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Abstract— This paper addresses the problem of reducing the 
memory usage in the implementation of a reversible two-
dimensional wavelet transform for image processing. In 
particular, we take a line-based approach by using a recursive 
algorithm to ease the synchronization among different buffer 
levels. In addition, since the reversible transform is non-linear, 
to preserve reversibility, we have to consider the order of the 
horizontal and vertical transforms in which the two-dimensional 
forward and inverse wavelet transform are decomposed. The 
proposed algorithm is suitable for integer-only devices (such as 
many FPGAs), reducing in more than 250 times the memory 
requirements, for a 5-Megapixel image with the well-known 
B5/3 wavelet transform. Moreover, it is several times faster (up 
to ten times) in cache-based systems, due to the better use of the 
cache memory if compared with the regular wavelet transform. 

I.  INTRODUCTION 
One of the new mathematical tools that has aroused great 

interest in the field of signal processing is the discrete wavelet 
transform (DWT). This interest is even greater in the field of 
image processing due to its nice features, such as 
multiresolution representation, space and frequency 
interpretation (useful for image vision and segmentation) and 
high compactness of energy in the lower frequency subbands, 
which is extremely useful in image compression.  

The wavelet transform was earlier defined and 
implemented using a regular filtering operation following a 
multiresolution analysis [7], but a more efficient algorithm to 
compute it was introduced by Sweldens in [8]. This algorithm 
is called the lifting scheme. The main advantage of this 
approach is the reduction in the number of operations needed 
to perform the wavelet transform. An additional advantage is 
that it allows in-place computation, and hence no extra 
memory is required to store the resulting coefficients as it 
happens with any regular filtering method. The third benefit 
that the lifting scheme introduces is the feasibility of a 
reversible integer-to-integer wavelet transform with only a 
slight modification of the usual floating-point implementation. 
In this paper, we will deal with this type of integer wavelet 
transform. 

An integer implementation of a signal transform is needed 
if the transform is implemented in hardware architectures that 
only support integer arithmetic, such as some DSPs and many 
FPGAs. In fact, doing floating-point on FPGAs is difficult due 
to large amount of hardware required. In addition, some 
specific applications, such as lossless compression, require 
reversibility, which is not guaranteed with regular floating-
point operations due to the finite-precision of the operands. In 

this case, a reversible integer-to-integer implementation is 
needed, even if the hardware platform handles floating-point. 

An additional restriction that is usually present in many 
devices, such as digital cameras and PDAs, is the low amount 
of RAM memory available in the system. This problem is not 
very important in some transforms because they are applied in 
small block sizes. Unfortunately, wavelet-based systems are 
typically implemented by memory-intensive algorithms, with 
higher execution time. In the usual DWT [7], the image is 
transformed at every decomposition level first row by row and 
then column by column, and hence it must be kept entirely in 
memory. In [5], an interesting line-based approach to reduce 
the amount of memory required to compute the wavelet 
transform was introduced. However, In [5], the explanation of 
a line-based strategy is given in an iterative way, and no 
detailed algorithm is described. Some major problems arise 
when the line-based DWT is implemented using an iterative 
algorithm. In addition, the transform algorithm introduced in 
[5] aims to provide a general-purpose wavelet transform. 
Since an integer-to-integer implementation of the wavelet 
transform is no longer linear, some new issues about the order 
in which the DWT is computed need to be considered. 

The rest of this paper is structured as follows. In Section 2, 
there is a more detailed description of the lifting scheme, 
focusing on a reversible implementation with integer data 
types. Section 3 introduces the general line-based approach, 
which is used as a starting point for Section 4, in which we 
propose a recursive implementation of this approach for an 
integer transform.  Finally, in Section 5, some experimental 
results are given.  

