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Abstract During the last decade, there has been an
increasing interest in the design of very fast wavelet
image encoders focused on specific applications like in-
teractive real-time image and video systems, running on
power-constrained devices such as digital cameras, mo-
bile phones where coding delay and/or available com-
puting resources (working memory and power process-
ing) are critical for proper operation. In order to reduce
complexity, most of these fast wavelet image encoders
are non-(SNR)-embedded and as a consequence, pre-
cise rate control is not supported. In this work, we
propose some simple rate control algorithms for these
kind of encoders and we analyze their impact to de-
termine if, despite their inclusion, the global encoder
is still competitive with respect to popular embedded
encoders like SPIHT and JPEG2000. In this study we
focus on the non-embedded LTW encoder, showing
that the increase in complexity due to the rate control
algorithm inclusion, maintains LTW competitive with
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respect to SPIHT and JPEG2000 in terms of R/D per-
formance, coding delay and memory consumption.
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1 Introduction

In the last years, the coding efficiency of wavelet-
based image encoders have been improved, achieving
in this way, a reduction in the bandwidth or amount of
memory needed to transmit or store a compressed im-
age. Unfortunately, many of these coding optimizations
involve higher complexity, requiring faster and more
expensive processors. For example, the JPEG 2000 [9]
standard uses a large number of contexts with an it-
erative time-consuming optimization algorithm (called
PCRD) to improve coding efficiency. Other encoders
(like the one proposed in [18]) achieve very good
coding efficiency with the introduction of high-order
context modeling, being the model formation a slow
process. Even bit-plane coding employed in many en-
coders (like [16] and [3]) results in a slow coding process
since an image is scanned several times, focusing on
a different bit-plane in each pass, which in addition
causes a high memory access overhead (cache miss rate
increase).

The above mentioned encoders are designed to ob-
tain high performance in rate-distortion terms and also
a broader functionality, but unfortunately other para-
meters like complexity or memory resources are not
considered as critical as the former ones.

Recently, several authors have shown interest in
developing very fast and simple wavelet encoders that
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are able to get reasonable good R/D performance with
reduced computing resources requirements. The objec-
tive of these fast and efficient image encoders is mainly
targeted to interactive real-time applications running
under resource constrained devices. In that scenario,
the data must be encoded as soon as possible to fit
the application constraints using the scarce available re-
sources in the system (memory and processing power).

Basically, these encoders do not present any type
of iterative method, and each coefficient is encoded as
soon as it is visited. However, this results in the loss
of SNR scalability and precise rate control capabilities
(in other words, the image cannot be compressed to
a specific user-defined file size). They simply apply a
constant quantization to all wavelet coefficients, encod-
ing the image at a constant and uniform quality, as it
happened in the former JPEG standard [8], where only
a quality parameter was available and no precise rate
control was performed.

In [15] the first non-embedded encoder was pro-
posed with the aim of reducing the complexity of
a wavelet-based image encoder. This algorithm is a
modified version of SPIHT [16], in which once a
coefficient is found to be significant, all significant bits
are encoded to avoid refinement passes (losing SNR-
scalability and rate control, both available in original
SPIHT). However, in this proposal, bit-plane process-
ing is still needed in the sorting passes, and thereby the
coding process is not speeded up too much.

One of the first fast non-embedded image encoders
was LTW [13], a tree-based wavelet encoder that avoids
bit-plane processing and predictive encoding techni-
ques; instead of that, it uses a one-pass coefficient
coding process with a very reduced number of contexts
for arithmetic encoding.

In [2] it has been proposed another very fast non-
embedded encoder called PROGRESS. It follows the
same ideas of [13], avoiding bit-plane coding and using
coefficient trees to encode wavelet coefficients in only
one pass. In this encoder, all the coefficients and not
only the zero coefficients, are arranged in trees. The
number of bits needed to encode the highest coefficient
in each tree is computed, and all the coefficients at
the current subband level are binary encoded with that
number of bits. Then, the following subband level is
encoded (in decreasing order) simply by computing
again the number of bits needed to represent each sub-
tree at that level and using that number of bits again.

Another fast non-embedded image encoder is the
BCWT encoder [7]. It offers high coding speed, low
memory usage and good R/D performance. The key
of BCWT encoder is its one-pass backward coding,
which starts from the lowest level sub-bands and travels

backwards. Map of Maximum Quantization Levels of
Descendants (MQD Map) calculation and coefficient
encoding are all carefully integrated inside this pass in
such a way that there is as little redundancy as possible
for computation and memory usage.

