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Abstract 
 
When comparing the performance of different video 

coding approaches, improvements or new codec 
designs, one of the most important performance 
metrics is the Rate/Distortion (R/D), where distortion 
use to be measured in terms of PSNR (Peak Signal-to-
Noise Ratio) values. However, it is well known that this 
metric not always capture the distortion perceived by 
the human being. So, a lot efforts were performed to 
define an objective video quality metric that is able to 
measure video quality distortion close to the one 
perceived for the destination user. In this work, we 
perform a study of different available objective quality 
metrics in order to evaluate their behaviour, taking as 
reference the classical PSNR metric. Our purpose is to 
find, if any, a video quality metric that is able to 
substitute PSNR for video quality assessment and 
determine a more accurate R/D performance metric 
when designing and evaluating video codec proposals.  

 
1. Introduction 
 
In the past years, the development of novel video 

coding technologies has spurred the interest in 
developing digital video communications. The 
definition of evaluation mechanisms to assess the 
video quality plays a major role in the overall design of 
video communication systems. 

The most reliable way of assessing the quality of a 
video is subjective evaluation, because human beings 
are the ultimate receivers in most applications. The 
Mean Opinion Score (MOS), which is a subjective 
quality metric obtained from a number of human 
observers, has been regarded for many years as the 
most reliable form of quality measurement. However, 
the MOS method is too cumbersome, slow and 
expensive for most applications. The objective quality 
metrics are valuable because they provide video 
designers and standards organizations with means for 

making meaningful quality evaluations without 
convening viewer panels. So, the objective will be to 
find an objective quality metric that exhibits a good 
behaviour for a large set of video distortions and, what 
it is most important, get measures as much as close to 
the ones perceived by human observers. Also it would 
be desirable that the time required for giving a quality 
measure will be short enough for their practical use. 

In the literature, there is a consensus in a primer 
classification of objective quality metrics [1][2] 
attending to the availability of original non-distorted 
info (video reference) to measure the quality 
degradation of an available distorted version:  

Full Reference (FR) metrics perform the distortion 
measure with a full access to the original image/video 
version which it is taken as a perfect reference.  

No Reference (NR) metrics have no access to 
reference image/video. So, they have to perform the 
distortion estimation only from the distorted version. In 
general they have lower complexity but are less 
accurate than FR metrics and are designed for a limited 
set of distortions and video formats.  

Reduced Reference (RR) metrics work with some 
information about the original video (similar to a 
perceptual hash algorithm). An RR metric defines what 
information have to be extracted form original video, 
so it can be compared with the one extracted in the 
distorted version.  

The most widely used FR objective video quality 
metrics by the scientific community are Mean Square 
Error (MSE) and PSNR. They are simple to calculate, 
and  mathematically easy to deal for optimization 
purposes providing an easy way to evaluate the video 
quality [3]. However, it is well known that not always 
capture the distortion perceived by the Human Visual 
System (HVS)  

In the last years, new objective image and video 
quality metrics have been proposed in the literature, 
mostly for FR/RR Quality Assessment (QA). They 
emulate human perception of video quality since they 
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produce results which are very similar to those 
obtained from subjective methods. Most of these 
proposals were tested in the different phases carried 
out by the Video Quality Experts Group (VQEG) 
which was formed to develop, validate and standardize 
new objective measurement methods for video quality. 
Although the Phase I test [4], for FR television video 
QA only achieved limited success, VQEG continues its 
work on Phase II [5] test for FR QA for television, and 
RR and NR QA for television and multimedia. 

In this work we are going to evaluate different 
available objective quality metrics to find candidates to 
replace the classical PSNR metric when different video 
coding proposals are evaluated by means of the R/D 
performance index. So, we will use a set of video 
encoders and video sequences in order to create 
Hypothetical Reference Circuits (HRC) and compare 
the QA results of the different objective quality metrics 
under study. Also, we will consider their complexity in 
order to determine their application area.  

