
HUFFMAN CODING OF WAVELET LOWER TREES

FOR VERY FAST IMAGE COMPRESSION

Jose Oliver Manuel P. Malumbres

Department of Computer Engineering (DISCA)

Technical University of Valencia

Camino de Vera 17, 46017 Valencia, Spain

E-mail: joliver@disca.upv.es

Departamento de Física y ATC

Miguel Hernández University

Avd. Universidad s/n, 03202 Elche, Spain

E-mail: mels@umh.es

ABSTRACT

In this paper, a very fast variation of the Lower-Tree

Wavelet (LTW) image encoder is presented. LTW is a fast

non-embedded encoder with state-of-the-art compression

efficiency, which employs a tree structure as a fast method

of coding coefficients, being faster than other encoders like

SPIHT or JPEG 2000. The alternative Huffman-based

encoder presented in this paper serves to largely reduce the

execution time, at the expense of loss in coding efficiency.

Experimental results show that this encoder is more efficient

than other very fast wavelet encoders, like the recently

proposed PROGRESS (which is surpassed in up to 0.5 dB),

and faster than them (from 4 to 9 times in coding).

Compared with the JPEG 2000 reference software, the

encoder is from 18 to 38 times faster, while PSNR is similar

at low bit-rates, and about 0.5 lower at high bit-rates.1

1. INTRODUCTION

Great efforts have been made to improve coding efficiency

of wavelet-based image encoders, achieving in this way a

reduction in the bandwidth or amount of memory needed to

transmit or store a compressed image. Unfortunately, many

of these coding optimizations involve higher complexity,

requiring faster and more expensive processors. For

example, the JPEG 2000 [1] standard uses a large number of

contexts and an iterative time-consuming optimization

algorithm (called PCRD) to improve coding efficiency.

Other encoders (like the one proposed in [2]) achieve very

good coding efficiency with the introduction of high-order

context modeling, being the model formation a really slow

process. Even bit-plane coding employed in many encoders

(like [3] and [4]) results in slow coding process since an

image is scanned several times, focusing on a different bit-

1 This paper was supported by the Spanish Ministerio de Ciencia y

Tecnología under grant MEC TIC2003-00339.

plane in each pass, which in addition causes a high cache

miss rate. In [5], a tree-based wavelet encoder (LTW) is

presented, which avoids all these complex techniques to

minimize the execution time, although without loss of

coding efficiency. In this paper, some proposals to reduce

the complexity of LTW still more, at the expense of

moderate loss of compression efficiency, are introduced.

2. PREVIOUS VERY FAST IMAGE ENCODERS

Other very fast wavelet image encoders have been reported

in the literature. Basically, these encoders do not present

any type of iterative method, and each coefficient is

encoded as soon as it is visited. This results in the

impossibility to perform SNR scalability and precise rate

control. They simply apply a constant quantization to all the

wavelet coefficients, encoding the image at a constant and

uniform quality, as it happened in the former JPEG

standard, where only a quality parameter was available (and

no rate control was performed). In our encoder, we will also

take this approach.

One of these very fast encoders, called SBHP, was

introduced in [4]. In this proposal, the wavelet subbands are

divided into blocks, and each block is partitioned depending

on its significance with respect to a threshold value. The

significance of each new sub-block is Huffman encoded, so

that blocks are partitioned until the significant coefficients

(with respect to the threshold) are located (note that it is

similar to SPIHT [3] but it uses rectangular structures

instead of zerotrees). Although the basic SBHP algorithm is

embedded, the really very fast version of SBHP (non-

embedded SBHP) is not, because coefficients are entirely

encoded as soon as they are found to be significant.

Another very fast non-embedded encoder has been

recently proposed in [6]. This encoder is called

PROGRESS. It follows the same ideas of [5], avoiding bit-

plane coding, using coefficient trees to encode wavelet

coefficients in only one-pass, and arranging the coefficients

in order to achieve resolution scalability. In this encoder, all

II 465142440469X/06/$20.00 ©2006 IEEE ICASSP 2006

the coefficients (and not only the zero coefficients) are

arranged in trees. The number of bits needed to encode the

highest coefficient in each tree is computed, and all the

coefficients at the current subband level are binary encoded

with that number of bits. Then, the following level subband

is encoded (in decreasing order), simply by computing again

the number of bits needed to represent each sub-tree at that

level and using that number of bits again.

3. LOWER TREE WAVELET CODING

USING HUFFMAN CODES

For the most part, digital images are represented with a set

of pixel values, P. The encoder proposed in this paper can

be applied to a set of coefficients C resulting from a dyadic

decomposition (), so that C= (P). The most commonly

used dyadic decomposition for image compression is the

hierarchical wavelet subband transform, therefore an

element Cc ji , is called transform coefficient. In a

wavelet transform, we call LH1, HL1 and HH1 to the

subbands resulting from the first level of the image

decomposition, corresponding to horizontal, vertical and

diagonal frequencies. The rest of image transform is

computed by recursive wavelet decomposition on the

remaining low frequency subband, until a desired

decomposition level (N) is achieved (LLN is the remaining

low frequency subband).

