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Abstract. A new image coder is described in this paper. Since it is based on the 
Discrete Wavelet Transform (DWT), it yields good Rate/Distortion (R/D) per-
formance. However, our proposal focuses on overcoming the two main prob-
lems of wavelet-based image coders: they are typically implemented by mem-
ory-intensive and time-consuming algorithms. In order to avoid these common 
drawbacks, we ought to tackle these problems in the main stages of this type of 
coder, i.e., both the wavelet computation and the entropy coding of the coeffi-
cients. The proposed algorithms are described in such a manner that they can be 
implemented in any programming language straightforwardly. The numerical 
results show that while the R/D performance achieved by our proposal is simi-
lar to the state-of-the-art coders, such as SPIHT and JPEG2000/Jasper, the 
amount of memory required in our algorithm is reduced drastically (in the order 
of 25 to 35 times less memory), and its execution time is lower (three times 
lower than SPIHT, and more than ten times lower than JPEG 2000/Jasper). 

1   Introduction 

Wavelet-based image coders have aroused great interest in the last years due to their 
nice features, such as natural multiresolution and high compactness of the coeffi-
cients, which leads to high compression efficiency. However, one of the main draw-
backs of current wavelet encoders is their high memory usage, since the regular 
wavelet transform requires a lot of memory to be computed. In addition, in many 
wavelet encoders, the subsequent coding process uses some extra lists and introduces 
memory overhead. The complexity of these algorithms is another usual problem. In 
this paper, we deal with both problems (memory requirement and complexity) in both 
stages (wavelet transform and efficient coding).  

2   Wavelet Transform for Image Coding with Low Use of Memory 

One of the desirable features of the proposed image coder is to have low memory 
consumption. Since our proposal is a wavelet-based coder, the first bottleneck that 



appears in the efficient use of memory is the computation of the DWT. Our encoder 
could only have low memory consumption if the DWT is performed in an efficient 
way. In the regular DWT, Mallat decomposition is performed [1]. In this decomposi-
tion, the image is transformed first row by row, and then column by column, at every 
decomposition level. Therefore, it must be kept entirely in memory. In this section we 
propose a different wavelet transform in which the key idea for saving memory is to 
get rid of the wavelet coefficients as soon as they have been calculated. 

This idea was first used in [2], aiming to reduce the memory requirements of the 
1D DWT. In [3], this transform is extended to image wavelet transform (2D), and 
other issues related to the order of the data are solved. However, in this 2D version, 
the authors do not propose a direct algorithm to implement their proposal, and it can-
not be easily implemented due to some unclear aspects. In [4], we presented a gen-
eral-purpose recursive algorithm that we will use in the image coder presented in this 

Algorithm 1.1: Backward recursive function 

function GetLLlineBwd( level ) 

1) First base case: No more lines to be read at this level 
if levellevel MaxLinesLinesRead =  return EOL 

2) Second base case: The current level belongs to the space domain and 
not to the wavelet domain  

else if 0=level  return ReadImageLineIO( )  
else  

3) Recursive case  
3.1) Recursively fill or update the buffer for this level 

if levelbuffer  is empty 
for NNi 2K=   

=)(ibufferlevel 1D_DWT(GetLLlineBwd( level-1)) 
FullSymmetricExtension( levelbuffer  ) 

else  
repeat twice 

Shift( levelbuffer  ) 
line = GetLLlineBwd( level-1 ) 
if line = EOL =)2( Nbufferlevel SymmetricExt( levelbuffer ) 
else  =)2( Nbufferlevel 1D_DWT( line ) 

3.2) Calculate the WT from the lines in the buffer, then process the result-
ing subband lines (LL, HL, LH and HH) 

{ }HLlineLLline, = ColumnDWT_LowPass( levelbuffer  ) 

{ }HHlineLHline, = ColumnDWT_HighPass( levelbuffer  ) 

EncodeSubLines({ }HHlineLHlineHLline ,, , level ) 

set 1+= levellevel LinesReadLinesRead  

return LLline  

end of fuction 



paper. In this section, this wavelet transform is outlined, while the reader is referred 
to [4] for a more complete and exhaustive description. 