The organization of the paper is as follows: In the 
next section we will describe the main frameworks 
defined around objective QA metrics. In section 3, we 
describe the metrics and methods used for comparing 
objective quality metrics. In Section 4 we show the 
behaviour of several available quality metrics, 
including PSNR as reference. Finally, in section 5 
some conclusions are given. 

 
2. Objective quality metric frameworks  
 
We have found in the literature different 

frameworks that group several metrics depending on 
the way they are designed. In this section we will 
briefly describe the main ideas behind the different 
frameworks and their main objective quality metrics.  

 
2.1 Error Sensitivity  
 
The Error Sensitivity framework (ESF) group all the 

metrics that were designed taking into account 
different models based on the current knowledge of the 
Human Visual System (HVS). Generally, the 
emulation of HVS is a bottom-up approach that 
follows the first retina processing steps to continue 
with different models about the visual cortex 
behaviour. Also, some metrics deal with cognitive 
issues about the human visual processing.  

Usually the HVS models first decompose the input 
signal into spatio-temporal subbands in both the 
reference and distorted signal. Then, an error 
normalization and weighting process is carried out in 
order to give the estimated degradation measure. 

Most metrics based on ESF are FR by definition. 
The main difference between them is related with the 

way they perform the subband decomposition inspired 
in the complex HVS models [6-8], low cost 
decompositions in DCT [9] or Wavelet [10] domains, 
and with other HVS related issues like in [11] where 
foveal vision is also taken into account.  

 
2.2 Structural Distortion/Similarity  
 
The Structural Distortion/Similarity Framework 

(SDF) is focused on a top-down approach, analyzing 
HVS to emulate it at a higher abstraction level. So, 
authors supporting this framework argument that the 
main function of the human eyes is to extract structural 
information from the viewing field, being the HVS 
highly adapted for this purpose. Therefore, a 
measurement of structural distortion should be a good 
approximation of perceived image distortion. 

So it is assumed that the HVS does not perceives 
the quality of a visual scene as a function based on 
intensity and contrast variability. Instead of that, this 
framework will look for structural information that will 
be perceived at cognitive levels of HVS. Changes in 
contrast and luminance are not considered as 
modifications in the image structure.  So, these metrics 
are able to distinguish two types of distortions: The 
ones that change the image structure and those 
distortions that do not change it. In [12] an image 
quality index is defined which is refined and improved 
in [13]. Also, in [14] the authors propose a 
generalization of their work where every distortion 
may be decomposed in a lineal combination of 
different distortion components. In [15] the model is 
extended to the complex wavelet domain in order to 
design a robust metric to scaling, rotation and 
translation effects.  

In [16] a video quality metric is proposed following 
a frame by frame basis. It takes quality measures for 
different blocks of each frame taking into account their 
spatial variability and also weighting the movement 
and other effects (like blocking) by means of an 
specifically adapted NR metric [17]. 

 
2.3 Statistics of natural images 
 
The third franework is related with the statistical  

behaviour of natural images and we will refer it as 
Statistics of Natural Images Framework (SNI). In this 
framework a natural image/video is defined as those 
captured with high quality devices working in the 
visual spectrum (natural scenes). So, text images, 
computer generated graphics, animations, draws, 
random noise or image and videos captured with non 
visual stimuli devices like Radar, Sonar, X-Ray, etc. 
are out of the scope of this framework.   

Authors supporting this framework argument that 
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the HVS has evolved with the statistical patterns 
(spatial and temporal) found in the signals captured 
form the visual field. Also, they state that these 
statistical patterns of natural scenes have modulated the 
biological system, adapting the different processing 
layers to these statistics.  

So, the metrics defined under this framework will 
extract the relevant information from visual input 
signal in form of statistical information. In [18] a 
statistical model of a wavelet coefficient 
decomposition is proposed, and in [19] the authors 
propose an NR metric derived from previous work. 

