
Noname manuscript No.
(will be inserted by the editor)

GPU-based 3D Lower tree Wavelet Video Encoder

Vicente Galiano · Otoniel

López-Granado · Manuel P. Malumbres ·

L. Anthony Drummond · Hector

Migallón

Received: date / Accepted: date

Abstract The 3D-DWT is a mathematical tool of increasing importance in
those applications that require an efficient processing of huge amounts of vol-
umetric info. Other applications like professional video editing, video surveil-
lance applications, multi-spectral satellite imaging, HQ video delivery, etc,
would rather use 3D-DWT encoders to reconstruct a frame as fast as possible.
In this paper, we introduce a fast GPU-based encoder which uses 3D-DWT
transform and lower trees. Also, we present an exhaustive analysis of the use of
GPU memory. Our proposal shows good trade off between R/D, coding delay
(as fast as MPEG-2 for High definition) and memory requirements (up to 6
times less memory than x264).

Keywords 3D-DWT · video coding · GPU · manycore

1 Introduction

At video content production stages, digital video processing applications re-
quire fast frame random access to perform an undefined number of real-time
decompressing-editing-compressing interactive operations, without a signifi-
cant loss of original video content quality. Intra-frame coding is desirable

This research was supported by the Spanish Ministry of Education and Science under grant
TIN2011-27543-C03-03 and the Spanish Ministry of Science and Innovation under grant
number TIN2011-26254 and TEC2010-11776-E.

V. Galiano, O. López-Granado, M.P. Malumbres, H. Migallón
Physics and Computer Architecture Department
Miguel Hernández University. Elche, Spain 03202
Tel.: +34-966658392
E-mail: {vgaliano,otoniel,mels,hmigallon}@umh.es
L. Anthony Drummond
Lawrence Berkeley National Laboratory
One Cyclotron Road, Berkeley, CA 94703, USA
E-mail: LADrummond@lbl.gov

2 Vicente Galiano et al.

as well in many other applications like video archiving, high-quality high-
resolution medical and satellite video sequences, applications requiring sim-
ple real-time encoding like video-conference systems or even for professional
or home video surveillance systems [13] and Digital Video Recording systems
(DVR). However, intra coding does not take profit of the temporal redundancy
between frames.

In the last years, most of all in areas such as video watermarking [3] and 3D
coding (e.g., compression of volumetric medical data [15] or multispectral im-
ages [5], 3D model coding [2], and especially, video coding), three-dimensional
wavelet transform (3D-DWT) based encoders have arisen as an alternative
between simple intra coding and complex inter coding solutions that applies
motion compensation between frames to exploit temporal redundancy.

In [12], authors utilized 3-D spatio-temporal subband decomposition and
geometric vector quantization (GVQ). In [17] a full color video coder based
on 3-D subband coding with camera pan compensation was presented. In [4]
an extension to 3D of the well known embedded zerotree wavelet (EZW) al-
gorithm developed by Shapiro [16] was presented. Similarly, an extension to
3D-DWT of the set partitioning in hierarchical trees (SPIHT) algorithm de-
veloped by Said and Pearlman [14] was presented in [10], using a tree with
eight descendants per coefficient instead of the typical quad-trees of image
coding. All of this 3D-DWT based encoders are faster than complex inter cod-
ing schemes but slower than simple intra coding solutions. So we will try in
this work to speed up 3D video encoders to achieve coding delays as closer
as possible to the ones obtained by intra video encoders but with a clearly
superior compression performance. In order to achieve this goal, we will focus
on GPU-based platforms.

Wide research have been carried out to accelerate the DWT, specially the
2D DWT, exploiting both multicore architectures and graphic processing units
(GPU). In [19], a Single Instruction Multiple Data (SIMD) algorithm runs the
2D-DWT on a GeForce 7800 GTX using Cg and OpenGL, with a remarkable
speed-up. A similar effort has been performed in [18] combining Cg and the
7800 GTX to report a 1.2 - 3.4 speed-up versus a CPU counterpart. In [6],
authors present a CUDA implementation for the 2D-FWT running more than
20 times as fast as the sequential C version on a CPU, and more than twice
as fast as the optimized OpenMP and Pthreads versions implemented on a
multicore CPU. In [7], authors present GPU implementations for the 2D-
DWT obtaining speed-ups up to 20 when compared to the CPU sequential
algorithm.

In this work, we present a GPU 3D-DWT based video encoder using lower
trees as the core coding system. The proposed encoder requires less memory
than 3D-SPIHT [10] and has a good R/D behavior. Furthermore, we present an
in-depth analysis of the use of GPU’s to accelerate the 3D-DWT transform.
Using these strategies, the proposed encoder is able to compress a Full-HD
video sequence in real time.

The rest of the paper is organized as follows. Section 2 presents the pro-
posed 3D-DWT based encoder. In Section 3 a performance evaluation in terms

GPU-based 3D Lower tree Wavelet Video Encoder 3

of R/D, memory requirements and coding time is presented. Section 4 de-
scribes several optimization proposals based on CUDA to process the 3D-DWT
transform, while in Section 5 we analyze these proposals when applied to the
proposed encoder. Finally in Section 6 some conclusions are drawn.

