
journal manuscript No.
(will be inserted by the editor)

Performance Analysis of Frame Partitioning in

Parallel HEVC Encoders

H. Migallón · P. Piñol · O.

López-Granado · V. Galiano · M.P.

Malumbres

Received: date / Accepted: date

Abstract The new video coding standard HEVC includes two concepts that
allow to partition a frame into regions that can be independently encoded
and decoded. These two concepts are named “Tiles” and “Slices”. In this
paper we present and analyze updated and optimized parallel versions of the
HEVC encoder based on tiles and slices. We have evaluated the benefits and
drawbacks of both approaches in terms of computational times, rate distortion
performance and video application. The results show that both approaches
obtain good speed-ups, being the parallel version based on tiles the one that
obtains the best trade-off between speed-up achieved (up to 9.3x) and rate
distortion performance loss (1.6% BD-rate for AI mode and 2.2% for LB mode
on average).

Keywords Tiles, HEVC, Video coding, Parallel algorithms, Multicore,
Performance

This research was supported by the Spanish Ministry of Economy and Competitiveness under
Grant TIN2015-66972-C5-4-R, co-financed by FEDER funds.(MINECO/FEDER/UE)

H. Migallón
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.
Tel.: +34-966658390
Fax: +34-966658814
E-mail: hmigallon@umh.es

P. Piñol
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.

O. López-Granado
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.

V. Galiano
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.

M.P. Malumbres
Physics and Computer Architecture Dept. Miguel Hernández University, 03202 Elche, Spain.



2 H. Migallón et al.

1 Introduction

The high improvement in the coding performance achieved by the current video
coding standard (HEVC - High Efficiency Video Coding) [1] over its predeces-
sor (H.264/AVC - Advanced Video Coding) [2] comes at a cost: an incresase
in its computational complexity. The continuous rise in the power of hard-
ware devices is not enough to offset this drawback. This is the reason why the
acceleration of HEVC video encoding/decoding has become a research topic
with growing interest. Many of the proposals to accelerate HEVC processing
are based on the use of parallel computing. HEVC itself includes some new
features which allow high-level parallelization (at picture or subpicture level),
like Wavefront Parallel Processing (WPP), slices and tiles, and some new fea-
tures which allow low-level parallelization (inside the encoding process), like
Local Parallel Method [3] which allows parallel motion estimation. In [4] the
authors use the combination of two types of hardware architectures (GPUs and
CPUs). GPUs are used to parallelize the Motion Estimation algorithm used
for inter-picture prediction, while CPUs add a higher level of parallelism (us-
ing WPP or a GOP-based algorithms) by means of multicore processing. Fast
decoding of pre-encoded multimedia content, like digital cinema and video on
demand has motivated several works like [5] and [6], focused on parallelizing
the decoding side of HEVC. However, the highest computational complexity is
found at the encoder side. Parallelizing the video encoding part can be useful
for applications like video recording and live event streaming. There are works
that examine and propose low-level parallel techniques for encoding video se-
quences with HEVC, like the parallelization of the motion estimation module
[7] and the parallelization of the intra prediction module [8]. Our work is based
in high-level parallel techniques, by using tiles and slices to take advantage of
shared memory architectures. In [9], authors compare slices and tiles encoding
performance in HEVC. They show their results in terms of percentage of bit
rate increase/decrease, using square tile partitioning and slices with nearly the
same number of CTUs than the ones inside a tile. In our study we also evaluate
tiles and slices performance but we will deal with both complexity reduction
(related with the encoding process) and R/D performance. In a previous work
[10], authors evaluate the impact in the encoding performance of the different
tile partitioning schemes. In this work we have extended the previous study
to a wider set of video resolutions and we perform a comparison between tiles
and slices, to see the benefits of using tiles or slices depending on the video
content resolution and to analyze the parallel scalability of both approaches
as the number of procceses increase.

The rest of the paper is organized as follows. In Section 2 we will present
the main aspects of frame partitioning in HEVC. Section 3 will describe the
parallel algorithms based on tiles and slices partitioning. In Section 4 the
results of our tests will be presented and analyzed. At last, several conclusions
will be drawn in Section 5.