II. THE REVERSIBLE INTEGER-TO-INTEGER 
LIFTING SCHEME 

A. Wavelet transform using the lifting scheme 

As we mentioned in the previous section, the lifting scheme 
implements an in-place DWT decomposition as an alternative 
algorithm to the classical filtering algorithm. In the filtering 
algorithm, in-place processing is not possible because each 
input sample is required as incoming data for the computation 
of its neighbor coefficients. Therefore, an extra array is needed 
to store the resulting coefficients, doubling the memory 
requirements. In addition, the lifting-scheme reduces the 
number of operations needed to compute the DWT. 

In Figure 1, we present a diagram to illustrate the general 
lifting process. The whole process consists of a first lazy 
transform, one or several prediction and update steps, and 
coefficient normalization. In the lazy transform, the input 
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samples are split into two data sets, one with the even samples 
and the other one with the odd ones. Thus, if we consider { }ix  
the input samples, we define both coefficient sets as: 

{ } { }ii xs 2
0 =   { } { }12

0
+= ii xd  

Then, in a prediction step (sometimes called dual lifting), 
each sample in { }0

id  is replaced by the error committed in the 
prediction of that sample from the samples in { }0

is : 
{ }( )001

iii sPdd −=  

while in an update step (also known as primal lifting), each 
sample in the set { }0

is  is updated by { }1
id  as: 

{ }( )101
iii dUss +=  

After m successive prediction and update steps, the final 
low frequency coefficients (scaling { }iφ ) and high frequency 
coefficients (wavelet { }iψ ) are achieved normalization:  

{ } { }m
ii sK ×= 0φ   { } { }m

ii dK ×= 1ψ  

A nice feature of the lifting scheme is that it is formed by 
very simple steps, and each of these steps is easily invertible, 
which leads to an almost trivial inverse transform. For the 
inverse transform, we only have to perform the inverse 
operations in the reverse order. Hence, from the subsets { }iφ  
and { }iψ , we can get { }m

is  and { }m
id  simply by dividing these 

coefficients by the scaling factors: 
{ } { } 0φ Ks i

m
i =   { } { } 1ψ Kd i

m
i =  

Then, an inverse update operation can be done from these 
data sets as follows: 

{ }( )m
i

m
i

m
i dUss −=−1  

and at this moment, we can apply the inverse prediction step: 

{ }( )11 −− += m
i

m
i

m
i sPdd  

After m successive inverse update and prediction steps, we 
get the initial sets of even and odd samples, we can interleave 
these data sets to obtain the original set of samples { }ix . 
B. Integer-to-integer transform 

With the above scheme, floating-point arithmetic is needed 
despite having integer input samples (e.g., image pixels), if the 
weighting factors employed for the prediction/update 
operations are floating-point and not integer or rational. 

Actually, even if rational filters are employed, the precision 
required to perform lossless operation with fixed-point 
arithmetic grows with each mathematical operation if we do 
not change the scheme described above.  

Fortunately, the lifting scheme can be slightly modified to 
achieve reversible integer-to-integer wavelet transform [3]. 
Since the lifting scheme is formed by several simple steps, the 
whole process can be reversible if we perform each single step 
in a reversible way.  

For the forward transform, we have seen that each 
prediction step has the form: 

{ }( )11 −− −= m
i

m
i

m
i sPdd  

In a wavelet transform for integer implementation, the 
prediction operation { }( )1−m

isP  involves rational weighting 
factors (e.g., division by two), and hence the resulting data are 
not integer.  If a rounding operation is added after the 
prediction operation, an integer variable can be used to store 
the result of that operation, and hence each m

id  can be 
computed from 1−m

id  and the { }1−m
is  set using integer values as 

follows: 
{ }( )⎣ ⎦11 −− −= m

i
m

i
m

i sPdd  

In the inverse transform, the exact value of each 1−m
id  can 

be recovered from m
id  and the { }1−m

is  set as follows: 
{ }( )⎣ ⎦11 −− += m

i
m

i
m

i sPdd  

Thereby, perfect reconstruction is guaranteed despite the 
rounding operation. The same analysis can be performed for 
an update operation with integer data type. 