2 Encoding system

1 1

1
1

1 1

1
 1

2 2

 2
2

2 2

 2 2

Fig. 1 Example of a two decomposition level 3D-DWT and the relationship between parent-
child subbands

In this section we present a 3D-DWT based encoder with low complexity
and good R/D performance. As our main concern is fast encoding process,
no R/D optimization, motion estimation/motion compensation (ME/MC) or
bit-plane processing is applied. This encoder is based on both the 3D-DWT
transform and lower-trees (3D-LTW).

First of all, the 3D-DWT is applied to a group of pictures (GOP). In Fig. 1
an example of a two level decomposition of the 3D-DWT transform is applied
to a eigth-frame video sequence. As it can be seen on the left side, spatial de-
composition to all video frames is performed resulting in four subbands (LL∗1,
LH∗1, HL∗1, HH∗1). After applying the temporal decomposition, we will ob-
tain the high-frequency temporal subbands (∗ ∗H1 labeled subbands with a
dark blue color), and the low-frequency ones (∗ ∗ L1 labeled subbands with
a light blue color). On the right side of Fig. 1, we show the second decompo-
sition level of the 3D-DWT transform. So, we will perform the same process
to the frames belonging to the LLL1, performing the spatial and temporal
DWT filtering to obtaing the corresponding subbands. Finally, we also show
the wavelet coefficients offspring relationship, that the coefficient encoder will
exploit. As it can be seen each coefficient of a particular subband at N-th de-
composition level will have eigth descendants in the (N-1)-th decomposition
level as shown at figure.

After all 3D-DWT decomposition levels are applied, all the resulting wavelet
coefficients are quantized and then, the encoding system compresses the input
data to obtain the final bit-stream corresponding to that GOP. It is important

4 Vicente Galiano et al.

to remark that the compressed bit-stream is ordered in such a way that the
decoder obtains the bit-stream in the correct order.

2.1 Lower-tree wavelet coding

The proposed video coder is based on the LTW image coding algorithm [11]. As
in LTW encoder, the proposed video codec uses a scalar uniform quantization
by means of two quantization parameters: rplanes and Q. The finer quan-
tization consists in applying a scalar uniform quantization, Q, to all wavelet
coefficients. The coarser quantization is based on removing the least significant
bit planes, rplanes, from wavelet coefficients.

The encoder uses a tree structure to reduce data redundancy among sub-
bands (similar to that of [10]), and also as a fast way of grouping coefficients,
reducing the number of symbols needed to encode the image. This structure
is called lower tree, and all the coefficients in the tree are lower than 2rplanes.
In Fig. 1 a example of the relationship between subbands is presented.

Let us describe the coding algorithm. In the first stage (symbol compu-
tation), all wavelet subbands are scanned from the first decomposition level
to the N-th (to be able to build the lower-trees from leaves to root) and the
encoder has to determine if each 2 × 2 block of coefficients of both subband
frames is part of a lower-tree. In the first level subband (see Fig. 1), if the eight
coefficients in these blocks (2 blocks of 2× 2 coefficients) are insignificant (i.e.,
lower than 2rplanes), they are considered to be part of the same lower-tree, la-
beled as LOWER COMPONENT. Then, when scanning upper level subbands,
if both 2 × 2 blocks have eighth insignificant coefficients and all their direct
descendants are LOWER COMPONENT, the coefficients in that blocks are
labeled as LOWER COMPONENT, increasing the lower-tree size.

As in the original LTW image encoder, when there is at least one signifi-
cant coefficient in one of the two blocks of 2 × 2 coefficients or in its descen-
dant coefficients, we need to encode each coefficient separately. Recall that in
this case, if a coefficient and all its descendants are insignificant, we use the
LOWER symbol to encode the entire tree, but if the coefficient is insignifi-
cant, and it has a significant descendant, the coefficient is encoded as ISO-

LATED LOWER. However, if all descendants of a significant coefficient are
insignificant (LOWER COMPONENT), we use a special symbol indicating
the number of bits needed to represent it and a superscript L (4L).

Finally, in the second stage, subbands are encoded from the LLLN sub-
band to the first-level wavelet subbands and symbols computed in the first
stage are entropy coded by means of an arithmetic encoder. Recall that no
LOWER COMPONENT is encoded. The value of significant coefficients and
their sign are raw encoded.

GPU-based 3D Lower tree Wavelet Video Encoder 5

3 Performance Evaluation

In this section we will compare the performance of our proposed encoder (3D-
LTW) using Daubechies 9/7F filter for both spatial and temporal domain with
the following video encoders:

– 3D-SPIHT [9]
– H.264 (JM16.1 version) (high quality profile) [1]
– MPEG-2 (ffmpeg-r25117) - GOP size 15, sequence type IBBPBBP. . . [8]
– x264 (mingw32-libx264 r1713-1 high quality profile) in both Inter and Intra

mode [8]

The performance metrics employed in the tests are R/D performance, coding
and decoding delay and memory requirements. All the evaluated encoders
have been tested on an Intel PentiumM Dual Core 3.0 GHz with 2 Gbyte
RAM memory.