None of the above non-embedded encoders support
rate control so, in this paper, we propose several rate
control algorithms for them. We have chosen the LTW
encoder to evaluate the rate control algorithms not only
in terms of rate/distortion (R/D) performance but also
in terms of coding delay and overall memory usage.

Our first rate control proposal extracts some features
from the wavelet transformed image and finds corre-
lations with the quantization parameter for a specific
target bit-rate. The second proposal is based on a sim-
ple model of the encoding engine in a similar way than
in [6] and [11] where statistical models were employed
to accomplish rate control. To set the finer scalar uni-
form quantization parameter (Q), we model the bit-
rate evolution with a second order polynomial function.
Finally, to cope with the rate accuracy demands of
certain applications, we propose an iterative version
for bounding the estimation error with the minimum
number of iterations.

The rest of the paper is organized as follows. In
Section 2, the LTW algorithm is outlined. In Section 3,
we describe the proposed rate control algorithms and
evaluate their accuracy in Section 4. Then, in Section 5,
we show the results of the global encoder system
(including rate control) and compare it with SPIHT
and JPEG 2000 in R/D performance, complexity and
memory requirements. For further evaluation, we have
compared its performance with a fully optimized ver-
sion of JPEG2000 (Kakadu). Finally, in Section 6 some
conclusions are drawn.

2 LTW: A Fast Non-embedded Image Encoder

LTW is a tree-based wavelet image encoder, with state-
of-the-art coding efficiency, but less resource demand-
ing than other encoders in the literature. The basic
idea of this encoder is very simple: after computing a
dyadic wavelet transform of an image [1], the wavelet
coefficients are first quantized using two quantization
parameters (rplanes and Q) and then encoded with
arithmetic coding.

For the coding stage, if the absolute value of a
coefficient and all its descendants (considering the
classic quad-tree structure from [16]) is lower than a
threshold value (2rplanes), the entire tree is encoded with
a single symbol, which we call LOWER symbol. But
if a coefficient is lower than the threshold and not
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all its descendants are lower than it, that coefficient
is encoded with an ISOLATED_LOWER symbol. On
the other hand, for each wavelet coefficient higher than
2rplanes, we encode a symbol indicating the number of
bits needed to represent that coefficient, along with a
binary coded representation of its bits and sign (note
that the rplanes less significant bits are not encoded).

More details about the coding and decoding algo-
rithms, as well as a formal description can be found
in [14].

In this work, the rate control will be achieved by
properly tuning the quantization parameters. In par-
ticular the rplanes parameter for a coarser quantiza-
tion (in which rplanes less significant bits are removed
from each coefficient), and the Q parameter for a finer
adjustment in a typical uniform scalar quantization
process.

3 Rate Control Support for Non-embedded Encoders

In this section, we propose several lightweight rate
control algorithms for non-embedded encoding, with
increasing complexity and accuracy. These algorithms
will predict the proper quantization values that lead to
a final bit-rate close to the target one. Although these
rate control algorithms could be applied to whatever
non-embedded wavelet encoder, we will use the LTW
encoder in the evaluation to observe their behavior in
the overall encoding system.

3.1 Zero-order Entropy Based Rate
Control Algorithm

This method is based on the zero-order entropy (Eq. 1)
of the wavelet coefficients. The estimation of the quan-
tization parameters is based on the correlation between
entropy, target bit-rate and quantization parameters.

H(x) = −
∑

x

p(x)log2 (p(x)) (1)

We use the Kodak image set [4] as a representative
set of natural images for our purposes and the LTW
encoder with both Q and rplanes quantization para-
meters. As there is a correlation between the wavelet
coefficients entropy and the quantization parameters,
we can establish a relationship between them for a
given target bit-rate by means of curve and surface
fitting techniques [5, 12, 17, 19]. In particular, surface
fitting process was driven by polynomial bivariate (bit-
rate and entropy) equations due to its low computa-
tional complexity. So, Eqs. 2, 3 and 4 represent the
surface fitting expressions corresponding to the fine

quantizer estimation (Qrplanes (x, y)) for rplanes val-
ues of 2, 3 and 4 respectively. The variables ’x’ and
’y’ represent the wavelet coefficients entropy and the
target bit-rate respectively, and constant values a, b,
c, d, e, f, g, h, i and j have been computed through
the aforementioned surface fitting methods using the
wavelet coefficient entropy information extracted from
the Kodak image set. For each equation, we also show
the Coefficient of Determination (r2) that measures the
fitting goodness (ideally r2 = 1).

