see for example [15–18]) and
manycore GPUs (see for example [19–24]).

The rest of the paper is organized as follow: in Section 2, we present the
recent Jaya optimization algorithm and its advantages; in Section 3, we will
describe the GPU based parallel algorithms developed; in Section 4, we analyze
the latter both in terms of parallel performance and optimization behavior;
and in Section 5 some conclusions are drawn.

2 The Jaya algorithm

As mentioned earlier, the Jaya algorithm has the advantage of not requiring
specific tuning parameter: only population size (number of different individ-
uals) and generations (number of iterations) should be configured. This algo-
rithm is based on the fact that the optimal solution for a given problem can
be obtained moving towards the best partial solution and, at the same time,
avoiding the worst solution. Compared with other optimization methods such
as GA, ABC, DE, PSO, and TLBO, Jaya obtained better results in terms
of best, mean, and worst values of different constrained and unconstrained
benchmark functions [25].

The description of the Jaya algorithm is as follows. Let f(x) be the objec-
tive function to be minimized (or maximized). At any iteration i, assume that
there are n design variables (i.e. j = 1, 2, . . . n) and p candidate solutions (i.e.
population size, k = 1, 2, . . . p). The best candidate obtains the best value of
f(x) (i.e. f(x)best) in the whole candidate solutions, and the worst candidate
obtains the worst value of f(x) (i.e. f(x)worst) in the whole candidate solu-
tions. If Xj,k,i is the value of the jth variable for the kth candidate during the
ith iteration, then this value is modified by means of the following equation:

X
′

j,k,i = Xj,k,i + r1,j,i (Xj,best,i − |Xj,k,i|)− r2,j,i (Xj,worst,i − |Xj,k,i|) , (1)

where Xj,best,i is the value of the variable j for the best candidate, and
Xj,worst,i is the value of the variable j for the worst candidate. In Equation

1, X
′

j,k,i is the updated value of Xj,k,i, and r1,j,i and r2,j,i are two random
numbers, in the range [0, 1], for the jth variable computed in the ith iteration.
The term r1,j,i (xj,best,i − |Xj,k,i|) indicates the tendency of the algorithm to
move closer to the best solution, whereas the term −r2,j,i (xj,worst,i − |Xj,k,i|)
indicates the tendency of the algorithm to avoid the worst solution. Obviously,
the new candidate (X

′

j,k,i) is accepted only if it gives a better function evalua-
tion. All the accepted function values at the end of each one of the iterations
are maintained, so these values become the input to the next iteration.

3 GPU acceleration of Jaya

The Jaya algorithm has inherent parallel features which can be exploited.
On the one hand, each candidate solution (individual k = 1, 2, . . . p in the

4 A. Jimeno-Morenilla et al.

algorithm) into the population can independently perform the function eva-
luation. Moreover, each design variable (j = 1, 2, . . . n in the algorithm) can
update its value, taking into account the current best and worst values. On
the other hand, the Jaya algorithm performs several independent executions
(Runs) of the algorithm. In our proposal we try to execute all these executions
simultaneously. Considering all the computed solutions, statistical data about
the results (best, worst and mean solution, and also standard deviation) are
the algorithm output. The parallel Jaya implementation was developed us-
ing CUDA 7.5. Two different Nvidia Maxwell GPUs were used to evaluate
the parallel performance with respect to the sequential implementation, which
was supported by two general purpose Intel processors. The GPUs used were
the Nvidia GTX950 (768 CUDA cores, 1.025GHz, 2GB memory) and the
GTX970 (1, 664 CUDA cores, 1.05GHz, 4GB memory). Intel processors used
were the i7-4790 (3.6GHz) and the i7-6700 (3.4GHz). Both GPUs used are
Maxwell Nvidia GPUs, which therefore are composed by Maxwell Streaming
Multiprocessors (SMM), each one with 128 CUDA cores.