Performance Analysis of Frame Partitioning in Parallel HEVC Encoders 3

Fig. 1 Division of a full-HD frame (1920x1080 pixels) into 10 slices (of 51 CTUs each)

2 HEVC frame partitioning schemes

Tiles and slices are two elements present in the HEVC standard which have
something in common: they are regions of a same frame which can be decoded
(and also encoded) in an independent way. This characteristic enables them
as valid parallelization approaches for video encoding and decoding processes.
The independence of tiles has a drawback: the existing redundancy between
nearby pieces of data which belong to different tiles cannot be exploited. This
aftermath is also applicable to slices and makes coding efficiency (regarding
R/D performance) decrease. Slices, moreover, are composed of a header and
data. This structure may turn out to be useful to provide an encoded video se-
quence with error resilience features (because the loss of a single slice does not
prevent the rest of the slices in the same frame from being properly decoded),
but the inclusion of a header in every slice also causes a R/D performance
decrease. The overhead introduced by slices’ headers depends on the video
resolution and on the number of slices per frame. Slices are formed by a con-
secutive (in raster scan order) number of Coding Tree Units (CTUs), as can be
seen in Fig. 1. Tiles, however, are rectangular regions resulting from the divi-
sion of a frame into one or several rows and columns (see Fig. 2). Tile division
is very flexible because each one of the rows can have a different height (with
an integer number of CTUs), and each one of the columns can have a different
width (with an integer number of CTUs). This fact can lead to a wide variety
of layouts for the division of a frame into tiles. In the example shown in Fig. 1,
a full-HD (1920x1080) frame is divided into 10 slices of 51 consecutive CTUs
each. In the example shown in Fig. 2, a full-HD (1920x1080) frame is divided
into 10 tiles using a partitioning scheme of 5 columns with a width of 6 CTUs
and 2 rows with a height of 8 and 9 CTUs, respectively.

In this work we have implemented both a tile based and a slice based
parallelization of the HEVC video encoder for shared memory platforms. The



4 H. Migallón et al.

Fig. 2 Division of a full-HD frame (1920x1080 pixels) into 10 tiles (5 columns with a width
of 6 CTUs; 2 rows with a height of 8 and 9 CTUs each)

encoding of each tile/slice is assigned to a different core. We have evaluated
the performance of the parallel versions of the video encoder for 2, 4, 6, 8, 9,
and 10 processes and compared the obtained results with those provided by
the sequential version, both regarding R/D performance and computing per-
formance. As stated before, we map the tiles/slices per frame onto the same
number of processes. For a certain number of tiles per frame, we can find dif-
ferent frame partitions. For example, if we want to divide the frame into 9
tiles we can choose three main different tile distributions: 9x1 (9 columns by
1 row), 1x9 (1 column by 9 rows), and 3x3 (3 columns by 3 rows). In order
to get the maximum parallel computing efficiency we will use the layouts that
provide the most balanced load distribution, i.e., producing tiles with equal or
similar number of CTUs. A balanced load distribution does not always guar-
antee a balanced work distribution because the resources needed to encode a
single CTU may vary, but a completely unbalanced load distribution will likely
bring a low parallel computing efficiency. As a measure of the load distribution
balance we have calculated the maximum theoretical parallel efficiency, con-
sidering the same computational complexity for each CTU. A value of 100%
denotes that all the processes will encode the same number of CTUs (and this
number is exactly the average value). In Table 1, we have enumerated the dif-
ferent tile partitions (layouts) that we will use in our tests for different number
of processes (NP) and different video resolutions. In Table 2, the data corre-
sponding to the slice partitions is presented. In these two tables the average
number of CTUs per tile/slice is shown (AvgCTU), and the number of CTUs
in the biggest tile/slice of the frame partition (MaxCTU) is presented. The
percentage of load balance (Bal %) is an indicator of how near every layout is
from the theoretical optimal load balance.