Qrp2 (x, y) = a + b x + c/y + dx2 + e/y2 + f x/y

+gx3 + h/y3 + ix/y2 + jx2/y

a = 23.99, b = −23.68, c = −1.27, d = 7.36,

e = 0.06, f = 1.10, g = −0.72, h = 0.003,

i = −0.06, j = −0.009
(
r2) = 0.949 (2)

Qrp3 (x, y) = a + b/x + c ln y + d/x2 + e (ln y)2

+ f (ln y) /x + g/x3 + h (ln y)3

+ i (ln y)2 /x + j (ln y) /x2

a = 13.04, b = −69.08, c = −5.98, d = 129.67,

e = 0.58, f = 19.07, g = −82.79, h = −0.07,

i = −0.66, j = −16.31
(
r2) = 0.950 (3)

Qrp4 (x, y) = a + b/x + c ln y + d/x2 + e (ln y)2

+ f (ln y) /x + g/x3 + h (ln y)3

+ i (ln y)2 /x + j (ln y) /x2

a = 5.29, b = −19.55, c = −2.29, d = 25.77,

e = 0.15, f = 4.74, g = −11.72, h = −0.02,

i = −0.02, j = −2.54
(
r2) = 0.968 (4)

The Entropy-based algorithm shown in Fig. 1 works as
follows:

– First (E1), the rplanes value is determined as a
function of the target bit-rate (Tb pp). We have ex-
perimentally determined the proper rplanes value
for the working bit-rate ranges. Particularly, the
best choice for a target bit-rate in the range 0.0625–
0.5 bpp is rplanes = 4, rplanes = 3 in the range
0.5–1.5 bpp and rplanes = 2 in the range 1.5–2 bpp

– Second (E2), we apply the coarser quantization
by removing the previously computed rplanes less
significant bits from all wavelet coefficients.
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Figure 1 Entropy-based algorithm.

– Third (E3), the zero-order entropy of the coarse
quantized wavelet coefficients (Se) is calculated.

– Finally (E4), the finer quantization parameter Q is
obtained from the surface fitting equation corre-
sponding to the selected rplanes value:
Q = Qrplanes

(
Se, Tb pp

)
.

3.2 Rate Control Based on a Trivial Coding Model

It is difficult to estimate the quantization parameters
at a certain degree of accuracy for a particular target
bit-rate by only using the zero order entropy of the
wavelet coefficients. So, we decided to study how the
encoder works in order to define a simplified statistical
model of the encoding engine in a similar way as in
[6] and [11]. In [6] authors propose an expensive rate
allocation scheme based on the Lagrangian optimiza-
tion problem that offers a low accurate rate control
capability. In [11] another statistical model based in
the generalized-Gaussian densities (GGD) approach is
proposed, obtaining an expensive but high accurate rate
control behavior.

In this work we will use the LTW coding engine in
order to define a simple model that will be able to sup-
ply a fast and accurate estimation of the resulting bit-
rate. The encoding model uses a two-tier quantization
process based on (1) a coarse quantization where the
rplanes least signifficant bits of all wavelet coefficients
are removed and (2) a finer quantization applied to
all wavelet coefficients through a scalar uniform quan-
tization (Q). So, the proposed model of the encoding
system will be defined in two parts:

Firstly, we need to determine the appropiate rplanes
value for a given target bit-rate. For each image in the
Kodak set, we perform the DWT and apply the coarse
quantization for each specific rplanes value (from 2
to 7). Then, for each rplanes value, the coarse quan-
tized DWT coefficients are classified to build the sym-
bol map. The symbol map will be compossed by (1)

non-significant symbols (zero coefficients) and (2) sig-
nificant symbols with magnitude n (wavelet coefficients
that require n bits to represent their value). Taking into
account this representation, we compute the probabil-
ity distribution function (pdf) of the LTW symbol map.

After that, we will obtain an estimation of the bit-
rate required to encode the symbol map by means of its
zero-order entropy (Se).

Since we also know the number of significant wavelet
coefficients and the number of bits needed for coding
their value and sign, we can calculate the exact number
of bits sent to the output bitstream, as they are raw
binary encoded (Bitstotal).