The proposed algorithm relies on a line-based strategy. In this strategy, we only 
keep in memory those image lines that we are dealing with. This way, there is a 
buffer in each level that is able to keep 2N+1 lines for the low-frequency subband 
(LL) at that level (2N+1 is the length of the filter bank). These buffers are filled so 
that, when they are full, one-step of a column wavelet transform is performed. This 
operation generates a line of every wavelet subband (HH, HL and LH at that level), 
and a LL line. The HH, HL and LH lines can be directly encoded, while the LL line is 
passed to the following level in order to fill its buffer up.  

The drawback of this algorithm is the synchronization among the buffers. Before a 
buffer can produce lines, it must be filled with lines from previous buffers, therefore 
they start working at different moments, i.e., they have different delays. Moreover, all 
the buffers exchange their result at different intervals, according to their level. 

To solve the synchronization problem, we define a recursive function called 
GetLLlineBwd (level), which obtains the next LL line from a contiguous level. This 
algorithm is formally described in the frame Algorithm 1.1, while Algorithm 1.2 de-
fines the main program that sets up some variables and performs the image transform 
by calling the recursive function. Let us see the first algorithm more carefully. 

The first time that the recursive function is called at every level, its buffer 
( levelbuffer ) is empty and it has to be filled up. So, its upper half (from N to 2N) is 
recursively filled with lines from the previous level. When a line is received, it must 
be transformed using a 1D DWT before it is stored. The lower half part is filled using 
symmetric extension (the N+1 line is copied into the N-1 position …) 

On the other hand, if the buffer is not empty, it simply has to be updated. In order 
to update it, it is shifted one position so that a new line can be introduced in the last 
position (2N) using a recursive call. This operation is repeated twice. 

However, if there are no more lines in the previous level, this recursive call will re-
turn End Of Line (EOL). That points out that we are about to finish the computation 
at this level, but we still need to fill the buffer up using symmetric extension again. 

program Code_Image (nlevel, Q , rplanes) 

set nlevellevellengthrunLinesRead levellevel ∈∀== 0_  

set nlevellevelheightMaxLines levellevel ∈∀=
2

 

set bufferlevel = EncBufferHLlevel = EncBufferLHlevel = 
 EncBufferHHlevel =empty nlevellevel ∈∀  

repeat 
nlevel

height
2

 times 

LLline = GetLLlineBwd( nlevel ) 
EncodeLLSubLine( LLline ) 

end of program 

Algorithm 1.2: Perform the DWT and encode the image by calling 
a backward recursive function (see Algorithm 1.1) 



Once the buffer is filled or updated, both high-pass and low-pass filter banks are 
applied to every column in the buffer. This way, we get a line of every wavelet sub-
band at this level, and a LL line. The wavelet coefficients are passed to the coder so 
that they can be compressed, and the function returns the LL line. 

Notice that this function has two base cases. In the first one, all the lines at this 
level have been read. It is detected by keeping an account of the number of lines read, 
and it returns EOL. In the second one, the variable level reaches 0 and then no further 
recursive call is need since an image line can be read directly. Moreover, the maxi-
mum recursion depth is given by the decomposition level (which is usually 5 or 6), 
and so the memory usage for recursion is negligible compared with the buffer sizes. 

3   Run-Length Coding of the Wavelet Coefficients 

In order to have low memory consumption, once a wavelet subband line is calculated, 
it has to be encoded as soon as possible to release memory. However, we cannot 
encode independent lines if we want good R/D performance, since entropy coders 
need to exploit local similarities in the image to be efficient. Algorithm 2.1 stores the 
subband lines in encoder buffers so that when they are full, there are enough lines to 
perform an efficient compression, and the coding function is called. 

The encoder cannot use global image information since it does not know the whole 
image. Moreover, we aim at fast execution, and hence no R/D optimization or bit-
plane processing can be made, because it would turn it slower. In the next subsection, 
a Run-Length Wavelet (RLW) encoder with the aforementioned features is proposed. 