As we saw in the introduction of this paper, one of the

main drawbacks in previous wavelet image encoders is their

high complexity. Many times, that is mainly due to bit plane

coding, which is performed along different iterations, using

a threshold that focuses on a different bit plane in each

iteration. This way, it is easy to achieve an embedded bit-

stream with progressive coding, since more bit planes add

more SNR resolution to the recovered image.

Although embedded bit-stream is a nice feature in an

image coder, it is not always needed and other alternatives,

like spatial scalability, may be more valuable according to

the final purpose. In this section, we describe a very fast

algorithm that is able to encode wavelet coefficients without

performing one loop scan per bit plane. Instead of it, only

one scan of the transform coefficients is needed. This

algorithm was first presented in [5], but in this Section we

simplify it (e.g., by adapting it to Huffman coding instead of

adaptive arithmetic coding) in order to achieve faster

execution time at the expense of compression efficiency.

In this algorithm, the quantization process is performed

by two strategies: one coarser and another finer. The finer

one consists in applying a scalar uniform quantization to the

coefficients, and it is carried out along with the DWT,

simply by varying the normalization factor in the lifting

transform, and then rounding the coefficient. On the other

hand, the coarser one is based on removing bit planes from

the least significant part of the coefficients, and it is

performed while our algorithm is applied. Related to this bit

plane quantization, we define rplanes as the number of least

significant bits to be removed. In addition, we consider that

a coefficient jic , is insignificant if it is 0 after removing

rplanes bits, in other words, if
rplanes

jic 2, .

A tree structure (similar to that of [3]) is used not only

to reduce data redundancy among subbands, but also as a

simple and fast way of grouping coefficients. As a

consequence, the total number of symbols needed to encode

the image is reduced, decreasing the overall execution time.

This structure is called lower tree, and it is a coefficient tree

in which all its coefficients are lower than
rplanes2 .

Our algorithm consists of three stages. In the first one,

all the symbols needed to efficiently represent the transform

image are calculated. During this stage, statistics can be

collected in order to compute a Huffman table in a second

stage. Finally, the last stage consists in coding the symbols

computed during the first one by using Huffman coding.

Let us describe the symbol set employed in our

proposal. First, we will describe the symbols corresponding

to insignificant coefficients, and then to the significant ones.

Note that we assume that Ss ji , is a symbol used to

represent a coefficient Cc ji , .

A LOWER symbol is used to represent a coefficient that

is the root of a lower-tree. The rest of coefficients in a

lower-tree are labeled as LOWER_COMPONENT, but they

are never encoded because they are already represented by

the root coefficient. On the other hand, if a coefficient is

insignificant but it does not belong to a lower-tree because it

has at least one significant descendant, it is an

ISOLATED_LOWER.

For a significant coefficient, we use a symbol indicating

the number of bits needed to represent that coefficient

(
jinbits ,
). We call it a numeric symbol. Thereby, for a

significant coefficient, if its corresponding numeric symbol

is Huffman coded, and its significant bits and sign are

binary coded (“raw coded”), the quantized coefficient is

fully represented. However, there is a special “LOWER

numeric symbol” (represented as LOWER

jinbits ,
) that not only

indicates the number of bits of a coefficient, but also the

fact that all its descendants are labeled as

LOWER_COMPONENT. This type of symbol is able to

represent efficiently some special lower-trees, in which the

root coefficient is significant and the rest of coefficients are

insignificant.

Let us describe now the coding algorithm. In the first

stage (symbol computation), all the wavelet subbands are

scanned in 2×2 blocks of coefficients, from the first level to

the Nth (to be able to build the lower-trees from leaves to

root). In the first level subband, if the four coefficients in

each 2×2 block are insignificant (i.e., lower than 2rplanes),

they are considered to be part of the same lower-tree, being

labeled as LOWER_COMPONENT. Then, when scanning

upper level subbands, if a 2×2 block has four insignificant

II 466

coefficients, and all their direct descendants are

LOWER_COMPONENT, the coefficients in that block are

also labeled as LOWER_COMPONENT, increasing the size

of the lower-tree.

However, when at least one coefficient in the block is

significant, the lower-tree cannot continue growing. In that

case, the symbol for each coefficient is computed one by

one. Each insignificant coefficient in the block is assigned a

LOWER symbol if all its descendants are

LOWER_COMPONENT, otherwise it is assigned an

ISOLATED_LOWER symbol. On the other hand, for each

significant coefficient, a numeric symbol is employed, being

a LOWER numeric symbol (LOWER

jinbits ,
) if its direct

descendants are LOWER_COMPONENT.