If we divide, for example, a frame with 2560x1600 pixels into 10 tiles, and
choose the 10x1 layout, then we will have 10 tiles of 100 CTUs each, which



Performance Analysis of Frame Partitioning in Parallel HEVC Encoders 5

Table 1 Tile based layouts and load balance percentage for different video resolutions

(a) 2560x1600 (40x25 CTUs)

NP Lay. AvgCTU MaxCTU Bal %

1P 1x1 1000 1000 100%

2P 1x2 500 520 96%

2x1 500 500 100%

4P 1x4 250 280 89%

2x2 250 260 96%

4x1 250 250 100%

6P 1x6 166.7 200 83%

2x3 166.7 180 93%

3x2 166.7 182 92%

6x1 166.7 175 95%

8P 1x8 125 160 78%

2x4 125 140 89%

4x2 125 130 96%

8x1 125 125 100%

9P 1x9 111.1 120 93%

3x3 111.1 126 88%

9x1 111.1 125 89%

10P 1x10 100 120 83%

2x5 100 100 100%

5x2 100 104 96%

10x1 100 100 100%

(b) 1920x1080 (30x17 CTUs)

NP Lay. AvgCTU MaxCTU Bal %

1P 1x1 510 510 100%

2P 1x2 255 270 94%

2x1 255 255 100%

4P 1x4 127.5 150 85%

2x2 127.5 135 94%

4x1 127.5 136 94%

6P 1x6 85 90 94%

2x3 85 90 94%

3x2 85 90 94%

6x1 85 85 100%

8P 1x8 63.8 90 71%

2x4 63.8 75 85%

4x2 63.8 72 89%

8x1 63.8 68 94%

9P 1x9 56.7 60 94%

3x3 56.7 60 94%

9x1 56.7 68 83%

10P 1x10 51 60 85%

2x5 51 60 85%

5x2 51 54 94%

10x1 51 51 100%

(c) 1280x720 (20x12 CTUs)

NP Lay. AvgCTU MaxCTU Bal %

1P 1x1 240 240 100%

2P 1x2 120 120 100%

2x1 120 120 100%

4P 1x4 60 60 100%

2x2 60 60 100%

4x1 60 60 100%

6P 1x6 40 40 100%

2x3 40 40 100%

3x2 40 42 95%

6x1 40 48 83%

8P 1x8 30 40 75%

2x4 30 30 100%

4x2 30 30 100%

8x1 30 36 83%

9P 1x9 26.7 40 67%

3x3 26.7 28 95%

9x1 26.7 36 74%

10P 1x10 24 40 60%

2x5 24 30 80%

5x2 24 24 100%

10x1 24 24 100%

(d) 832x480 (13x8 CTUs)

NP Lay. AvgCTU MaxCTU Bal %

1P 1x1 104 104 100%

2P 1x2 52 52 100%

2x1 52 56 93%

4P 1x4 26 26 100%

2x2 26 28 93%

4x1 26 32 81%

6P 1x6 17.3 26 67%

2x3 17.3 21 83%

3x2 17.3 20 87%

6x1 17.3 24 72%

8P 1x8 13 13 100%

2x4 13 14 93%

4x2 13 16 81%

8x1 13 16 81%

9P 1x9 N/A N/A N/A

3x3 11.6 15 77%

9x1 11.6 16 72%

10P 1x10 N/A N/A N/A

2x5 10.4 14 74%

5x2 10.4 12 87%

10x1 10.4 16 65%

means 100% of load balance (all tiles have the same number of CTUs). If we,
instead, select the 1x10 layout, then we will have 5 tiles with 80 CTUs each,
and 5 tiles with 120 CTUs each. The most probable scenario is that the 5
processes managing the “small” tiles remain idle waiting for the processes in
charge of the “big” tiles. In this case, a maximum load balance index of 83%
would be achieved. So, for a specific number of processes (NP), the selected
layout may affect the parallel efficiency. Also note that a single layout can
provide different load balance percentages depending on the resolution of the
video sequence. For example, the 4x1 layout obtains 100% and 94% of load
balance for 2560x1600 and 1920x1080 video resolutions, respectively.