Although we have used the floor operator for rounding in 
the above equations, any other rounding operation, such as 
ceil or rounding to the nearest integer, can be used as long as 
the same operator is employed in both the forward and inverse 
transforms. 

Finally, a reversible integer-to-integer transform can only 
be obtained if the normalization factors K0 and K1 are integer 
values.  

A drawback of the use of rounding is that the new wavelet 
transform is no longer linear. Hence, for a 2D wavelet 
transform, the reverse column-row order of the forward 
transform has to be used in the inverse transform to achieve 
perfect reconstruction. 
C. An implementation using the bi-orthogonal 5/3 transform 

The 5/3 wavelet transform is a typical wavelet for integer-
to-integer transform, being part of the JPEG2000 standard for 
lossless compression. In order to compute it in terms of the 
lifting scheme, after the lazy transform, the dual lifting is 
calculated as: 

( )⎥⎦
⎥

⎢⎣
⎢ +−= +

0
1

001

2
1

iiii ssdd  

while the primal lifting is (notice the different rounding): 
( ) ⎥⎦

⎥
⎢⎣
⎢ +++= − 2

1
4
1 1

1
101

iiii ddss  

These operations can be easily performed with integer data 
types and integer arithmetic. For example, in C language, the 
two above equations can be efficiently computed as: 

{si
0} 

Lazy Transform
 

P1(z) 
{xi} 

{ }iφ

{ }iψ

U1(z) Pn(z) Un(z) 

− − 

+ +

× K1 

× K0 

{di
0} 

{si
1} {si

m} 

{di
1} {di

m} 

Fig. 1: Diagram for a wavelet decomposition using the lifting scheme. 
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d1[i]=d0[i]-((s0[i]+s0[i+1])>>1); 

s1[i]=s0[i]+((d1[i]+d1[i-1]+2)>>2); 

Where d0, d1, s0 and s1 are arrays of integers, and 
>> is the right shift operator in C ( ba >>  is equivalent to the 
division of a by b2  with floor rounding).  

For a lossless transform, the normalization factors K0 and 
K1 are equal to 1, achieving (1,2) normalization in this case. 
Thus, the set { }1

id  is directly the final wavelet coefficient set, 
and the set { }1

is  is the scaling one.  
The inverse transform to recover losslessly the original 

samples is given by: 
( ) ⎥⎦

⎥
⎢⎣
⎢ ++−= − 2

1
4
1 1

1
110

iiii ddss  ( )⎥⎦
⎥

⎢⎣
⎢ +−= +

0
1

010

2
1

iiii ssdd  

Other reversible integer-to-integer wavelet transforms are 
given in [2], including an integer version of the popular bi-
orthogonal 9/7 transform.  

III. THE LINE-BASED APPROACH 
For image wavelet transform (2D), the use of the lifting 

scheme shows little benefit, since the entire image has to be 
kept in memory. Therefore, it has to be applied along with 
other strategies that allow us to avoid keeping the entire image 
in memory. The line-based approach [5] can help us to 
overcome this problem. In the line-based approach, for the 
first decomposition level, we receive directly image lines, one 
by one. On every input line, a one-level 1D DWT is applied. 
Then, these lines are stored in a buffer associated to the first 
decomposition level. When there are enough lines in the 
buffer to calculate a line of each wavelet subband, we compute 
them. Then, the wavelet subband lines can be processed and 
released. However, the first line of the LL1 subband does not 
belong to the final result, and is needed as incoming data for 
the following decomposition level.  In order to get more lines, 
we have to update the buffer, filling it with more lines and 
discarding those that are no longer needed. At the second 
level, its buffer is filled with the LL1 lines that have been 
computed in the first level. Once the buffer is completely 
filled, it is processed as we have described for the first level. 

As it is depicted in Figure 2, this process can be repeated until 
the desired decomposition level (nlevel) is reached. 