Is worthy to note that depending on the function to be optimized, the
computational cost of the Jaya algorithm may very small respect to the re-
quired synchronization processes, which can make the work of parallelization
unsuccessful. For example, in a first parallel approach, in order to increase
the computational cost assigned to each CUDA core, a single CUDA thread
is responsible of the whole computation of the function to be minimized (or
maximized), i.e. the computing of the function evaluation of one individual of
population. Therefore, taking into account that the maximum size of popula-
tion is usually not more than several hundreds, the number of total number of
CUDA threads may be not enough to occupy efficiently the GPU. For exam-
ple this parallel approach obtained a low speed-up of 10x when comparing the
GPU (parallel) and the CPU (sequential) executions for Rosenbrock function.
Obviously, our parallel approach increases the number of CUDA threads to
increase the occupancy of the GPU. For that purpose is necessary to analyze
the 30 test functions to exploit the inherent parallelism inside them, in order
to be able to increase the total number of CUDA threads. Note that, the par-
allel computation of the evaluation of the functions involve reduction process,
which, obviously, should be performed using the GPU shared memory. On the
other hand depending on the particular function to be optimized it will be
achieved different speed-ups.

As can be seen in Equation (1) the entire updated population is accessed
by all threads involved in the computing, in order to read best and worst in-
dividuals and to update them when necessary. Therefore, in order to obtain
a good parallel performance, the population data should be stored in GPU
shared memory. Since the GPU shared memory is owned by each GPU multi-
processor (SMM in our GPUs), each independent execution of the algorithm
should be mapped on one single SMM, i.e. the number of CUDA thread blocks
in the grid of the kernel launched is equal to the desired number of indepen-
dent executions (Runs), and as aforementioned the number of CUDA threads

Jaya optimization algorithm with GPU-acceleration 5

per block depends on both the population size and low level parallelization of
the function to be optimized.

In our proposal, the number of threads per block are set considering both
the number of design variables of the function to be optimized and the po-
pulation size. Accordingly, the number of threads per block were configured
in a 2D array, being the row size equal to the population size and being the
column size equal to the number of design variables. As previously mentioned,
the GPU shared memory is key to the efficient behavior due to is used to
store the whole population, the partial values of the evaluations of the func-
tions, the new candidates, and other data related to the implementation of the
algorithm, for example, the indices of the current best and worst solutions.

Algorithm 1 shows the skeleton of the parallel implementation of Jaya in
the GPU platform. The low level inherent parallelism of functions to be opti-
mized are, usually, linked to computation associated to each design variable,
therefore i iterates over the population size (line 2) and j iterates over the
number of design variables (line 3), while each thread block obtains a solution
to be transferred to CPU (line 10). After each update population (line 6), a
thread synchronization barrier is inserted to start the new iteration with the
correct values (best and worst) of population.

Algorithm 1 Skeleton of the low level parallel Jaya GPU implementation.
1: DEVICE CODE:
2: i = threadIdx.x i = 0, 1, . . . Population

3: j = threadIdx.y i = 0, 1, . . . V ARs

4: Create Population (i, j)
5: for i = 1 to Iterations do

6: Update Population (i, j)
7: Synchronization barrier
8: end for

9: r = blockIdx.x

10: Store Best Solution Solution(r)
11: Delete Population
12:
13: HOST CODE:
14: Obtain Best Solution and Statistical Data

The operations performed by each thread for creating the different indi-
viduals (line 4 in Algorithm 1), are depicted in Algorithm 2. Note that the
independent computation associated to each design variable are denoted by
Fs(i, j, var) in line 5, a reduction procedure is used to obtain the function eva-
luation of each population member (line 8). Once the function are evaluated
for all population members, in line 10 best and worst candidates are obtained
after the necessary synchronization barrier.

Finally, Algorithm 3 shows the operations performed for updating each
individual (line 6 in Algorithm 1). In line 5 a new design variable is computed
following Equation 1 and we compute the function evaluation part associated
to this design variable, to obtain the function evaluation after the synchroniza-

6 A. Jimeno-Morenilla et al.

Algorithm 2 Create Population (device function).

1: Create Population Function. Block Size (Pop, V AR):
2: {
3: Obtain random number r

4: Compute design var (var(i, j, r))
5: Compute Fs(i, j, var): independent function term (i, j)
6: Synchronization barrier
7: REDUCTION process to obtain (GPU Shared Memory):
8: Fstart(i): function evaluation of member i

9: Synchronization barrier
10: REDUCTION process to obtain (GPU Shared Memory):
11: Best and Worst solutions of Population
12: }

tion barrier in line 9. Depending on the function evaluation the new design
variable are stored or not (line 12). Analogously to Algorithm 2 best and worst
candidates are obtained after the necessary synchronization barrier (line 15).

Algorithm 3 Update Population (device function).