So, the final bit-rate estimation for each rplane value
(Eb pp(rplanes)) is obtained by adding the arithmetic
encoder estimation of the symbol map (Se) to the raw
encoding bit count of significant coefficients (Bitstotal)
(Eq. 5)

Eb pp(rplanes) = Se(rplanes) + Bitstotal(rplanes) (5)

The resulting estimation gives a biased measure of
the real bit-rate for all operative bit-rate range (from
0.0625 to 2 bpp) considered in this work. The model
bit-rate estimation (Eb pp) uses a zero-order entropy
model. However, LTW encoding scheme uses an adap-
tive arithmetic encoder with context modeling. This
difference produces an error between the estimated bit-
rate (Eb pp) and the target bit-rate as shown in Fig. 3.
We observed that the bit-rate estimation depends on
the symbol map entropy (Se), so the lower the entropy
the lower the estimation error. This leads us to re-
duce the estimation error by means of an adjustment
function which will be defined from the entire Kodak
image set.

In Fig. 2 we show the error adjustment function for
rplanes = 4 (no finer quantization Q is considered at
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Figure 2 (Model-based)—Estimation error as a function of sym-
bol map entropy (Se) from the entire Kodak image set for
rplanes = 4.
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Figure 3 (Model-based)—Estimated vs Real bit per pixel for the
entire Kodak image set (rplanes = 4).

the moment). For each image of the Kodak set we mea-
sure the real estimation error, so by using curve fitting
we define the adjustment error as a function of the
symbol map entropy (Se). In other words, this curve will
determine the model estimation error for rplanes = 4.
So, for each rplanes value we have obtained the ad-
justment function (�(rplanes, Se)) that we will apply
to reduce the model estimation error. So, the bitrate
estimation expresion will be rewrited as:

Eb pp(rplanes) = Se(rplanes) + Bitstotal(rplanes)

+�(rplanes, Se(rplanes)) (6)

In Fig. 3 we show the estimated and target bit-rates
resulting from encoding the whole Kodak image set
with a rplane value of 4. As it can be seen, the esti-
mation error is significantly reduced after applying the
corresponding adjustment function.

After that, the target bit-rate (Tb pp) will determine
the proper value of rplanes by choosing rplanes so that
Eb pp(rplanes) ≥ Tb pp > Eb pp(rplanes + 1).

Once the rplanes value is determined, we have to
estimate the scalar uniform quantization value (Q) that
will produce a bit-rate as close as possible to the target
bit-rate. For this purpose, we observed that the bit-
rate progression from rplane value to rplane + 1 value,
follows a second order polynomial curve (y = A ∗ x2 +
B ∗ x + C) that shares near the same x-value of the ver-
tex (Kmin = −B

(2∗A)
) for all images in the Kodak set (see

Fig. 4). Since we know three points of that quadratic
polynomial curve Eb pp(rplanes), Eb pp(rplanes + 1) and
the curve vertex (Kmin), we can build the corresponding
expression that will supply the estimated value of Q for
a given target bit-rate.

As mentioned, the Kmin value is not exactly the same
for all images in the Kodak set, so we have estimated
this value taking into account the symbol map entropy

fitting equation: Tbpp = 1.334x2 - 3.692x + 3.719
(r²) = 0.999
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Figure 4 (Model-based)—Bit-rate progression of four images
from the Kodak set from rplanes 3 to rplanes 4.

(Se) of all images in the Kodak set, in a similar way to
that in the error adjustment function. We could have
used the mean Kmin value from the Kodak set, but in
order to obtain a more accurate estimated value of Kmin

we use a curve fitting method instead. In Fig. 5 we show
the x-value of Kmin progression as a function of the
symbol map entropy, Se, of all images in the Kodak set
for rplanes = 2. We have obtained a fitting equation for
each rplanes value (from 2 to 7).

The whole algorithm, shown in Fig. 6, works as
follows:

– First (E1), we estimate the resulting bit-rate after
applying only the coarser rplanes quantization to
wavelet coefficients for rplanes values from 2 to 7
(Eb pp(rplanes)).

– Second (E2), we apply the corresponding error
adjustment functions to these estimations.

– Third (E3), we set the appropriate rplanes value for
the requested target bit-rate (Tb pp).
(Eb pp(rplanes) ≥ Tb pp > Eb pp(rplanes + 1)).

Curve fitting: Kmin = 0.1675x2 - 0.1586x + 1.2965
R² = 0.729
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Figure 5 (Model-based)—Kmin as a function of symbol map
entropy from the entire image Kodak set for rplanes = 2.



208 J Sign Process Syst (2012) 68:203–216

Figure 6 Model-based algorithm.