3 Tile-based and slice-based parallel algorithms

Tile-based and slice-based algorithms are based on a parallel structure devel-
oped over the HEVC reference software HM-16.3 [11]. Note that, the algo-



6 H. Migallón et al.

Table 2 Slice based layouts and load balance percentage for different video resolutions

(a) 2560x1600 (40x25 CTUs)

NP AvgCTU MaxCTU Bal %

1P 1000 1000 100%

2P 500 500 100%

4P 250 250 100%

6P 166.7 167 99%

8P 125 125 100%

9P 111.1 112 99%

10P 100 100 100%

(b) 1920x1080 (30x17 CTUs)

NP AvgCTU MaxCTU Bal %

1P 510 510 100%

2P 255 255 100%

4P 127.5 128 99%

6P 85 85 100%

8P 63.8 64 99%

9P 56.7 57 99%

10P 51 51 100%

(c) 1280x720 (20x12 CTUs)

NP AvgCTU MaxCTU Bal %

1P 240 240 100%

2P 120 120 100%

4P 60 60 100%

6P 40 40 100%

8P 30 30 100%

9P 26.7 27 99%

10P 24 24 100%

(d) 832x480 (13x8 CTUs)

NP AvgCTU MaxCTU Bal %

1P 104 104 100%

2P 52 52 100%

4P 26 26 100%

6P 17.3 18 96%

8P 13 13 100%

9P 11.6 12 96%

10P 10.4 11 95%

rithms presented in [12] and [13] have been developed using an older version
of the HEVC reference software (HM-10.0). In this work, we have improved
them on several issues such as a) disk access time reduction, b) significant
memory savings to share the original frame, the reconstructed frame, and the
reference picture lists. All of these changes do not affect the R/D behavior of
the parallel algorithms with respect to the sequential algorithm. Furthermore,
we have included a process that automatically determines the number of CTUs
assigned to each slice and the required settings in the encoding configuration
parameters.

Both algorithms share a single parallel structure, but the parallel proce-
dures are developed on different levels of the reference software. The tile-based
parallel algorithm is parallelized in a lower level than the slice-based parallel
algorithm. Considering both the complexity of the HEVC standard and its
implementation (i.e the HM-16.3 reference software) the parallel structure is
conformed on a high level of the reference software. The reference software
is developed in C++, based on a lot of complex objects, but we will only
enumerate the main objects in order to describe our parallel algorithms.

As we have said, Algorithm 1 describes the parallel skeleton for both par-
allel algorithms. Experimentally, we have confirmed that the best parallel per-
formance is obtained when a) the original frame is read only once and shared
by all threads, and b) when the bitstream is conformed only by the sequen-
tial thread. The objects referenced in Algorithm 1 are: TEncTop object which
includes all the information about the encoding process; outputAccessUnits ob-
ject which stores portions of the final bitstream; TComPicYuv object which
points to original and reconstructed frames; and ListPicYuvRec object which
points to the reference picture list(s).



Performance Analysis of Frame Partitioning in Parallel HEVC Encoders 7

Algorithm 1 Parallel skeleton of both algorithms
1: Sequential thread (ST) reads configuration file
2: for i = 0 to (Number of processes - 1) do

3: ST clones TEncTop object
4: ST clones outputAccessUnits object
5: end for

6: All threads creates TComPicYuv object
7: ST allocates original and reconstructed current frame
8: All threads creates ListPicYuvRec object
9: if Id thread > 0 then

10: Update TComPicYuv object to point to the original and reconstructed frames of the
ST

11: Update ListPicYuvRec object to point to the list of reconstructed frames of the ST
12: end if

13: while frames encoded ≤ frames to be encoded do

14: ST reads frame
15: OpenMP barrier
16: Encode frame (TEncTop objects)
17: if GOP is finished then

18: OpenMP barrier
19: ST thread prepares, sorts and writes the bitstream (outputAccessUnits)
20: end if

21: end while

The first 12 lines of Algorithm 1 represent its initialization stage, where one
thread (ST) reads de configuration parameters and clones several objets for
the available working threads. Then, every thread loads a copy of the original
and reconstructed frame in their corresponding objects and prepares to start
the coding process updating some objects and creating additional ones (as
required by the HEVC reference software). In line 13, a loop is defined to
encode every frame of the input video. In each iteration, the ST reads a new
frame and then a barrier is established to synchronize all working threads
just before encoding. In line 16, the Encode frame function will perform the
encoding using a tile-based (defined in algorithm 3) or slice-based (defined in
algorithm 2) approach. Once the frame is encoded, the algorithm checks if
it is the last frame of the actual Group of Pictures (GOP). If so, it waits in
a barrier to synchronize all threads (assuring all threads finish its encoding
task) and proceed to write the bitstream of current GOP. This operation is
performed by the ST thread. If the current encoded frame is not the last frame
of a GOP, the loop iterates toi encode the next frame of the video sequence.