1: Update Population Function. Block Size (Pop, V AR):
2: {
3: Obtain random number r1
4: Obtain random number r2
5: Compute varnew(i, j): design var (i, j)
6: Compute Fs(i, j): independent function term (i, j)
7: Synchronization barrier
8: REDUCTION process to obtain (GPU Shared Memory):
9: Fnew(i): function evaluation of member i

10: Synchronization barrier
11: if Fnew(i) < F (i) then

12: var(i, j) = varnew(i, j)
13: end if

14: REDUCTION process to obtain (GPU Shared Memory):
15: Best and Worst solutions of Population
16: }

In order to clarify the kernel dimensions, Fig. 1 depicts the parallel ex-
ecution scheme, where each block corresponds to an independent run. Each
independent execution (Run) of the algorithm is performed by one block, the
solution obtained is stored in GPU global memory and transferred to the CPU
to compute, in CPU, the final statistical data. The threads of one block per-
form the parallel computing of the partial values of the evaluations of the
function for the whole population, where P is the population size (that is,
number of individual) and N is the number of design variables involved in
the function to be optimized. Note that the value of P is considered a tuning
parameter, while the value of N is inherent to the chosen function. Worthy to
note that the GPU shared memory performance and the available amount is
a key to obtain good speed-ups. On the one hand, the shared memory perfor-

Jaya optimization algorithm with GPU-acceleration 7

mance allows sharing efficiently the data involved in the calculations; so, the
amount of shared memory allows increasing the population size.

Fig. 1 Parallel computing scheme on GPU.

4 Numerical experiments

The comparison between the sequential and the parallel implementations of the
algorithm was made taking into account 30 unconstrained functions frequently
used as a well-known benchmark in several works about optimization (see for
example [7,26]).

In our experiments the number of iterations was set to 30, 000. Two pa-
rameters were modified so as to evaluate the parallel algorithm when com-
pared with the sequential implementation in terms of both the speed-up and
the optimization performance: number of Runs was varied in the set of val-
ues {2, 4, 8, 16, 32, 64, 128, 256}; and population size was varied within the set
{8, 16, 32}. Due to the number of Runs sets the number of thread blocks, and
the number of individuals joint to the number of the design variables set the
number threads per block, these two parameters set the grid dimensions to
launch the kernel.

Figure 2 shows the speed-up achieved when comparing the parallel imple-
mentation on the Nvidia GTX970 GPU with the sequential execution on the
Intel i7-4790 processor, for the optimization of the Rosenbrock function which
is defined with 30 design variables. Obviously, when the value of Runs is smaller
than the number of SMM (13 for the Nvidia GTX970) the GPU cannot be
fully occupied and, therefore, the speed-up obtained is usually low. Therefore,
the number of Runs must be at least equal to the number of multiprocessors of
the GPU, moreover is well known that to obtain good occupancy the number

8 A. Jimeno-Morenilla et al.

of thread blocks, usually, must be greater than the number of available mul-
tiprocessors. It can be observed that a maximum speed-up higher than 50x
was obtained with 64 Runs and a population size of 8. In this case, the error
was in the order of 10−3 for both the sequential and the parallel implemen-
tations. Note that the speed-up improves as the population size decreases for
the Rosenbrock function. This fact is due to the reduction processes become
less significant with respect to the total computational cost. Obviously the op-
timal population size depends on both the computational cost of the function
evaluation to be optimized and the number of variables of this function. So,
we can not set a global optimal value of population size.

Fig. 2 Speed-up obtained for the GPU Jaya algorithm to optimize Rosenbrock function
with different number of independent executions (Runs) and population sizes.

In order to analyze the optimal values of Runs and population size, we have
developed the CUDA parallel optimization algorithm of the whole benchmark.
Speed-up was calculated by following the same criteria as with the Rosenbrock
function with regard to fixed number of iterations, number of independent
executions, and population size. Remark that, depending on the function to
be optimized, the value of Runs were increased up to 1024, whereas in other
cases this parameter had to be decreased to 128 or even 64 due to the features
of the GTX950 GPU.

Table 1 shows the value of Runs and the population size related to the
maximum speed-up obtained for each one of the benchmark functions, as well
as the standard deviation for the sequential algorithm (SD CPU) and for the
parallel algorithm (SD GPU). First, analyzing the standard deviation data, it
can be seen that both results are very close, except in some cases, in which
sometimes the GPU performance is slightly better than the CPU performance,
and in other cases the CPU performance slightly outperforms the GPU per-

Jaya optimization algorithm with GPU-acceleration 9

formance. Worthy to note that this is the normal behavior attending to the
characteristics of the Jaya algorithm (see Equation (1)).