– Next (E4), we compute the Kmin value using the
symbol map entropy (Se) and rplanes.

– Then (E5), we obtain the quadratic expression for
determining the value of Q by using the Newton
interpolation algorithm.

– Finally, we solve the expression, so we obtain the
estimated Q value.

3.3 Lightweight Iterative Rate Control

With the Model-based rate control algorithm described
in the previous subsection we can define an iterative
version to reduce the estimation error with a moderate
computational complexity increase. Thus, depending
on the application requirements, we can get the proper
trade-off between both rate control factors: complexity
and accuracy. Now, we can define the maximum al-
lowed estimation error (MAE) as a relative or absolute
error and the algorithm will perform coding iterations
until this condition is satisfied or a maximum number
of iterations is reached.

In the first iteration, the proposed algorithm will
estimate the rplanes and Q values for the target bit-rate
by using the algorithm described in the previous subsec-
tion (see Fig. 6). Then the source image will be coded
with the quantization parameters found. If the resulting
bit-rate error is lower than the maximum allowed error

Figure 7 Iterative algorithm.

(MAE), then the algorithm finishes, otherwise, it per-
forms a new Q estimation based on the observed error.
This is done during the first three iterations obtaining
pair values of Q and real bit-rate. In the following
iterations, if needed, the new three real points obtained
are used to compute a new quadratic polynomial curve
for Q by means of the Newton interpolation algorithm
which will be more accurate than the previous one (see
algorithm in Fig. 7).

4 Rate Control Evaluation

Using a C++ implementation of the LTW encoder,
the different proposals were developed and tested on
an Intel PentiumM 1.6 Ghz Processor. To determine
the curve fitting and error adjustments in the first
two methods, we have used the Kodak image set as a
representative set of natural images. We restrict our
proposals to work in the range from 0.0625 to 1 bpp.
Finally, we used Lena (512 × 512), Barbara (512 ×
512), Goldhill (512 × 512) and Peppers (512 × 512) test
images (outside the Kodak set) to validate the proposed
methods.

In Fig. 8 we can see that, for all bit-rates in the range
0.625 to 1 bpp, the Model-based algorithm gets the
best results. Although for several images in the Kodak
set the Entropy-based algorithm performs better, the
maximum error peaks in the Model-based algorithm
are significantly lower than in the Entropy-based one.
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Figure 8 Entropy-based vs
Model-based % error
prediction for the entire
Kodak set. Vertical lines
indicate maximum and
minimum error values, while
boxes indicate quartiles
q1-q3, and q2 (median)
corresponds with horizontal
lines inside the boxes.
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The Model-based algorithm yields a lower error on
the estimation process over the Kodak image set than
the Entropy-based algorithm. Furthermore, the choice
of the rplanes parameter has been included in the esti-
mation process. Table 1 shows the average estimation
error of both the Entropy-based and the Model-based
algorithm at different target bit-rates. The Model-based
relative error produced is around 5% on average at
low compression rates and it grows up to 9% at higher
compression rates. This is due to the high slope of the
quadratic expression used to obtain Q (see Fig. 4) when
the rplanes parameter grows, so, a slight change over Q
parameter implies a high variation on the final bit-rate
and as a consequence, a higher estimation error.

In Fig. 9, we show the bit-rate accuracy of the
proposed rate control methods for Lena and Goldhill
test images. Although not shown, the behavior is very
similar in the other non-Kodak test images. In general,
the Model-based method does not work efficiently at
very low bit-rates in the range from 0.0625–0.125 bpp.
This behavior is due to the model simplicity where
there is no symbol differentiation in the insignificant
coefficients set. In particular the roots (LOWER sym-
bols) and members of lower trees, which are very
common symbols at these compression rates, are not
handled separately. However, at moderate and low

Table 1 Average % relative estimation error.

Entropy-based Model-based

1 bpp 15.35 4.46
0.5 bpp 16.76 5.11
0.25 bpp 14.25 7.48
0.125 bpp 44.64 8.50

compression rates, the Model-based proposal is more
accurate than the Entropy-based one.