In this framework, the distortions are defined as the 
ones whose statistic patterns are far away from the 
ones found in “perfect natural images”. In fact, some 
metrics defined under this framework take the 
objective quality assessment as an information lose 
problem, using approaches close to the information 
theory [20,21]. 

 
2.4 Other objective quality metrics 
 
Finally, there are other metrics that we have not  

classified under the frameworks mentioned above and 
we will classify them in a Specific Metric Framework 
(SMF). Among them we can find metrics that valuate 
spatial information loses, edge shifting, and luminance 
and colour variability [22]. Also, we can find metrics 
based on watermarking techniques that analyze the 
quality degradation of the embedded image [23]. There 
are metrics that are designed for measure specific 
distortions types or the ones produced by specific 
encoders [24,25]. 

 
3. Metrics and Methods 
 
We will briefly introduce the metrics we have found 

available for our study and the method we carried out 
to obtain a quality value in DMOS space (Differences 
Mean Opinion Score). QA Metrics under study are:  
• Mean Structural SIMilarity index (MSSIM1)  [26] 

a FR-Image metric from the SDF. In the reference 
paper, the metric was tested against JPEG and 
JPEG2000 distortion types, but we include the 
new distortion types available in the new release 
of Live database2 because the aim of the structural 
approach is to be a general one. 

• Visual Information Fidelity (VIF3) measure [27] 
located in the SNI framework, a FR-Image metric 
that acts as an image information measure that 
quantifies the information that is present in the 

                                                        
1 http://www.cns.nyu.edu/%7Ezwang/files/research/ssim/index.html 
2 http://live.ece.utexas.edu/research/quality/subjective.htm 
3 http://live.ece.utexas.edu/research/Quality/VIF.htm 

reference image, and also quantifying how much 
of this reference information can be extracted from 
the distorted image. 

• No-Reference JPEG Quality Score (NRJPEGQS4) 
[24] a NR-Image metric designed specifically for 
JPEG compressed images. Extracts features that 
can be used to reflect the relative magnitudes of 
blocking and blurring combined to constitute a 
quality prediction model. 

• No-Reference JPEG2000 Quality Assessment 
(NRJPEG20005) [16] a NR-metric that use Natural 
Scene Statistics models to quantify the departure 
of a distorted image from "expected" natural 
behaviour. 

• Reduced-Reference Image Quality Assessment 
(RRIQA6) [20] the only RR-metric under study 
which is based on a Natural Image Statistic model 
in the wavelet transform domain and use the 
Kullback-Leibler distance between the marginal 
probability distributions of wavelet coefficients of 
the reference and distorted images as a measure of 
image distortion. 

• Video Quality Metric (General Model) (VQM7) 
[22] is a video FR-metric adopted as standard by 
the American National Standards Institute (ANSI) 
in 2003. The International Telecommunication 
Union (ITU) has also included the NTIA General 
Model as a normative method in two Draft 
Recommendations. 

• The traditional PSNR in the predicted DMOS 
Space, that we call DMOSp-PSNR. 

Each QA Metric scores the quality of the 
image/video using an specific scale. In order to 
compare the behaviour of various metrics for a set of 
images/sequences, the objective quality index obtained 
for each metric has to be converted  into a common 
scale. We will  use a non-linear parametric mapping 
function to convert the objective quality index of each 
metric to the common Predicted-DMOS space 
(DMOSp). The mapping of the quality index of metrics 
to the subjective scores depends on the methodology, 
validation and application scope of the subjective tests. 
Therefore it is not included in the QA algorithm and it 
is usually done by the final application that use the 
metric.  In the VQEG Phase-I and Phase-II testing and 
validation [4,5], and in other extensive metrics 
comparison tests [28], a non-linear mapping between 
the objective and the subjective scores was allowed, 
and the performance validation metrics are computed 
after a non-linear curve fitting [29].  