In [5], the description of a line-based strategy is given in an 
iterative way, but no detailed algorithm is described. Some 
major problems arise when the line-based DWT is 
implemented using an iterative algorithm. The main drawback 
is the synchronization among buffers. Before a buffer can 
produce lines, it must be completely filled with lines from the 
previous buffer, therefore they start working at different 
moments, i.e., they have different delays. Moreover, all the 
buffers exchange their result at different intervals, depending 
on their level.  

The time in which each line is passed to the following 
buffer depends on several factors, such as the filter size, the 
number of decomposition levels, the level and number of line 
being computed and the image size. In a hardware 
implementation, with a fixed image size and a constant 
decomposition level, a pre-computed unit control can be 
employed to establish the order of the computations in the 
buffers for a given filter-bank. Thus, several hardware 
implementations of this line-based strategy have been 
proposed, and they can be found in the literature [1] [4] [6]. 
However, a general case of this algorithm cannot be easily 
implemented in hardware or software due to the 
synchronization problems exposed above.  

In addition, the line-based algorithm described in [5] is 
based on a filtering algorithm and not on the lifting scheme. 
The advantage of the lifting scheme in a line-based algorithm 
is not only the reduction in number of operations, but also the 
reduction in number of lines that the buffers showed in Figure 
2 need to keep.  

Finally, another issue to consider for a reversible integer-to-
integer transform is the order of the inverse wavelet transform 
with respect to the forward one. In the regular wavelet 
transform, the entire image is available and then, it is easy to 
compute the inverse transform in the reverse row-column 
order that has been applied in the forward one. However, the 
line-based approach changes the order of the wavelet 
transform, and interleaves the horizontal and vertical DWT 
computation.  

In the next section, we propose a general recursive 
algorithm that clearly specifies how to perform this 
communication among buffers, solving the synchronization 
problem in an automatic way by means of a recursive 
definition. We will present this algorithm with a lifting-based 
DWT, and we will tackle the problem of the correct order of 
the horizontal and vertical DWT so as to preserve the 
reversibility of the line-based approach. 

IV. A RECURSIVE LINE-BASED IMPLEMENTATION FOR 
INTEGER-TO-INTEGER DWT 

In this section, we present a forward and inverse wavelet 
transform algorithm (FWT and IWT) that solve the 
synchronization problems that have been addressed in the 
previous section. In order to overcome these drawbacks, both 
algorithms are defined with a recursive function that obtains 
the next low-frequency subband (LL) line from a contiguous 
level. The wavelet transform is implemented with the lifting-

1st level buffer 

2nd level 
buffer 

HL2 

LH2 

HH2 

nlevel 
buffer 

LL1 

LL2 

LLnlevel … 

width 

width / 2  

width / 2nlevel-1  
width / 4 

width / 2  

input image lines (LL0) 

HL1 

LH1

HH1

Fig. 2: Overview of a line-based wavelet transform 
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scheme, which is faster and requires less memory than the 
filtering algorithm. In addition, we will take the 
considerations needed to allow a reversible integer-to-integer 
decomposition. For the sake of simplicity, we will describe 
this algorithm using the B5/3 wavelet transform, which is 
probably the most widely used transform for integer 
implementation; however, this algorithm is valid for any 
integer wavelet transform. 

A. Forward Wavelet Transform (FWT) 
The main task of the FWT is carried out by a recursive 

function that successively returns lines of a low frequency 
(LLn) subband at a given level (n). Thus, the whole FWT is 
computed by requesting LL lines at the last level (nlevel). As 
seen in Figure 2, the nlevel buffer must be filled with lines 
from the nlevel-1 level before it can generate lines. In order to 
get them, the function calls itself in a backward recursion, 
until the level zero is reached. At this point, it no longer needs 
to call itself since it can return an image line, which can be 
read directly from the input/output system. Notice that the 

buffer must be able to keep the lines to be predicted and 
updated in each step, and the lines from which these lines are 
predicted/updated. In the case of a B5/3 DWT, there are two 
prediction/update steps, and two additional lines are needed to 
compute them (the contiguous lines), so the buffer height must 
be four, as we will see later. 