3.1 Fast Run-Length Coding 

In the proposed algorithm, the quantization process is performed by two strategies: 
one coarser and another finer. The finer one consists on applying a scalar uniform 
quantization to the coefficients using the Q parameter (see Algorithm 1.2). The 

Algorithm 2.1: Store the subband lines in the encoder buffer 
and call the run-length coding function when they are full 

function EncodeSubLines({ }HHlineLHlineHLline ,, , level ) 
    AddToBuffer ( EncBufferHLlevel , HLline) 
    AddToBuffer ( EncBufferLHlevel , LHline) 
    AddToBuffer ( EncBufferHHlevel,, HHline) 
    if IsFull (EncBufferHLlevel ) 

RLW_Code_Subband ( EncBufferHLlevel , level) 
RLW_Code_Subband ( EncBufferLHlevel , level) 
RLW_Code_Subband ( EncBufferHHlevel,, level) 
EncBufferHLlevel = EncBufferLHlevel = EncBufferHHlevel =empty 

end of function 



Algorithm 2.2: Run-length coding of the wavelet coefficients

function RLW_Code_Subband( Buffer, L ) 
Scan Buffer in horizontal raster order (i.e., in columns) 
for each ci,j  in Buffer 

( )⎡ ⎤jiji cnbits ,2, log=  

if rplanesnbits ji ≤,  

increase run_lengthL   
else 

if 0_ ≠Llengthrun  

if modeenter_run_run_length L <  
repeat run_lengthL times  

arithmetic_output LOWER 
else 

arithmetic_output RUN 
( )⎡ ⎤Lrun_lengthrbits 2log=  

arithmetic_output rbits 
output ( ) ( )LLrbits run_lengthrun_length 11 bitbit K−  

run_lengthL = 0 
arithmetic_output jinbits ,  

output ( ) ( )jirplanejinbits cc
ji ,1,1 bitbit
),( +− K  

output  sign( jic , ) 

end of function 
Note: ( )cnbit  is a function that returns the nth bit of c 

coarser one is based on removing bit planes from the least significant part of the coef-
ficients. We define rplanes as the number of less significant bits to be removed, and 
we call significant coefficient to those coefficients ci,j that are different to zero after 
discarding the least significant rplanes bits, in other words, if ci,j≥2rplanes. 

The wavelet coefficients are encoded as follows. The coefficients in the buffer are 
scanned column by column (to exploit their locality). For each coefficient in that 
buffer, if it is not significant, a run-length count of insignificant symbols at this level 
is increased (run_lengthL). However, if it is significant, we encode both the count of 
insignificant symbols and the significant coefficient, and run_lengthL is reset. 

The significant coefficient is encoded by means of a symbol indicating the number 
of bits required to represent that coefficient. An arithmetic encoder with two contexts 
is used to efficiently store that symbol. As coefficients in the same subband have 
similar magnitude, an adaptive arithmetic encoder is able to represent this information 
in a very efficient way. However, we still need to encode its significant bits and sign. 
They are raw encoded to speed up the execution time. 

In order to encode the count of insignificant symbols, we encode a RUN symbol. 
After encoding this symbol, the run-length count is stored in a similar way as in the 



significant coefficients. First, the number of bits needed to encode the run value is 
arithmetically encoded (with a different context), afterwards the bits are raw encoded. 

Instead of using run-length symbols, we could have used a single symbol to en-
code every insignificant coefficient. However, we would need to encode a larger 
amount of symbols, and therefore the complexity of the algorithm would increase 
(most of all in the case of large number of insignificant contiguous symbols, which 
usually occurs in moderate to high compression ratios). 

Despite of the use of run-length coding, the compression performance is increased 
if a specific symbol is used for every insignificant coefficients, since an arithmetic 
encoder stores more efficiently many likely symbols than a lower amount of less 
likely symbols. So, for short-run lengths, we encode a LOWER symbol for each in-
significant coefficient instead of coding a run-length symbol for all the sequence. The 
threshold to enter the run-length mode and start using run-length symbols is defined 
by the enter_run_mode parameter. The formal description of the depicted algorithm 
can be found in the frame entitled Algorithm 2.2. 