In Algorithm 2 the maximum number of CTUs assigned to each slice is
calculated taking into account that the number of slices is the same as the
number of processes and also, that the computational load is balanced. Note
that, in the sequential algorithm, CABAC (Context-adaptive binary arith-
metic coding) uses information (contexts) from previous slices of the current
frame. However, in the slice-based parallel version, all slices are encoded con-
currently, so we can not use the statistical data obtained from the other slices.
After initialization, every thread invokes CompressSlice function to encode the
assigned slice following the steps found at HEVC reference software. When one



8 H. Migallón et al.

Algorithm 2 Slice-based Encode frame function
1: Sequential thread (ST) computes the maximum number of CTUs for each slice
2: All threads initialize CABAC contexts
3: CompressSlice (thread id)
4: {
5: Obtain F irstCTU and LastCTU of the slice thread id

6: for i = F irstCTU to i ≤ LastCTU do

7: Encode CTU[i]
8: end for

9: Reconstruct slice
10: Filter Process
11: }
12: OpenMP barrier
13: Finish the slice encoding (ST thread)

thread finish the encoding process, it waits for the other threads in the bar-
rier. When all threads finish their slice coding process, then the ST thread
may complete the last encoding steps.

Regarding the tile-based parallel algorithm, Algorithm 3 includes the most
important steps performed inside the CompressTile procedure (line 3 of the
Algorithm 2) following a very similar procedure than the one used in the slice-
based algorithm. The main differences between them are (a) the localization
and the encoding order of the CTUs belonging to one slice/tile, and (b) the
way the output bistream is conformed.

Remark that the slice-based and tile-based parallel algorithms are mutually
exclusive, therefore when the tile-based algorithm is used automatically no
slices are used and viceversa.

Algorithm 3 Tile-based Encode frame function
1: Sequential thread (ST) creates Substreams (one for each tile)
2: CompressTile (thread id)
3: {
4: Obtain the list of CTUs of assigned tile to substream thread id

5: for i = 0 to i < Number of CTUs in tile do

6: Obtain the next CTU to be encoded
7: Encode CTU
8: end for

9: Reconstruct tile
10: Filter Process
11: }
12: OpenMP barrier
13: Finish the tile encoding (ST thread)

4 Numerical experiments

The proposed parallel algorithms have been tested on a shared memory plat-
form consisting of two Intel XEON X5660 hexacores at 2.8 GHz and 12MB



Performance Analysis of Frame Partitioning in Parallel HEVC Encoders 9

(a) 2 Processes. (b) 6 Processes.

(c) 9 Processes. (d) 10 Processes.

Fig. 3 Speed-up evolution for Traffic, Park Scene, Four People, and Basketball Drill video
sequences with different number of processes and tile and slice partitioning for QP=37 and
LB mode.

cache per processor, and 48 GB of RAM. The operating system used is Cen-
tOS Linux 5.6 for x86 64 bit. The parallel environment has been managed
using OpenMP [14]. The compiler used is g++ compiler v.4.1.2. The reference
encoder software used is HM 16.3 [11].

The eight video sequences used in our experiments are Traffic and Peo-

ple On Street (2560x1600, 150 frames at 30MHz), Tennis and Park Scene

(1920x1080, 240 frames at 24MHz),Four People andKristen & Sara (1280x720,
500 frames at 50MHz), and Party Scene and Basketball Drill (832x480, 600
frames at 60MHz)), and we obtained results using Low-delay B (LB) and All
Intra (AI) coding modes at different Quantization Parameters (QPs) (22, 27,
32, 37).