The function that implements this recursive algorithm is 
called GetLLlineBwd() (see Algorithm 1). This function 

function GetLLlineBwd( level L) 
1) First base case:  

If there are no more lines to return at this level 
return EOL 

2) Second base case: 
If L = 0 

return ReadImageLineIO( )  
3) Recursive case  
3.1) If LB  is empty  

for 02K=i   
=)(iBL 1DFWT(GetLLlineBwd( L−1)) 

3.2) else if no more lines can be read from L−1 
SymmetricExtension( LB  ) 

3.3) else 
repeat twice  

Shift( LB  ) 

=)0(LB 1DFWT(GetLLlineBwd(L−1) ) 

( )⎥⎦
⎥

⎢⎣
⎢ +−= )2()0(
2
1)1()1( LLLL BBBB  

( ) ⎥⎦
⎥

⎢⎣
⎢ +++=

2
1)3()1(

4
1)2()2( LLLL BBBB  

{ }HLlineLLline, = )2(LB  

{ }HHlineLHline, = )1(LB  
Process the high freq. lines{ }HHlineLHlineHLline ,,  
return LLline  

end of fuction 

Algorithm 1: Recursive B5/3 FWT computation  

function LowMemUsageFWT_B53( nlevel ) 
set nlevelLemptyBL ∈∀=  

repeat  
LLline = GetLLlineBwd( nlevel )  

if (LLline!=EOL) Process the low freq. line( LLline ) 
until LLline=EOL 

end of function 

function LowMemUsageIWT_B53( nlevel ) 
set nlevelLemptyBL ∈∀=  
set nlevelLupdateBodd LL ∈∀== false  
repeat  
 imageLine = GetLLlineFwd( 0 )  
 if (imageLine!=EOL) WriteImageLineIO(imageLine ) 
until imageLine =EOL 

end of function 

subfunction GetMergedLineFwd( L ) 

LL oddodd ¬=  

if Lodd  return { GetLLlineFwd( L ) + DecodeHLline( L ) } 
else  return { DecodeLHline( L ) + DecodeHHline( L ) } 

end of subfunction

function GetLLlineFwd( level L) 

LupdateB = LupdateB¬  

1) First base case:  
If there are no more lines to return at this level 

return EOL 
2) Second base case: 

If L = nlevel   
return DecodeLLline( )  

3) Recursive case  
3.1) If LB  is empty  

for 01K=i   
=)(iBL GetMergedLineFwd( L+1) 

3.2) else if no more lines can be read from L+1 and LupdateB  

SymmetricExtension( LB  ) 

3.3) else if LupdateB  

repeat twice  
Shift( LB  ) 

GetMergedLineFwd (L+1) 
if LupdateB  

( ) ⎥⎦
⎥

⎢⎣
⎢ ++−=

2
1)2()0(

4
1)1()1( LLLL BBBB  

( )⎥⎦
⎥

⎢⎣
⎢ ++= )3()1(
2
1)2()2( LLLL BBBB  

return 1DIWT( )2(LB ) 
else  

return 1DIWT( )1(LB ) 

end of function 

Algorithm 2: Recursive B5/3 IWT computation  
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receives a decomposition level as a parameter, calculates a line 
of each wavelet subband (LH, HL and HH) at that level, and 
returns a line from the low-frequency (LL) subband at that 
level. In order to get all the subband lines, the first time that 
this function is called at a certain level, it computes the first 
line of every subband at that level, the following time it 
computes the second one, and so forth.  