As an optimization in this first pass, in order to increase

the appearance of 2×2 blocks of LOWER_COMPONENT,

whenever the four coefficients have insignificant

descendants, the threshold to compare these four

coefficients is increased from
rplanes2 to

12rplanes
 to

extend an existing lower-tree more easily.

In the second stage, Huffman codes are built with the

probability model for the source (the symbols computed in

the first stage), once this probability model has been

acquired during the first stage. The computed table

containing the Huffman codes is output so that the decoder

can use it to decode the encoded symbols.

Finally, in the third stage, subbands are encoded from

the LLN subband to the first-level wavelet subbands.

Observe that this is the order in which the decoder needs to

know the symbols, so that lower-tree roots are decoded

before its leaves. In addition, this order provides resolution

scalability, because LLN is a low-resolution scaled version

of the original image, and as more subbands are being

received, the low-resolution image can be doubled in size.

In each subband, for each 2×2 block, the symbols computed

in the first stage are Huffman encoded using the codes

computed in the second stage. Recall that no

LOWER_COMPONENT is encoded, and that significant bits

and sign are needed, and therefore binary encoded, for each

significant coefficient.

Observe that since no adaptive coding and context-

modeling is performed, the order in which coefficient

blocks are scanned in each subband does not affect

compression efficiency, and therefore, a typical raster scan

order is followed because it avoids cache miss, being faster.

In the original LTW, a scan in clusters was used in order to

take advantage of spatial locality with an adaptive

arithmetic encoder with two-contexts, increasing the PSNR

but being slower. In addition, in order to speed up Huffman

decoding, lookup tables are built in the decoder.

The proposed coding algorithm is formally described in

the frame entitled Algorithm 1.

4. NUMERCIAL RESULTS

In Table 1, we compare the compression efficiency of the

new proposed variation of LTW with the original one, with

JPEG 2000, and with other fast wavelet encoders, namely

PROGRESS [6] and SBHP [4]. Obviously, the original

LTW is more efficient (from to 0.2 to 0.7 dB in PSNR,

depending on the bit-rate), mainly due to the use of

adaptivity, context-modeling and arithmetic coding.

However, our new proposal is more efficient than

PROGRESS (up to 0.5 dB at low bit-rates) and than SBHP

in slightly detailed images, like Café (in low-frequency

Algorithm 1: Proposed coding algorithm.

function HuffmanLTWCoding(C)

1) Symbol computation:

Scan the subbands (scan C, from 1 to N, in 2×2 blocks)

For each block
nB

if rplanes

jic 2,

COMPONETLOWERc ji _)(descendant ,

)(descendant , jic nji Bc ,

set
jis ,
=LOWER_COMPONENT

nji Bs ,

else for each
nji Bc ,

if rplanes

jic 2,
descendant(

jic ,
)=LOWER_COMP.

set
jis ,
=LOWER

else

if rplanes

jic 2,
descendant(

jic ,
) LOWER_COMP.

set
jis ,
=ISOLATED_LOWER

else

jiji cnbits ,2, log

if descendant(
jic ,
)=LOWER_COMPONENT

set
jis ,
= LOWER

jinbits ,

else

set
jis ,
=

jinbits ,

2) Huffman computation:

Build Huffman codes with statistics from S

output Huffman Table

3) Coefficient coding:

Scan the subbands (scan S, from N to 1, in 2×2 blocks)

For each
jis ,
 in a subband

if
jis ,

LOWER_COMPONENT

Huffman_output
jis ,

if
jis ,

LOWER
jis ,

ISOLATED_LOWER

output
jirplanejinbits cc

ji ,1,1 bitbit
,

output sign(
jic ,
)

end of fuction

Note: cnbit is a function that returns the nth bit of c.

II 467

images, like Woman, SBHP works slightly better, ranging

from 0.05 to 0.2 dB).

However, the main advantage of this new proposal is its

very fast execution time. In table 2, execution time is

compared with the original LTW and PROGRESS2

(excluding the DWT). For the coding process, the original

LTW is faster than PROGRESS (up to 3 times) except in

high bit-rates. If we compare the new fast LTW proposal

with PROGRESS, this advantage is increased, being from 4

to 9 times faster, depending on the bit-rate. The decoding

process is much faster than the coding process in

PROGRESS (because it does not need to compute the

highest coefficient in each sub-tree), and consequently only

an improvement of about 20% is achieved with the

proposed LTW at 1 bpp, while this improvement becomes

smaller as the bit-rate is reduced. Although there are no

execution time results (or reference software) available to

compare our proposal with SBHP, the use of bitplane

coding and a sorting algorithm in SBHP probably make it

slower. In fact, our encoder, when coding Woman at a range

from 1 bpp to 0.125 bpp, is from 18 to 38 times faster than

JPEG 2000 reference software (in particular, Jasper, written

in C), while in [4] authors state that SBHP coding was 4

times faster than JPEG 2000 VM. In addition, our algorithm

only needs the amount of memory required to hold the

image in memory. For more tests, our implementation is

available at http://www.disca.upv.es/joliver/LTWhuff.

codec\

bitrate
SBHP

PRO-

GRESS

LTW

Huffman

LTW

Orig.