Table 1 Maximun speed-up and GPU and CPU standard deviation for the 30 test functions.

Id. Function Runs Pop. Max. SD SD
speed-up GPU CPU

F05 Matyas 1024 64 189.6 0.00E+00 0.00E+00
F29 Fletcher-Powell 5 128 32 132.0 2.06E+01 1.37E+02
F30 Fletcher-Powell 10 256 16 114.4 2.12E+03 5.45E+03
F22 Perm 512 32 91.3 2.80E-01 1.01E-01
F17 Michalewicz 2 256 64 73.5 9.81E-02 0.00E+00
F26 Langerman 2 512 64 67.8 0.00E+00 0.00E+00
F28 Langermann 10 128 32 54.6 0.00E+00 0.00E+00
F11 Rosenbrock 64 8 53.5 1.87E+03 2.66E+03
F16 Booth 256 256 52.1 0.00E+00 0.00E+00
F03 Beale 128 64 47.3 0.00E+00 0.00E+00
F27 Langerman 5 256 32 46.7 0.00E+00 0.00E+00
F07 Trid 6 512 32 44.6 0.00E+00 0.00E+00
F10 Schweffel 1.2 32 16 42.9 0.00E+00 0.00E+00
F01 Sphere 256 8 42.8 0.00E+00 3.36E-03
F20 Bohachevsky 3 512 64 41.8 0.00E+00 0.00E+00
F09 Zakharov 64 32 41.3 0.00E+00 0.00E+00
F08 Trid 10 512 8 40.7 0.00E+00 0.00E+00
F02 Sum of squares 128 16 40.3 0.00E+00 0.00E+00
F12 Dixon-Price 256 8 39.5 0.00E+00 4.16E-02
F04 Easom 512 64 38.6 0.00E+00 0.00E+00
F18 Michalewicz 5 64 128 37.1 6.86E-02 1.78E-01
F13 Foxholes 256 64 36.5 0.00E+00 9.19E+01
F21 Goldstein-Price 128 64 35.4 0.00E+00 0.00E+00
F14 Branin 256 128 31.9 0.00E+00 0.00E+00
F15 Bohachevsky 1 512 128 31.1 0.00E+00 0.00E+00
F06 Colville 128 32 31.0 0.00E+00 0.00E+00
F19 Bohachevsky 2 256 64 28.6 0.00E+00 0.00E+00
F25 Penalized 2 128 8 26.2 4.24E+00 4.22E+00
F23 Hartmann 3 64 64 23.8 7.39E-01 0.00E+00
F24 Ackley 128 8 18.4 2.11E+00 2.07E+00

On the other hand, it can be observed that we obtain good speed-ups values
being, in some cases, the speed-up higher than 100x. Indeed, in case of F05 (the
Matyas function), the speed-up is near 190x with a population size of 64 and
1024 Runs. Analyzing Table 1, we can extract some conclusions, for example
functions Trid 6 and Trid1 10 have the same definition, not more complex,
being the only difference the number of design variables (6 and 10 respectively),
which definition is shown in (2). Both functions obtain the maximun speed-up
with the same number of Runs (equal to 512) but the population size must
be greater for Trid 6, i.e. the function with lower number of variables. Similar
conclusions can be applied to the Langermann (F26, F27 and F28) and the
Fletcher-Powell (F29 and F30) functions.

10 A. Jimeno-Morenilla et al.

FTrid =
D
∑

1

(

x2
i − 1

)2
−

D
∑

2

(xi ∗ xi−1) (2)

However, with regard to the Michalewicz (F17 and F18) functions, max-
imum speed-up significantly increases when decreasing the number of design
variables from 5 to 2. In this case, the high complexity of the Michalewicz
functions, shown in (3), causes not efficient computation in the GPU.

FMichalewicz = −

D
∑

1

sinxi

(

sin

(

ix2
i

π

))20

(3)

The best speed-up is obtained optimizing the Matyas function, shown in
(4). In this function, each thread i computes the corresponding term 0.26x2

i ,
while the first thread also performs the final summation of the two terms with
the last one. Obviously, in order to follow the parallel scheme shown in Fig. 1
the number of threads to compute one Matyas function evaluation is equal to
2, i.e. the number of design variables, it could be considered the computational
load is unbalanced because, after computing the terms 0.26x2

i , only one thread
works in order to compute the term 0.48x1x2 and to reduce the three partial
results to obtain the final result. Note that in this case only one thread store
its partial term computed in the GPU shared memory to be read for the
thread that computes the final result. So the percentage of idle threads while
computing the functions evaluations is only 50%.