When this function is called for the first time at a level (L), 
its buffer (represented by the variable LB  in Algorithm 1) is 
empty, and so it has to be recursively filled with lines from the 
previous level (case 3.1). Once a line is input, it must be 
transformed using a 1D DWT before inserting it into the 
buffer. On the other hand, if the buffer is not empty, it simply 
has to be updated by discarding two lines and introducing two 
additional lines from the contiguous level. We do it by means 
of a recursive call again (case 3.3). However, if there are no 
more lines from the previous level, this recursive call returns 
End Of Line (EOL) (case 3.2), in this case, if we need 
additional lines we duplicate them from the lines in the buffer 
using symmetric extension. In these three cases, once the 
buffer is updated, we predict the line at the buffer position 1, 
and then we update the line at the position 2. Notice that these 
steps can only be computed if the lines at position 0 and 3 are 
kept in the buffer. For this reason, the total buffer height must 
be 4 and not 2. This way, we compute a subband line from LH 
and HL (they are in the second line in the buffer), and from 
HL and HH (the first line in the buffer). The wavelet lines are 
processed and released depending on the application purpose 
(e.g., compression), and the function returns an LL line. 

Every recursive function needs at least one base case to 
stop recursion. This function has two base cases. The first one 
is reached when all the lines at this level have been read. In 
this case, the function returns EOL. The second base case is 
reached when the backward recursion gets the level zero, and 
then no further recursive call is needed because an image line 
is read and returned directly from the I/O system. 

Once we have defined this recursive function, we can 
compute the wavelet transform with nlevel decomposition 
simply by using this function to compute the whole LLnlevel 
subband, as the function LowMemUsageDWT_B53(nlevel) 
does in Algorithm 1. 

This algorithm can be implemented more easily because the 
synchronization among buffers and the problem of different 
buffer delays are solved directly with recursion, which 
automatically sets the rhythm of the transformation steps.  
B. Inverse Wavelet Transform (IWT) 

The inverse DWT algorithm (IWT), which is described in 
Algorithm 2, is similar to the forward one, but applied in 
reverse order.  

Since the recursive function goes forward, the second base 
case is changed from the FWT to be reached when the 
parameter level is equal to nlevel, and then a line from the 
low-frequency subband LLnlevel is retrieved directly from I/O.  

In the recursive case, there are mainly three changes with 
respect to the FWT. The first modification is the introduction 
of a new function,  GetMergedLineFwd(level), which is used 
to get buffer lines. This function alternatively returns the 

concatenation of a line from the LL and HL subbands, or from 
the LH and HH subbands, at a specified level. Contrary to the 
lines from HL, LH and HH, which are retrieved directly from 
I/O, the LL line is computed recursively from the following 
level, and therefore this is the recursive point in the function. 
The second difference is the introduction of a logical variable, 

LupdateB , which defines whether the buffer needs to be 
updated or not. In the IWT, two LL lines can be computed 
once a buffer is full or updated. Therefore, this variable shows 
if the buffer is updated, and if so, another line can be 
computed without updating it. Finally, the third modification 
aims to guarantee reversibility. Despite not having the whole 
image in memory, we still can take a reversible approach. In 
Algorithm 1, the forward transform is performed first 
horizontally, when a line is input, and then vertically, by 
applying one step of the wavelet transform. Thereby, for a 
reversible transform, the order of the inverse transform has to 
be changed. The horizontal 1-D IWT is not applied once a 
compound line is read (in GetMergedLineFwd() function) and 
introduced into the buffer, but it is delayed until the end of the 
GetLLlineFwd() function (see Algorithm 2). This way, we 
follow the correct order (i.e., horizontal FWT, vertical FWT, 
vertical IWT, horizontal IWT) and the transform is fully 
reversible. 

A drawback that has not been considered yet is the need to 
reverse the order of the subbands, from the FWT to the IWT. 
The former starts generating lines from the first levels to the 
last ones, while the latter needs to get lines from the last levels 
before getting lines from the first ones. This problem can be 
solved using some additional buffers at both ends to reverse 
the coefficients order, so that data are supplied in the right 
order [5]. Other simpler solutions are: to save every level in 
secondary storage separately so that it can be read in a 
different order and, if the WT is used for image compression, 
to keep the compressed coefficients in memory. 