As can be seen in Fig. 3, the tile-level parallelization algorithm obtains a
good parallel performance and also nice scalability results. Looking at Fig. 3,
for 10 processes, there are differences in the parallel performance when we use
different tile partitioning layouts. In general, tile partitioning layouts based
on columns of CTUs or square tiles obtain better parallel performance. As
it would be expected, this effect will depend on the video resolution. For a
video resolution of 2560x1600, and a CTU size of 64x64, the number of CTUs
in a frame is 40x25. If we divide the frame with the 1x10 layout we have 5
processes with 40x2 CTUs and 5 processes with 40x3 CTUs. On the other side,
if we divide the frame with the 10x1 layout we have 10 processes with 4x25
CTUs. In the first case (1x10), 5 processes have to perform a 50% more work



10 H. Migallón et al.

than the other 5 proccesses. Usually the more balanced the computational
load is, the better parallel performance is achieved, except for some sequences
where this is not accomplished. In those exceptions, even if each process has
the same number of CTUs, the computational complexity inherent to each
CTU differs, producing that some processes finish before the others. As can
be obserbed in Fig. 3, the slice partitioning layouts obtain similar results than
the best results obtained by the tile partitioning scheme. In general, when
using the tile partitioning schemes, the obtained efficiencies are slighty better
when encoding high resolution video sequences with a low number of processes.

In all the experiments performed, good efficiencies are obtained for both
LB and AI encoding modes. In general, the best results obtained by both
partitioning schemes are quite similar, except for some particular cases. For
example, for Basketball Drill video sequence, when using 9 processes, the ef-
ficiency is 69% (3x3) and 67% (9x1) using tile partitioning, and 79% when
using slice partitioning. However, the maximum ideal efficiencies presented in
tables 1 and 2 are 77% (3x3) and 72% (9x1) for tile partitioning and 96% for
slice partitioning. Therefore, we can affirm that the tile partitioning schemes
obtain results more close to the ideal efficiencies than the slice partitioning
layouts.

Regarding R/D behavior, in Fig. 4 we present the BD-rate evolution for
four video sequences (Traffic, Park Scene, Four People and Basketball Drill) as
a function of the number of processes, considering both partitioning schemes.
BD-Rate is a metric that shows the R/D performance comparison between
two video encoders. It mesaures the average bitrate overhead produced by one
encoder with respect to the other (reference encoder) at different compression
levels. As can be seen, the BD-rate increases as the number of processes does.
This is an expected behavior because both tiles and slices are independent
structures and therefore, the arithmetic encoder works in an independent way
on each tile/slice, and no information of previously encoded tiles/slices is avail-
able. Although not shown, we verified that square tile partitioning performs
better for both LB and AI coding modes, because more information of neigh-
bouring CTUs is available for inter and intra prediction. As stated before,
every slice contains a slice-header, and these headers also contribute to obtain
worse R/D performance.

Finally, after analyzing all the experimental results we obtained, we propose
the use of the tile partitioning scheme using square-like partitionung layouts to
develope HEVC encoder parallel versions, since the computationall efficiency
is close to the idel one and the penalization in R/D performance of parallel
version with respect the sequential version is reasonably low.

5 Conclusions

In this paper we present a full experimental study of both tile and slice par-
allelization approaches of the HEVC encoder. After the analysis of the tiles
partitioning schemes, we can assess that both square tile and column tile par-



Performance Analysis of Frame Partitioning in Parallel HEVC Encoders 11

(a) 2 Processes. (b) 4 Processes.

(c) 6 Processes. (d) 8 Processes.

(e) 9 Processes. (f) 10 Processes.

Fig. 4 Average BD-Rate evolution for Traffic, Park Scene, Four People and Basketball Drill
video sequences with different number of processes and tile/slice partitioning for all QPs
and AI and LB mode.

titioning layouts obtain the best speed-ups (up to 9.3x for 10 processes) in the
tested video sequences. Although, in some experiments, column-based tile par-
titioning obtain better parallel efficiency, on average, square tile partitioning
layouts present a better performance in both speed-up and R/D. Besides, the
increment in BD-rate is low in all cases, specially when square tile partitioning
is applied, because more information of neighboring CTUs is available for the
inter and intra prediction processes. The maximum BD-rate increment using
square tile partitioning layouts is 5.5% for Four People video sequence in LB
mode, but on average the BD-rate increment is 1.6% for AI mode and 2.2%
for LB mode.