                                                        
4 http://www.cns.nyu.edu/%7Ezwang/files/research/nr_jpeg_quality 
5 http://live.ece.utexas.edu/research/Quality/nrqa.htm#nrqajpeg2000 
6 http://www.cns.nyu.edu/%7Ezwang/files/research/rriqa/index.html 
7 http://www.its.bldrdoc.gov/n3/video/vqmsoftware.htm 
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The common value space used for comparing the 
performance of the metrics in this study is DMOS 
(Differences Mean Opinion Score). Another useful 
scale could be JND which has a better inherent 
meaning than DMOS and is not subject to criterion and 
context effects [33]. We choose for this work the 
DMOS scale because of the availability of DMOS 
values in the used image/sequence databases.  Raw 
scores obtained in subjective tests are converted into 
difference scores and processed further [21] to get a 
linear scale in the 0-100 range, where 0 represents the 
best quality value (no difference between reference and 
distorted image). 

Once the subjective scores of image/video are 
available is time to run each metric under test. For FR-
metrics both reference and distorted images/videos are 
the input, for NR-metrics only distorted image/video 
and for RR-metrics the reference image/video is the 
input of the features extraction step and the extracted 
features and the distorted image/video are the input for 
the final metric evaluation step.  

Each metric has to be trained with images/videos 
having the impairments for which was designed to 
handle with, and then it will work with another 
image/video set that we call ‘test set’. So in our study 
SSIM, VIF, RRIQA and DMOSp-PSNR are trained 
with the whole Live2 database, NRJPEGQS is trained 
only with the JPEG distorted images of Live2 
database, NRJPEG2000 is trained only with the JP2K 
distorted images of Live2 database and VQM-GM is 
trained with a subset of 8 video sequences and its 9 
corresponding HRCs of VQEG Phase I database in the 
range of 1 to 4Mb/s bit-rate. All the metrics have been 
trained only with the information of the luminance 
component. 

Sequence Frame  F.Num. F.Rate 
Foreman 
Container QCIF : 176 x 144 

Foreman 
Container CIF : 352 x 288 

300 
 

Mobile CCIR*: 640 x 512 40 

30 fps 
 

Table 1. Sequences included in the ‘test set’ 
Having the objective quality indexes for all the 

HRCs and their corresponding subjective quality 
indexes, the next step is to get the parameters of Eq. 1 
through a non linear mapping between objective and 
subjective scores.  

The ‘test set’ used comprise different standard 
video sequence used in video coding evaluation as 
shown in Table 1, using only the luminance 

component.  
Finally for each metric and HRC  in the ‘test set’, we 

will use Eq. 1 to obtain the correspondent DMOSp 
values (predicted DMOS). Image metrics were applied 
to each frame of the sequences and the mean objective 
quality for all the frames  was translated to DMOSp. 

We have measured the computation time needed 
for each metric (except for VQM-GM) to calculate its 
objective quality value for each frame in sequences at 
different frame sizes, and the mean value of the whole 
sequence is taken as time performance metric for the 
reference software of each metric. 

 
4. Analyzing Results 
 
In this section, we will proceed with the evaluation 

study, remarking that our purpose is to evaluate video 
codecs and to find out if there is a metric that could 
substitute the traditional PSNR to obtain more accurate 
R/D performance indexes in the process of design and 
evaluation new video encoding proposals.  