In Fig. 10, we measured the computational cost (in
CPU cycles) of the proposed methods when coding the
Goldhill test image. As it can be seen, the Model-based
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Figure 9 Bit-rate accuracy for a Lena and b GoldHill images.
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method is the fastest one, due to the simplicity of
computations required for issuing an estimation. The
entropy-based proposal is 3 times slower than the
Model-based one, mainly due to the higher complexity
of float type computations. We want to remark that,
in the Entropy-based proposal the zero-order entropy
of all wavelet coefficients must be computed while in
the Model-based we only need to compute the sym-
bol map entropy, which is in fact a reduced number
of symbols. In the case of iterative versions, we can
observe that with a maximum 2% relative error, we
obtain a very fast rate control estimator (sometimes
faster than the entropy based). Also, we can state that
the computational cost is not dependent on the target

bit-rate, although in the iterative versions, the number
of iterations may produce some deviations.

5 Global Performance Evaluation

In order to analyze the impact of rate control proposals
when applied to LTW encoder, we have performed sev-
eral experiments comparing the obtained results with
the original encoder. In addition to R/D performance,
we also analyze other performance metrics like coding
delay and memory consumption.

So as to perform a fair evaluation, we have chosen
SPIHT (original version), JPEG2000 (Jasper 1.701.0)
and LTW version 1.1, since their source code is avail-
able for testing. The correspondent binaries were ob-
tained by means of Visual C++ (version 6.0) compiler
with the same project options. The test images used in
the evaluation were: Lena (512 × 512), Barbara (512 ×
512), GoldHill (512 × 512), Cafe (2560 × 2048) and
Woman (2560 × 2048).

Table 2 shows the coding delay for all the encoders
under evaluation. LTW_RC is the Model-based rate
control version of LTW (described in Section 3.2).
LTW_RCi is the iterative rate control version of LTW
(described in Section 3.3) with a relative (%value)
and an absolute (ABS suffix) rate control maximum
allowed error that we experimentally have fixed to
±0.04 b pps. We discard the first rate control method
(entropy-based) due to its lower accuracy with respect
to the Model-based one. As expected, JPEG2000 is the

Table 2 Comparison of
coding and decoding delays,
excluding DWT (time in
million of CPU cycles).

Codec/ SPIHT JPEG2000 LTW LTW-RC LTW- LTW
bit-rate orig. RCi 2% RCi-ABS

CODING Lena (512×512)
0.125 20.82 158.79 9.75 8.316 20.25 10.03
0.25 29.12 161.92 14.09 11.726 27.08 13.42
0.5 45.82 167.14 22.46 18.356 62.07 40.74
1 79.56 175.64 41.46 36.656 75.75 38.61

DECODING Lena (512×512)
0.125 11.3 11.46 8.28 6.77 6.77 6.77
0.25 19.38 18.11 13.39 10.8 10.8 10.8
0.5 34.9 30.78 23.48 18.84 18.84 18.84
1 66.8 50.99 46.52 39.64 39.64 39.64

CODING Cafe (2560×2048)
0.125 469.73 4546.51 210.41 192.06 265.49 265.81
0.25 687.67 4527.09 299.78 255.80 670.28 327.44
0.5 1128.43 4591.08 459.48 392.74 947.77 950.7
1 2017.8 4736.99 733.21 630.70 1444.62 1443.28

DECODING Cafe (2560×2048)
0.125 232.53 234.10 182.97 160.88 160.88 160.88
0.25 397.98 362.96 295.56 252.02 252.02 252.02
0.5 745.69 593.92 491.96 431.59 431.59 431.59
1 1453.89 1040.39 830.87 738.91 738.91 738.91
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Table 3 PSNR (dB) with
different bit-rate and coders.