Regarding the slice-based parallel approach, similar speed-ups are obtained
to the ones achieved by the tile based algorithm. However, the extra headers



12 H. Migallón et al.

required by the slice based approach have an important impact in the R/D
behavior. The maximum BD-rate increment is 19.0% in LB mode using 10
processes and, on average, the BD-rate increment is 2.5% for AI mode and
4.9% for LB mode.

Therefore, after the comparison between the tile-based and the slice-based
parallelizations of HEVC, we can assess that the tile-based approach is the one
that best behavior obtains because it provides as good computational perfor-
mance as the one obtained with slice-based schemes, but with a significant
improve in R/D performance. However, we should take into account the video
sequence resolution in order to perform an adequate tile partitioning layout,
in such a way that the number of CTUs in each tile will be nearly the same
to keep the computational load balanced.

References

1. B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, Y.-K. Wang, and T. Wiegand, “High
Efficiency Video Coding (HEVC) text specification draft 10,” Joint Collaborative Team
on Video Coding (JCT-VC), Geneva (Switzerland), Tech. Rep. JCTVC-L1003, January
2013.

2. ITU-T and ISO/IEC JTC 1, “Advanced video coding for generic audiovisual services,”
ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC) version 16, 2012, 2012.

3. M. Zhou, “AHG10: Configurable and CU-group level parallel merge/skip,” Joint Col-
laborative Team on Video Coding-H0082, Tech. Rep., 2012.

4. G. Cebrián-Márquez, J. L. Hernández-Losada, J. L. Mart́ınez, P. Cuenca, M. Tang,
and J. Wen, “Accelerating HEVC using heterogeneous platforms,” The Journal
of Supercomputing, vol. 71, no. 2, pp. 613–628, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s11227-014-1313-8

5. M. Alvarez-Mesa, C. Chi, B. Juurlink, V. George, and T. Schierl, “Parallel video de-
coding in the emerging HEVC standard,” in International Conference on Acoustics,
Speech, and Signal Processing, Kyoto, March 2012, pp. 1–17.

6. C. C. Chi, M. Alvarez-Mesa, J. Lucas, B. Juurlink, and T. Schierl, “Parallel HEVC
decoding on multi- and many-core architectures,” Journal of Signal Processing Systems,
vol. 71, no. 3, pp. 247 –260, 2013.

7. Q. Yu, L. Zhao, and S. Ma, “Parallel AMVP candidate list construction for HEVC,” in
VCIP’12, 2012, pp. 1–6.

8. J. Jiang, B. Guo, W. Mo, and K. Fan, “Block-based parallel intra prediction scheme for
HEVC,” Journal of Multimedia, vol. 7, no. 4, pp. 289 –294, August 2012.

9. K. Misra, A. Segall, M. Horowitz, S. Xu, A. Fuldseth, and M. Zhou, “An overview of
tiles in HEVC,” Selected Topics in Signal Processing, IEEE Journal of, vol. 7, no. 6,
pp. 969–977, Dec 2013.

10. P. P. nol, O. López-Granado, H. Migallón, V. Galiano, and M. Malumbres, “Tile par-
tition analysis for a parallel HEVC encoder,” in Proceedings of the 16th International
Conference on Computational and Mathematical Methods in Science and Engineering
(CMMSE), 2016, pp. 989–998.

11. HEVC Reference Software, https://hevc.hhi.fraunhofer.de/svn/svn HEVCSoftware/
tags/HM-16.3/.

12. H. Migallón, P. Piñol, O. López-Granado, and M. P. Malumbres, “Subpicture parallel
approaches of HEVC video encoder,” in 2014 International Conference on Computa-
tional and Mathematical Methods in Science and Engineering, vol. 1, 2014, pp. 927–938.

13. P. Piñol, H. Migallón, O. López-Granado, and M. P. Malumbres, “Slice-based parallel
approach for HEVC encoder,” The Journal of Supercomputing, vol. 71, no. 5, pp. 1882–
1892, 2015.

14. “Openmp application program interface, version 3.1,” OpenMP Architecture Review
Board. http://www.openmp.org, 2011.