3.2   Tradeoff between R/D Performance and Speed and Memory Requirements 

The proposed algorithm can be tuned according to the final application. Thus, some 
parameters can be adjusted to improve the compression performance at the cost of 
slightly higher memory requirements or execution time. This way, the size of the 
encoder buffer can be 8 subband lines for a good R/D performance, but compression 
efficiency can be improved with 16 lines, increasing the memory requirements. An-
other parameter that can be tuned is the enter_run_mode variable in Algorithm 2.2. 
When this parameter is increased, larger run-lengths are encoded by successive 
LOWER symbols, which results slower but a bit more efficient in R/D performance. 
Another tradeoff between compression and complexity is the use of an arithmetic 
encoder (with nine contexts) for the sign of the coefficients. In general, each of these 
improvements may increase the PSNR of an image encoded at 1bpp in about 0.1 dB, 
while the two latter improvements increase the execution time in about 20% each one. 

4   Numerical Results 

We have implemented the proposed coder in ANSI C language. In this section we 
will compare it with the state-of-the-art wavelets coders SPIHT [5] and JPEG 2000 
[6]. For JPEG 2000, we do not consider image tiling since it degrades the image qual-
ity a lot. The results for JPEG 2000 have been obtained using Jasper [7], an official 
implementation included in the ISO/IEC 15444-5 standard. All of them use the same 
wavelet filter bank (Daubechies’ B7/9) and have been written and compiled with the 
same level of optimization. In our comparison, we will use the standard images Lena 
and Barbara (monochrome, 8bpp, 512x512), and the larger and less blurred images 
Café and Woman (monochrome, 8bpp, 2560x2048, equiv. 5-Megapixel), from the 
JPEG 2000 testbed. For more tests, the reader can download an implementation of the 
coder at the authors’ web site http://www.disca.upv.es/joliver/LowMemRLW. 



Table 1. PSNR (dB) with different bit rates and coders for the evaluated images. The numbers 
in parenthesis for our proposal correspond to the decrease of performance if the R/D 
improvements discussed in subsection 3.2 are not applied. 

 Lena (512x512) Barbara (512x512) 
Codec\ 
rate SPIHT Jasper/ 

JP2K 
Proposed Run 
Length SPIHT Jasper/ 

JP2K 
Proposed Run 
Length 

1 40.41 40.31 40.37 (-0.14) 36.41 37.11 36.82 (-0.35) 
0.5 37.21 37.22 37.15 (-0.10) 31.39 32.14 31.90 (-0.29) 
0.25 34.11 34.04 34.03 (-0.08) 27.58 28.34 28.12 (-0.22) 
0.125 31.10 30.84 30.97 (-0.04) 24.86 25.25 25.19 (-0.08) 
 Woman (2560x2048) Café (2560x2048) 
Codec\ 
rate SPIHT Jasper/ 

JP2K 
Proposed Run 
Length SPIHT Jasper/ 

JP2K 
Proposed Run 
Length 

1 38.28 38.43 38.49 (-0.21) 31.74 32.04 31.89 (-0.26) 
0.5 33.59 33.63 33.72 (-0.15) 26.49 26.80 26.67 (-0.16) 
0.25 29.95 29.98 30.04 (-0.08) 23.03 23.12 23.10 (-0.12) 
0.125 27.33 27.33 27.40 (-0.04) 20.67 20.74 20.67 (-0.06) 

Table 2. Total memory requiered (in KB) to encode the Woman image with the compared 
algorithms. The numbers in parenthesis correspond to the memory that is saved if the R/D 
improvements are not used (it can be applied in both columns of our proposed algorithm). 