JPEG

2000

Lena (512×512)

0.125 n/a 30.59 31.06 31.27 30.84

0.25 n/a 33.71 34.03 34.31 34.04

0.5 n/a 36.85 37.03 37.35 37.22

1 n/a 39.89 40.11 40.50 40.31

Café (2560×2048)

0.125 20.49 n/a 20.56 20.76 20.74

0.25 22.64 n/a 22.90 23.24 23.12

0.5 26.01 n/a 26.31 26.85 26.80

1 31.08 n/a 31.30 32.03 32.04

Woman (2560×2048)

0.125 27.09 26.89 27.23 27.52 27.33

0.25 29.59 29.40 29.70 30.16 29.98

0.5 33.11 33.02 33.15 33.82 33.63

1 37.98 37.75 37.76 38.53 38.43

Table 1: PSNR (dB) with different bit-rate and coders

2 For the execution time comparison, similar processors have been

employed. Results for PROGRESS were published in [6] with an

Intel Xeon 2 Ghz Processor, and results for LTW and JPEG 2000

are obtained in this paper with an Intel PentiumM 1.6 Ghz

Processor. On the other hand, all the implementations (including

PROGRESS) are written in C language and compiled with MS

Visual C++ 6.0 and the same speed optimization level.

5. CONCLUSIONS

We have presented a very fast version of the lower-tree

wavelet encoder using Huffman coding and other strategies

to reduce execution time. The loss of coding efficiency is

compensated by the reduction of execution time. In fact, the

encoder is less complex than some of the fastest wavelet

encoders reported in the literature, being up to 9 times faster

than PROGRESS (and much more symmetric than it), while

the PSNR is from 0.3 to 0.5 dB higher at low bit-rates. In

addition, in-place symbol computation is performed, and

therefore, there is no memory overhead. As a conclusion,

we think that our encoder can be considered one of the

fastest wavelet-based image encoders, and therefore it is a

good candidate for real-time interactive multimedia

communications, allowing simple implementations both in

hardware and software.

codec\

bitrate

PRO-

GRESS

LTW

Huffman

LTW

Orig.

PRO-

GRESS

LTW

Huffman

LTW

Orig.

 CODING DECODING

Lena (512×512)

0.125 23.7 2.7 8.2 1.6 1.6 4.8

0.25 26.1 3.5 12.1 2.6 2.4 8.6

0.5 29.0 5.0 19.7 4.6 3.9 15.8

1 34.8 8.1 36.4 8.3 6.7 30.8

Woman (2048×2048)

0.125 378.4 51.3 149.5 24.1 26.1 83.4

0.25 404.3 68.8 217.2 41.9 40.5 147.3

0.5 450.1 100.2 337.3 74.7 63.2 266.6

1 528.4 140.0 568.7 128.4 101.5 484.2

Table 2: Execution time comparison of the coding

process (excluding DWT) (time in million of CPU cycles)

6. REFERENCES

[1] ISO/IEC 15444-1, JPEG2000 image coding system, 2000.

[2] X. Wu, “Compression of Wavelet Transform Coefficients,”

The Transform and Data Compression Handbook, pp. 347-378,

CRC Press, 2001.

[3] A. Said, A. Pearlman. “A new, fast, and efficient image codec

based on set partitioning in hierarchical trees,” IEEE Transactions

on circuits and systems for video technology, vol. 6, nº 3, 1996.

[4] C. Chrysafis, A. Said, A. Drukarev, A. Islam, W. A. Pearlman,

“SBHP- A low complexity wavelet coder,” in Proc. IEEE Int.

Conference on Acoustics, Speech, and Signal Processing, 2000.

 [5] J. Oliver, M. P. Malumbres, “Fast and efficient spatial scalable

image compression using wavelet lower trees,” in Proc. IEEE

Data Compression Conference, Snowbird, UT, March 2003.

[6] Yushin Cho, W. A. Pearlman, A. Said, “Low complexity

resolution progressive image coding algorithm: PROGRES

(Progressive Resolution Decompression)”, in Proc. IEEE

International Conference on Image Processing, September 2005.

II 468