 β1 β2 β3 β4 β5 
MSSIM -39.5158 14.9435 0.8684 -10.8913 46.4555 

VIF -3607.3040 -0.5197 -1.6034 -476.0144 -693.3585
NRJPEGQS 37.6531 -0.9171 6.6930 -0.2354 40.7253 

NRJPEG2000 37.3923 0.8190 0.6011 -0.8882 74.5031 
RRIQA -18.9995 1.5041 3.0368 6.4301 5.0446 

PSNR-PMOSp 23.2897 -0.4282 28.7096 -0.6657 61.5160 
VQM-GM -163.6308 6.3746 -7.6192 114.4685 76.6525 

Table 2. Metrics equation 1 parameters. 
We have used an Intel® Pentium® 4 CPU Dual 

Core 3.00, 3.00 GHz with 1 Gbyte RAM. The 
programming environment used is Matlab 6.5 Rel.13 
(The MathWorks, Inc.). The Matlab source code of 
evaluated metrics is public available on the internet or 
supplied by the authors. The codecs under test are 
H.2647AVC [30], a  DCT based codec running in intra 
and inter mode and two wavelet based image codecs, 
Motion-JPEG2000 [31] and Motion-LTW [32].  

 CC RMSE SROCC 
MSSIM 0,8625 7,9682 0,8510

VIF 0,9529 0,0516 0,9528 
NRJPEGQS 0,9360 3,0837 0,9020 

NRJPEG2000 0,9099 7,0560 0,9021 
RRIQA 0,9175 4,9486 0,9194 

PSNR-DMOSp 0,8257 9,0969 0,8197 
VQM-GM 0,8957 7,6746 0,9021 

Table 3. Goodness of fit DMOSp – DMOS 
The fitting between objective metric values and 

subjective DMOS scores was done using the Matlab 
curve fitting toolbox looking for the best fit in each 
case. Performance validation parameters between 
DMOS and predicted DMOS values are Pearson 
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Correlation Coefficient (CC), Root Mean Squared 
Error (RMSE) and Spearman Rank Order Correlation 
Coefficient (SROCC). The betas for our fittings are 
shown in  Table 2 and Table 3 shows the performance 
validation parameters. 
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Figure 1. PSNR vs. DMOSp-PSNR for the 

evaluated codecs and for Mobile 
A R/D plot of the different video codecs under test 

using the traditional PSNR as distortion measure is 
shown in upper panel of Figure 2. It is usual to evaluate 
performance of video codecs in a dynamic range 
varying from 20-22 dB to 40-44 dB but over 38-40 dB 
its difficult determine which one is better. This 
saturation effect  at  high qualities is not captured by 
the traditional PSNR, see upper panel of  Figure 2. 

We convert traditional PSNR to metric DMOSp-
PSNR applying the corresponding betas in Eq. 1. We 
can see in lower  panel of the subjective saturation 
effect above a specific quality for the DMOSp-PSNR 
metric. At bit-rates in the range from  11.5 Mbps to 
20.5 Mbps the DMOSp values practically do not 
change. For all the evaluated codecs this behaviour is 
the same, and for all evaluated frame sizes increasing 
smoothly the slope of the saturation line as the frame 
size increase. This saturation effect agree with the fact 
that there is almost no noticeable subjective difference 
when watching the sequences at the two highest bit-
rates. At the highest frame size evaluated, the slope for 
the DMOSp-PSNR metric gives differences from 2.66 
to 3.28 DMOSp depending on the codec and this 

DMOSp variation range could be assumed as 
imperceptible.  
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Figure 2. Codecs vs Sequences R/D plots 

Figure 1 shows that at lowest bit-rate, the ranking 
quality order for the different codecs remains the same 
than for traditional PSNR and for DMOSp-PSNR. This 
behaviour remains for all sequences and for lower bit-
rates than the bit-rate where the saturation effect begins 
with almost the same distances for the quality axis. 
This allow us to take the DMOSp-PSNR metric as the 
‘subjective’ counterpart of the traditional PSNR when 
comparing these codecs at different bit-rates. 

As PSNR is not a good perceptual metric for image 
or video quality assessment, now we look if the 
remaining metrics under study have the same 
behaviour, for low and high bit-rates, but with a best 
perceptual scoring.  