Codec \ 
rate 

Compressed 
Image File SPIHT Jasper/ 

JP2K 
Proposed 
Run Length 

Proposed with bit- 
stream in memory 

1 640 42,888 62,768 1,256  1,896       (-180) 
0.5 320 35,700 62,240 1,192  1,512       (-180) 
0.25 160 31,732 61,964 1,192  1,352       (-180) 
0.125 80 28,880 61,964 1,176  1,256       (-180) 

 
Table 1 shows a compression comparison for the evaluated images and coders. In 

general, our proposal performs as well as SPIHT does for less detailed images (Lena 
and Woman) and better than it for more complex images (Barbara and Café). It is due 
to the fact that SPIHT is based on coefficients trees, and fewer trees can be estab-
lished in images with many details. On the contrary, JPEG 2000 is more efficient than 
our proposal in highly detailed images, since it defines more contexts and uses R/D 
optimization. However, our coder and JPEG 2000 are similar in low detailed images. 

The comparison in which our encoder clearly outperforms both SPIHT and JPEG 
2000 is in memory consumption. Table 2 shows that, for a 5-Megapixel image, our 
proposal requires between 25 and 40 times less memory than SPIHT, and more than 
45 times less memory than Jasper/JPEG 2000. In this table, the last column refers to 
the case in which the complete bitstream (i.e., the compressed image) is kept in mem-
ory while it is generated. Due to the computation order in the proposed wavelet trans-
form, the coefficients from different subband levels are interleaved. Thus, instead of a 
single bitstream, we generate a different bitstream for every level. These different 
streams can be kept in memory or saved in secondary storage. In addition, having a 
different bitstream for each level eases the decompression process, since the order in 
the inverse transform is just the reverse of the order in the forward one.  



In this table, the memory estimated for executing a single process is about 650 KB. 
Hence, we can consider that the remaining memory is the data memory. Moreover, 
for our RLW coder, 180 KB can be saved if we use 8 lines per buffer instead of 16. 

Since JPEG 2000 has more contexts and uses R/D optimization, it is more complex 
than our proposal. SPIHT is also more complex because it performs several image 
scans handling a different bit-plane each scan. Moreover, in cache-based systems, the 
proposed DWT makes better use of the cache. The last table shows an execution time 
comparison for two image sizes. Due to the former reasons, our algorithm clearly 
outperforms Jasper/JPEG 2000, and it is several times faster than SPIHT. In addition, 
we can speed it up in about 30% if no compression improvements are performed. 

Table 3. Execution time (in Million of CPU Cycles) needed to encode images of different size. 
The numbers in parenthesis correspond to time reduction if no R/D improvements are applied. 

 Woman (2560x2048)  Lena (512x512) 
Codec \ 
rate SPHIT Jasper / 

JP2K 
Proposed Run 
Length 

 SPHIT Jasper / 
JP2K 

Proposed Run 
Length 

1 3,669 23,974 1,855  (-587)  147 750 98  (-28) 
0.5 2,470 23,864 1,291  (-377)  97 734 65  (-21) 
0.25 1,939 23,616 970  (-259)  73 726 44  (-11) 
0.125 1,651 23,563 783  (-197)  60 717 34  (-7) 

5   Conclusions 

In this paper, a wavelet image coder with state-of-the-art compression performance 
has been presented. The main contribution of this image coder is that it requires much 
less memory to work and thus, it is a good candidate for many embedded systems and 
other memory-constrained environments (such as digital cameras and PDAs). In addi-
tion, it is also several times faster than the other evaluated wavelet image coders. 

References 

1. S. Mallat: A theory for multiresolution signal decomposition. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, July 1989 

2. M. Vishwanath: The recursive pyramid algorithm for the discrete wavelet transform. IEEE 
Transactions on Signal Processing, March 1994 

3. C. Chrysafis, and A. Ortega: Line-based, reduced memory, wavelet image compression. 
IEEE Transactions on Image Processing, March 2000 

4. J.Oliver, M.P.Malumbres: A fast wavelet transform for image coding with low memory 
consumption. 24th Picture Coding Symposium, December 2004 

5. A. Said, A. Pearlman: A new, fast, and efficient image codec based on set partitioning in 
hierarchical trees. IEEE Trans. on Circuits and Systems for Video Technology, June 1996 

6. ISO/IEC 15444-1: JPEG 2000 image coding system, 2000 
7. M. Adams: Jasper software reference manual. ISO 1/SC 29/WG 1 N 2415, October 2002 