FMatyas = 0.26(x2
1 + x2

2) + 0.48x1x2 (4)

The worst speed-up is obtained optimizing the Ackley function, shown in
(5), in which each thread i computes in parallel the terms x2

i and cos 2πxi.
Indeed, some threads participate in the reduction (summation) of the afore-
mentioned terms, and finally, the first thread performs the exponentiation
calculations and the summation of the four terms to provide the global func-
tion evaluation. Adding that the number of variables is high (30) the numerous
reduction processes causes, in this case, the speed-up obtained.

FAckley = −20 exp



−0.2

√

√

√

√

1

D

D
∑

1

x2
i



− exp

(

1

D

D
∑

1

cos 2πxi

)

+ 20+ e (5)

A high number of variables does not imply poor performance, for example
the Rosenbrock function has a large number of design variables (30) but it
obtains good speed-up values of 53.529x, even better than several functions
with a reduced number of design variables. The definition of this function is
shown in (6). In this function, each thread i, except the last one, computes
the term 100(x2

i − xi+1)
2 + (1 − xi)

2. Once all terms have been computed
only remains to perform the reduction (summation) procedure, in which some
threads participate.

Jaya optimization algorithm with GPU-acceleration 11

FRosenbrock =
D−1
∑

1

(

100
(

x2
i − xi+1

)2
+ (1− xi)

2
)

(6)

5 Conclusions

In this work we have presented a GPU based parallel algorithm of Jaya, a
recent optimization algorithm. We have described in detail the different levels
of the parallel algorithms developed. We have analyzed the performance of our
proposals using a benchmark of 30 unconstrained functions, which have not
been specifically optimized, although obviously in some of them it is advisable.
Although good performance has been achieved for the whole benchmark, it has
been shown in what kind of functions the performance could be improved. We
conclude, as the results of the experimentation demonstrate, that the parallel
implementation of Jaya on GPUs provides a significant speed-up when com-
pared with the sequential execution in CPUs. In the best case, the speed-up
rises to near 190x, being the mean speed-up for the 30 benchmark functions
equal to 53x, whereas the median is 41x.

References

1. M.-H. Lin, J.-F. Tsai, and C.-S. Yu, “A review of deterministic optimization methods in
engineering and management,” Mathematical Problems in Engineering, vol. 2012, 2012.

2. E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to Ar-
tificial Systems. Oxford University Press, 1999.

3. R. V. Rao and V. Patel, “An elitist teaching-learning-based optimization algorithm for
solving complex constrained optimization problems,” International Journal of Indus-
trial Engineering Computations, vol. 3, pp. 535–560, 2012.

4. ——, “Comparative performance of an elitist teaching-learning-based optimization al-
gorithm for solving unconstrained optimization problems,” International Journal of
Industrial Engineering Computations, vol. 4, pp. 29–50, 2013.

5. R. V. Rao, V. Savsani, and D. Vakharia, “Teaching-learning-based optimization: A
novel method for constrained mechanical design optimization problems,” Computer-
Aided Design, vol. 43, no. 3, pp. 303–315, 2011.

6. R. V. Rao, D. P. Rai, and J. Balic, “A multi-objective algorithm for opti-
mization of modern machining processes,” Engineering Applications of Artificial
Intelligence, vol. 61, no. Supplement C, pp. 103 – 125, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0952197617300465

7. R. V. Rao, “Jaya: A simple and new optimization algorithm for solving constrained and
unconstrained optimization problems,” International Journal of Industrial Engineering
Computations, vol. 7, pp. 19–34, 2016.

8. S. P. Singh, T. Prakash, V. Singh, and M. G. Babu, “Analytic hierarchy process based
automatic generation control of multi-area interconnected power system using Jaya
algorithm,” Engineering Applications of Artificial Intelligence, vol. 60, pp. 35–44, 2017.

9. K. Gao, A. Sadollah, Y. Zhang, R. Su, and K. G. J. Li, “Discrete Jaya algorithm for
flexible job shop scheduling problem with new job insertion,” in Control, Automation,
Robotics and Vision (ICARCV), 2016 14th International Conference on. IEEE, 2016,
pp. 1–5.

10. K. Gao, Y. Zhang, A. Sadollah, and R. Su, “Jaya algorithm for solving urban traffic
signal control problem,” in Control, Automation, Robotics and Vision (ICARCV), 2016
14th International Conference on. IEEE, 2016, pp. 1–6.