Figure 2 shows some of the resulting R/D plottings 
used for comparing all metrics. The saturation effect is 
captured by all metrics at high bit-rates regardless the 
codec-sequence evaluated. There is almost no 
subjective noticeable differences at the two highest bit-
rates. It could be thought that differences below 5 
DMOSp values are not noticeable. 

All metrics gives, as expected, a decreasing score of 
DMOSp when the bit-rate decrease. Looking at lower 
panel of Figure 2 and at the lowest bit-rate the DMOSp 
rating differences between metrics arrives surprisingly 
up to 44.21 DMOSp units. As shown in lower panel 
there are three different behaviours, VQM which was 
trained with VQEG sequences, NRJPEGQS trained 
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only with JPEG distorted images and the rest of the 
metrics with all Live2 database distorted images. 

Without having any subjective score available it is 
difficult to say which metric scores better increments 
in DMOSp between two consecutive bit-rates 
(according with subjective perception).  This variations 
goes from 0.82 to 4.91 DMOSp for the processed 
sequences and codecs. As we can see, the DMOSp 
range that could be taken as imperceptible, depends on 
many factors (codec, frame size and metric), growing 
the mean differences as the frame size does. Besides it 
has been subjectively observed that the same variation 
in DMOSp is perceived, along the dynamic range of 
bit-rates, with different intensities. 

H264 & Mobile
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Figure 3. Normalized DMOSp values for 

metrics in a R/D plot 
Normalizing DMOSp values by the dynamic range 

of each metric in a plot, and translating it linearly again 
to a 0-100 scale we get R/D plots in a Normalized 
DMOSp space (NDMOSp), Figure 3.  Differences in 
this NDMOSp space have the same perceptual 
meaning regardless of the metric.  

 
Figure 4. First frame of the foreman qcif at two 

consecutive bit-rates  
Between the two highest bit-rates the biggest 

difference in NDMOSp is 8.62 that we appreciate 
subjectively as imperceptible. NRJPEGQS gives  a 
NDMOSp difference of 5.83 (between 2.1 and 3.5 
Mbps) and MSSIM gives a difference of  7.29 
(between 0.54 and 1.14 Mbps). Therefore  these 
metrics are reporting less differences that the one we 
know as imperceptible (at these bit-rates) but 
subjectively distortions are perceived.  
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Figure 5. PSNR-DMOSp vs VQM.  
Ranking Codecs against Bitrates 

Another alterations in the ‘normal’ behaviour of 
metrics when evaluating R/D performance plots are 
noticed. In the upper panel of Figure 2 and at the two 
lowest bit-rates the quality score of RRIQA and 
NRJPEG2000 decrease as the bit-rate increase, instead 
of increasing.  

Figure 4 shows the first frame of these bit-rates. It 
is common to classify the right image (135 Kbps) 
better than left one (70 Kbps), not like RRIQA and 
NRJPEG2000. This only happens  with M-JPEG2000, 
for RRIQA with Foreman QCIF, and for NRJPEG2000 
with all QCIF and CIF sequences. 

VQM at low bitrates changes the subjective ranking 
of  quality between codecs before saturation. This 
subjective ranking (in descending quality for CIF is M-
LTW, M-JPEG2000, H264 and for QCIF is M-LTW, 
H264, M-JPEG2000) agrees with the one given by 
DMOSp-PSNR at bit-rates before saturation, as shown 
in Figure 5 where the ranking for VQM changes. 

Concerning the metrics trained with the same set, 
our performance validation data says that the metric 
who best fit to DMOS is VIF. In Figure 2 we see that 
the remaining metrics follows very close the scores of 
VIF along the bit-rate range regardless of the codec. 

Up to now we have been analyzing results when 
codecs runs in intra mode. Now we will focus on the 
results obtained for H264 codec running in inter mode 
with the default settings. 
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Figure 6. Behaviour of metrics when codec 

runs in inter mode 
The behaviour for every metric as the bit-rate 

increase is the same as in intra mode, keeping the 
relative ordering of metrics. VQM sets the saturation 
quality approximately at the same DMOSp value as the 
rest of the metrics as shown in Figure 6. At lowest bit-
rates, objective quality value of VQM falls out of the 
training range giving a DMOSp value over the 
maximum. NRJPEG2000 reacts as in intra mode, 
slowly as bit-rate decreases. 