Codec/ SPIHT JPEG LTW LTW LTW- LTW- Kakadu
bit-rate 2000 orig. RC RCi RCi 5.2.5

2% ABS

Lena (512×512)
0.125 31.10 30.81 31.28 30.59(−0.016) 31.06(−0.001) 30.59(−0.016) 30.95
0.25 34.15 34.05 34.33 33.65(−0.027) 34.05(−0.004) 33.65(−0.026) 34.11
0.5 37.25 37.26 37.39 36.76(−0.049) 37.15(−0.008) 37.08(−0.011) 37.30
1 40.46 40.38 40.55 40.34(+0.035) 40.20(−0.001) 40.34(+0.035) 40.40
Cafe (2560×2048)
0.125 20.67 20.74 20.76 20.63(−0.001) 20.63(−0.001) 20.63(−0.001) 20.78
0.25 23.03 23.12 23.24 22.60(−0.026) 23.08(+0.002) 22.60(−0.027) 23.15
0.5 26.49 26.79 26.85 26.04(−0.046) 26.53(−0.006) 26.53(−0.007) 26.84
1 31.74 32.03 32.02 30.89(−0.097) 31.64(−0.010) 31.64(−0.014) 32.03
Barbara (512×512)
0.125 24.86 25.25 25.21 24.30(−0.026) 25.04(+0.002) 24.21(−0.027) 25.24
0.25 27.58 28.33 28.04 27.09(−0.036) 27.76(−0.001) 27.09(−0.036) 28.36
0.5 31.39 32.14 31.72 30.80(−0.055) 31.47(−0.002) 31.34(−0.012) 32.17
1 36.41 37.11 36.67 35.61(−0.101) 36.39(−0.004) 36.25(−0.021) 37.15
Woman (2560×2048)
0.125 27.33 27.33 27.51 27.19(−0.007) 27.30(−0.003) 27.19(−0.007) 27.36
0.25 29.95 29.98 30.15 29.45(−0.028) 30.02(+0.004) 29.45(−0.027) 30.05
0.5 33.59 33.62 33.82 32.94(−0.050) 33.55(−0.002) 33.55(−0.001) 33.64
1 38.27 38.43 38.52 37.52(−0.098) 38.32(−0.003) 38.32(−0.002) 38.43

slowest encoder and the original LTW is one of the
fastest encoders. As shown in Table 2, the LTW_RC
version does not introduce a great overhead and it has
an acceptable accuracy. If this rate control algorithm
precision is not enough for the application, LTW_RCi
is the candidate at the expense of an increasing com-
plexity. In general, all the rate control versions of
LTW are faster than SPIHT, specially the non-iterative
version, LTW_RC, that performs the encoding process
twice as fast as SPIHT.

Although it could be thought that original LTW
should be faster than the LTW_RC version due to
rate control overhead, the results show just the op-
posite. The reason about this behavior is based on
the differences between the quantization processes of
both encoders. An image is encoded with the original
LTW encoder using a fixed value of rplanes parame-
ter (rp = 2) and moving the Q parameter through a
wide range ([0.5 − ∞[). However, the LTW_RC ver-
sion uses the estimated value for rplanes parameter
(from 2 to 7) limiting the value of the Q parame-
ter to a shorter range ([0.5 − 1.2]). So, as more non-
significant symbols are produced before applying the
finer quantization parameter (Q) with this method, the
algorithm becomes faster because more multiplication
operations are avoided. However, as a ‘side effect’,
coding efficiency decreases slightly, as we will see later.

In the iterative rate control versions, we have found
two ways of defining the maximum allowed error: a

relative or an absolute MAE (Maximum Allowed Er-
ror). The relative maximum error shows a non linear
behavior, since rate control precision of 1% is not
the same at 2 bpp than at 0.125 bpp. For very low
bit-rates, achieving an accuracy of 1% has no effects
to R/D performance. The maximum absolute error is
fixed independently of the target bit-rate, so it produces
different relative errors at different bit-rates. It is im-
portant to take into account that proposed rate control
methods have an average precission error around 5%
at 1 bpp and 9% at 0.125 bpp, as previously shown.

Table 3 shows the R/D evaluation of the proposed
encoders. In general, the original LTW encoder obtains
very good performance results, especially in Lena and
Woman test images. The iterative rate control versions
of LTW have slightly lower PSNR performance than
SPIHT and JPEG2000, being the LTW_RCi at 2%
the one that better R/D behavior shows. Table 3 also
shows the absolute bit-rate error in brackets for all
LTW rate control versions. The lower performance of
the rate control algorithm versions is mainly due to the

Table 4 Memory Requirements for evaluated encoders (KB).

Codec/ SPIHT JPEG2000 LTW LTW-RC LTW-RCi
image orig.

Lena 3228 4148 2048 2092 3140
Cafe 46776 65832 21576 21632 42188
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achieved final bit-rate that is always lower than the
target one (obviously, the more accuracy, the better
R/D performance).

In Table 4, memory requirements of the encoders
under test are shown. The original LTW needs only
the amount of memory to store the source image.

(a) 31.06 (b) 31.10 (c) 30.81

(d) Original

(e) 28.35 (f) 28.38 (g) 27.84

Figure 11 Lena compressed at 0.125 bpp a LTW_RCi_2%, b SPIHT, c JPEG2000 and Lena compressed at 0.0625 bpp
e LTW_RCi_2%, f SPIHT, g JPEG2000.
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LTW_RC requires also an extra of 1.2 KB, basically
used to store the histogram of significant symbols
needed to accomplish the Model-based rate control
algorithm. On the other hand, the LTW_RCi ver-
sion requires twice the memory space than LTW and
LTW_RC, since at each iteration the original wavelet
coefficients must be restored to avoid a new DWT time-
consuming procedure. SPIHT requires near the same
memory than LTW_RCi, and JPEG2000 needs three
times the memory of LTW.