12 A. Jimeno-Morenilla et al.

11. R. Azizipanah-Abarghooee, M. Malekpour, M. Zare, and V. Terzija, “A new inertia
emulator and fuzzy-based lfc to support inertial and governor responses using Jaya
algorithm,” in Power and Energy Society General Meeting (PESGM), 2016. IEEE,
2016, pp. 1–5.

12. M. Bhoye, M. Pandya, S. Valvi, I. N. Trivedi, P. Jangir, and S. A. Parmar, “An emis-
sion constraint economic load dispatch problem solution with microgrid using Jaya
algorithm,” in Energy Efficient Technologies for Sustainability (ICEETS), 2016 Inter-
national Conference on. IEEE, 2016, pp. 497–502.

13. I. N. Trivedi, S. N. Purohit, P. Jangir, and M. T. Bhoye, “Environment dispatch of
distributed energy resources in a microgrid using Jaya algorithm,” in Advances in Elec-
trical, Electronics, Information, Communication and Bio-Informatics (AEEICB), 2016
2nd International Conference on. IEEE, 2016, pp. 224–228.

14. S. Mishra and P. K. Ray, “Power quality improvement using photovoltaic fed dstatcom
based on Jaya optimization,” IEEE Transactions on Sustainable Energy, vol. 7, no. 4,
pp. 1672–1680, 2016.

15. A. J. Umbarkar, N. M. Rothe, and A. Sathe, “Openmp teaching-learning based opti-
mization algorithm over multi-core system,” International Journal of Intelligent Sys-
tems and Applications, vol. 7, pp. 19–34, 2015.

16. A. J. Umbarkar, M. S. Joshi, and P. D. Sheth, “Openmp dual population genetic algo-
rithm for solving constrained optimization problems,” International Journal of Infor-
mation Engineering and Electronic Business, vol. 1, pp. 59–65, 2015.

17. R. Baños, J. Ortega, and C. Gil, “Comparing multicore implementations of evolutionary
meta-heuristics for transportation problems,” Annals of Multicore and GPU Program-
ming, vol. 1, no. 1, pp. 9–17, 2014.

18. P. Delisle, M. Krajecki, M. Gravel, and C. Gagné, “Parallel implementation of an ant
colony optimization metaheuristic with openmp,” in Proceedings of the 3rd European
Workshop on OpenMP. Springer Berlin Heidelberg, 2001.

19. Y. Tan and K. Ding, “A survey on gpu-based implementation of swarm intelligence
algorithms,” IEEE Transactions on Cybernetics, vol. 46, no. 9, pp. 2028–2041, Sept
2016.

20. G.-H. Luo, S.-K. Huang, Y.-S. Chang, and S.-M. Yuan, “A parallel bees algorithm
implementation on gpu,” Journal of Systems Architecture, vol. 60, no. 3, pp. 271 – 279,
2014, real-Time Embedded Software for Multi-Core Platforms. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1383762113001872

21. A. Delvacq, P. Delisle, M. Gravel, and M. Krajecki, “Parallel ant colony optimization
on graphics processing units,” Journal of Parallel and Distributed Computing,
vol. 73, no. 1, pp. 52 – 61, 2013, metaheuristics on GPUs. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731512000044

22. L. Mussi, F. Daolio, and S. Cagnoni, “Evaluation of parallel particle swarm
optimization algorithms within the cuda architecture,” Information Sciences, vol. 181,
no. 20, pp. 4642 – 4657, 2011, special Issue on Interpretable Fuzzy Systems. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0020025510004263

23. L. de P. Veronese and R. A. Krohling, “Differential evolution algorithm on the gpu with
c-cuda,” in IEEE Congress on Evolutionary Computation, July 2010, pp. 1–7.

24. Y. Zhou and Y. Tan, “Gpu-based parallel particle swarm optimization,” in 2009 IEEE
Congress on Evolutionary Computation, May 2009, pp. 1493–1500.

25. R. V. Rao and G. Waghmare, “A new optimization algorithm for solving complex
constrained design optimization problems,” Engineering Optimization, vol. 49, no. 1,
pp. 60–83, 2017.

26. D. Karaboga and B. Akay, “A comparative study of artificial bee colony algorithm,”
Applied Mathematics and Computation, vol. 214, no. 1, pp. 108 – 132, 2009. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0096300309002860