 QCIF CIF CCIR* 
 Frame Seq CIF Seq CCIR* Seq 

MSSIM 0,028 8,4 0,147 44,1 0,764 30,5
VIF 0,347 104,1 1,522 456,5 6,198 247,9

NRJPEGQS 0,010 3,0 0,049 14,6 0,201 8,1
NRJPEG2000 0,163 48,9 0,486 145,9 1,595 63,8
RRIQA (f.e.) 4,779 1433,7 6,950 2084,9 10,111 404,5

RRIQA (eval.) 0,201 60,2 0,635 190,6 2,535 101,4
PSNR 0,001 0,3 0,006 1,7 0,020 0,8

Table 4. Frame mean evaluation time and 
sequence evaluation time (seconds) 

Finally, Table 4 shows for different frame sizes the 
frame mean evaluation time and the whole sequence 
evaluation time. Times for the two steps of RRIQA, 
features extraction (f.e.) and quality evaluation (eval.) 
have been separately measured. Times for VQM have 
been measured manually. For a CIF sequence VQM 
takes from 27 to 28 seconds (calibration and colour 
conversion time not included) which is faster than the 
other FR metrics except NRJPEGQS and DMOSp-
PSNR. DMOSp-PSNR is far away the less 
computational expensive metric at all frame sizes. On 
the other hand, RRIQA and VIF are the slowest metric 
(they run a linear multi-scale, multi-orientation image 
decomposition) but they are the most accurate of the no 
distortion specific metrics. 

 
5. Conclusions  
 
In this work we have analyzed the comparison 

process of three video codecs, the DCT based H264 
working in intra and inter mode and two motion 
implementation of wavelet based codecs, Motion-
JPEG2000 and Motion-LTW (only intra mode) using 
public available Objective Quality Assessment 
Metrics. The main aim was finding a Quality 
Assessment Metric that can be used instead PSNR  to 
achieve better adjustments to human perception of 
quality when valuating compressed video sequences at 
different bit- rates. 

Metrics have to be compared in a common quality 
space. We used predicted DMOS (DMOSp) space. 
When comparing in the DMOSp scale is preferable do 
it with metrics trained with the same set. A R/D 
comparison of different kind of metrics (trained with 
different sets) must be done carefully, looking not only 
to the absolute quality scores but also to the degree that 
different metrics score the subjective differences 
between consecutive bit-rate variations. When metrics 
are trained with the same training set (differences in 
DMOSp values have the same perceptual meaning for 
all metrics), it can be trust the quality given by the 
metric which has better fit to DMOS in its calibration 
process.  

Our results show that NRJPEG2000 gave wrong 
quality scores between the two highest compressed 
sequences with M-JPEG2000 codec in  all sequences. 
RRIQA also failed with this codec but only for small 
frame sizes. NRJPEGQS metric is slow in perceiving 
the decreasing of quality and between some 
consecutive bit-rates does not perceive differences of 
quality as others metrics and subjective tests do. VQM 
ranks in bad order the codec performance for QCIF and 
CIF frame sizes. All metrics capture the saturation 
effect in perceived quality at high bit-rates. 

In general each metric can be use depending on the 
application, the frame size, the bit-rate range used.  

If there is no availability of the reference sequence 
RRIQA is our choice because has practically the same 
behaviour than FR metrics. 

 If the reference sequence is available the choice 
depends on the weight given to the trade-off between 
computational power and accuracy. If time is the most 
important parameter we will choose DMOSp-PSNR 
followed by VQM, and if accuracy is most important, 
then the choose will be VIF.  
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