V. EXPERIMENTAL RESULTS 
In order to compare the regular wavelet transform and our 

proposals, we have implemented them, using standard ANSI C 
language on a regular PC computer with 256 KB L2 cache. 
Moreover, the coefficients for the transform are implemented 
as floating-point, integer and short integer values in order to 
assess the effects of employing different data types. 

Fig. 3: Execution time comparison (excluding I/O time) of various 
implementations using float (with and without rounding), integer and short 

integer coefficients, with the B5/3 transform and the lifting proposal. 
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For these tests, we have used the standard Lena (512x512) 
and Woman (2048x2560) images. With six decomposition 
levels, the regular WT needs 1030 KB for Lena and 20510 KB 
for Woman, while our proposal using 32-bit data types 
requires 19 KB for Lena and 79 KB for Woman, i.e., it uses 
54 and 260 times less memory. If short-integer data type is 
employed, it requirements are reduced to 9 KB and 39 KB 
respectively. 

In addition, Table 1 shows that our proposal is much more 
scalable than the usual DWT. In this table, we present the 
amount of memory needed to apply the transform to images 
ranging from low-resolution VGA to 20-Megapixel with 
various data types. 

TABLE I. MEMORY REQUIREMENT (KB) COMPARISON  

Image size 
(megapixel) 

Regular WT 
 (float and 

integer) 

Regular  
WT (short 

integer) 

Proposed 
lifting (float 
and integer) 

Proposed 
lifting (short 

integer) 
20 (4096 x 5120) 81,980 40,990 158 79 
16 (3712 x 4480) 65,013 32,506 143 71 
12 (3200 x 3968) 49,647 24,823 123 62 
8 (2560 x 3328) 33,319 16,659 98 49 
5 (2048 x 2560) 20,510 10,255 79 39 
4 (1856 x 2240) 16,266 8,133 71 36 
3 (1600 x 1984) 12,423 6,211 61 31 
2 (1280 x 1664) 8,340 4,170 49 24 

1.2 (1024 x 1280) 5,125 2,562 39 19 
VGA (512 x 640) 1,288 644 19 9 

 
In Figure 4, we present an execution time comparison of 

different data types using our proposal. The most noticeable 
result in this graph is the high execution time of the floating-
point implementation that uses the floor operator, that is to 
say, with rounding, due to the temporal complexity of this 
operation. If we avoid using rounding (we can simply omit it 
when the target variable of the operation is floating-point), the 
execution time of the floating-point implementation is 
significantly reduced, although being still above the 
implementations with integer or short-integer coefficients.  

Finally, in Figure 5, an execution time comparison between 
the regular wavelet transform and our proposal is given for 
different data types. Figure 5(b) (integer implementation) and 
5(c) (floating-point without rounding) show that, while our 
algorithms display linear behavior, the regular wavelet 

transform approaches to an exponential curve. This behavior 
is mainly due to the ability of our algorithms to fit in cache for 
all the image sizes. On the contrary, the usual wavelet 
transform rapidly exceeds the cache limits. In the short-integer 
implementation, the lower memory usage of the regular 
wavelet transform prevents the exponential behavior. In the 
last graph, where floating-point arithmetic is used with floor 
operations, the cost of rounding causes both the regular and 
proposed transform to be highly complex. 

VI. CONCLUSIONS 
A new reversible integer-to-integer lifting algorithm has 

been presented that solves the existing problems about 
different delays and rhythm among buffers in the line-based 
approach. It can be used as a part of compression algorithms, 
like JPEG 2000, speeding up its execution time and reducing 
its memory requirements compared with the usual DWT 
algorithm. 
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Fig. 4: Execution time comparison (excluding I/O time) of the regular wavelet transform and the lifting proposal, applying the B5/3 transform, with 
(a) short-integer coefficients, (b) integer coefficients, (c) floating-point arithmetic without rounding, and (d) floating-point arithmetic with rounding.
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