Figure 11 shows Lena test image (512×512) com-
pressed at 0.125 bpp and 0.0625 bpp with (a, f)
LTW_RCi, (b, g) SPIHT and (c, h) JPEG2000. Al-
though SPIHT encoder is in terms of PSNR slightly
better than LTW_RCi and JPEG2000, subjective test
does not show perceptible differences between recon-
structed versions of Lena image. At 0.0625 bpp the
difference in PSNR between LTW_RCi or SPIHT and
JASPER is near 0.5 dB, but this difference is only
visible if we carry out a zoom over the eyes zone as it

can be seeing in Fig. 12. Both SPIHT and LTW_RCi
have a similar behavior.

5.1 Optimized Encoders

All LTW versions were developed finding the optimiza-
tions for maximizing R/D performance, so its software
code is not optimized, just like JPEG2000 reference
software. However, we have compared its performance
with respect to a full optimized implementation of the
JPEG 2000 algorithm: Kakadu [10], in order to eval-
uate whether a full optimization of LTW is worth the
effort. For that purpose, we have used the 5.2.5 version,
one of the fully optimized Kakadu versions which in-
cludes multi-thread and multi-core hardware support,
processor intrinsics like MMX/SSE/SSE2/SIMD and
fast multicomponent transforms.

As shown in Fig. 13, LTW_RC is a very fast en-
coder even though not being fully optimized. The speed
of LTW_RC lies on the simple engine coding model.

(a) (b) (c)

(d) Original

Figure 12 Zoom over eyes zone in reconstructed Lena at 0.0625 bpp - a LTW_RCi_2%, b SPIHT, c JPEG2000.



214 J Sign Process Syst (2012) 68:203–216

0.848 0.836

0 13 0 12

0.941 1.021
1

10
e 

(s
ec

o
n

d
s)

LTW_RC
Kkdu-5.2.5

0.033 0.034

0.13 0.12

0.01

0.1

Lena Barbara Café Woman

Ti
m

Figure 13 Execution time comparison (end-to-end) of the coding
process at 0.5 bpp.

LTW_RC is on average 1.2 times as fast as Kakadu-
5.2.5 for images like Cafe or Woman. For smaller im-
ages like Lena or Barbara, LTW_RC is on average 3.2
times as fast as Kakadu-5.2.5.

Regarding to memory requirements, LTW_RC
needs only the amount of memory to store the source
image and 1.2 KB to store the model histogram as men-
tioned before, while Kakadu memory requirements
are independent of the image size due to its DWT
block-based implementation and they are on average
1660 KB.

In terms of R/D, there are slight differences between
both codecs as Table 3 shows. For images with lots
of high frequency components, like Barbara, Kakadu
provides a better PSNR than LTW, but for images like
Lena or Woman, LTW outperforms Kakadu. So, a full
optimization of LTW codec will certainly increase the
coding speed and it will reduce the memory require-
ments even more, making the codec a very competitive
still image coding solution.

6 Conclusions

In this paper, we have presented three different rate
control algorithms suitable for non-embedded wavelet-
based encoders. We have implemented them over
the LTW encoder in order to evaluate their behav-
ior and compare the performance results with JPEG
2000 and SPIHT encoders in terms of R/D, execution
time and memory consumption. Furthermore, we have
shown that we can add rate control functionality to
non-embedded wavelet encoders without a significant
increase of complexity and little performance loss.
Among the proposed simple rate control algorithms,

the LTW_RC proposal is the one that exhibits the
best trade-off between R/D performance, coding delay
(twice as fast as SPIHT and 8.8 times as fast as JPEG
2000) and overall memory usage (similar to original
LTW).

Also, we have compared LTW_RC coder with a
highly optimized version of JPEG2000 (Kakadu), re-
sulting competitive in terms of coding delay (up to 3.9
times as fast as Kakadu for medium size images) with
slightly lower R/D performance. So, a full optimiza-
tion process will make LTW_RC even faster and with
lower memory requirements. These optimizations will
be mainly focused on the DWT coding step by using fast
and low memory demanding DWT techniques like line-
based or block-based ones and exploiting the parallel
capabilities of modern processors (like multithreading
and SIMD instructions).
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