The test video sequences used in the evaluation are: Foreman (QCIF and
CIF) 300 frames, Container (QCIF and CIF) 300 frames, News (QCIF and
CIF) 300 frames, Hall (QCIF and CIF) 300 frames, Mobile (ITU D1 576p30)
40 frames, Station2 (HD 1024p25) 312 frames, Ducks (HD 1024p50) 130 frames
and Ducks (SHD 2048p50) 130 frames.

It is important to remark that MPEG-2 and x264 evaluated implementa-
tions are fully optimized, using CPU capabilities like Multimedia Extensions
(MMX2, SSE2Fast, SSSE3, etc.) and multithreading, whereas 3D-DWT based
encoders (3D-SPIHT and 3D-LTW) are non optimized C++ implementations.

3.1 Memory requirements

In Table 1, memory requirements of different encoders under test are shown.
The 3D-LTW encoder running over a GOP size of 16 frames uses up to 6
times less memory than 3D-SPIHT, up to 22 times less memory than H.264
for QCIF sequence resolution and up to 6 times less memory than x264 which
is an optimized implementation of H.264, for small sequence resolutions. It is
important to remark that 3D-SPIHT keeps the compressed bit-stream of a 16
GOP size in memory until the whole compression is performed, while encoders
like MPEG-2, H.264, 3D-LTW and x264 output the bit-stream inline. Block
based encoders like MPEG-2 require less memory than the others encoders,
specially at high definition sequences.

3.2 R/D performance

Regarding R/D, in Table 2 we can see the R/D behavior of all evaluated
encoders for different sequences. As shown, x264 is the one that obtains the
best results for sequences with high movement, mainly due to the exhaustive
ME/MC stage included in this encoder, contrary to 3D-SPIHT and 3D-LTW
that do not include any ME/MC stage. The R/D behavior of 3D-SPIHT and

6 Vicente Galiano et al.

Format/ QCIF CIF ITU-D1 Full-HD
Codec
H264 35824 86272 227620 489960
x264 10752 18076 36600 178940

MPEG-2 4696 6620 9164 32820
3D-SPIHT 10152 34504 118460 645720
3D-LTW 1611 6390 20576 123072

Table 1 Memory requirements for evaluated encoders (KB)

Codec/Bit rate
Kbps/dB x264 MPEG-2 x264 Intra 3D-SPIHT 3D-LTW

Foreman (CIF)
3040 44.99 40.74 39.95 40.32 41.38
1520 41.80 37.10 35.29 36.42 36.67
760 38.90 34.09 31.43 33.35 33.42
380 35.60 31.59 28.15 30.78 30.68
190 31.99 29.32 25.07 28.53 28.54

Container (CIF)
3040 47.20 43.59 37.97 47.82 46.54
1520 43.60 40.43 33.04 43.99 41.93
760 40.50 37.19 29.22 39.54 37.39
380 37.09 34.48 25.88 35.20 33.31
190 33.89 32.05 23.27 31.10 29.79

Hall (CIF)
3040 42.92 42.29 41.19 44.68 44.46
1520 40.55 39.89 36.60 42.27 41.66
760 38.94 37.95 31.89 40.11 38.93
380 37.25 35.95 27.32 37.39 35.43
190 34.80 33.59 23.88 33.56 31.90

Mobile (ITU-D1)
6400 40.33 37.82 35.56 38.24 38.86
3598 38.82 36.09 32.53 35.07 35.59
2100 37.57 34.37 30.12 32.53 32.69
1142 35.51 32.58 27.87 30.52 30.64
542 31.82 30.68 25.65 28.82 29.26

Ducks (Full-HD) 50fps
98304 37.34 38.49 36.26 37.77 36.07
49152 34.48 35.27 32.61 35.39 32.85
24576 32.46 32.28 29.16 33.68 31.49
12288 30.55 29.32 26.43 31.63 30.23
6144 28.47 27.82 24.19 28.99 29.19

Table 2 Average PSNR (dB) with different bit rate and coders

3D-LTW is similar for images with moderate-high motion activity, but for
sequences with low movement, 3D-SPIHT outperform 3D-LTW, mainly due
to the extra decomposition levels applied in high frequency subbands. Fig. 2
shows an example of this effect in two different sequences, one with low motion
activity like Container and other with moderate motion activity like Foreman.
Notice that the proposed 3D-LTW encoder improves the performance of the
old-fashioned MPEG-2 inter video encoder. Also, it is worth to highlight the

GPU-based 3D Lower tree Wavelet Video Encoder 7

B
)

P
S
N
R

 (
d
B

P

Bit!rate (Kbps)

(a) Container

48

44

40

B
)

36

P
S
N
R

 (
d
B

32

P

3D SPIHT H264

MPEG2 X264
28

MPEG2 X264

X264_INTRA 3D LTW

24

0 500 1000 1500 2000 2500 3000 3500

Bit!rate (Kbps)

(b) Foreman

Fig. 2 PSNR (dB) for all evaluated filters for Container and Foreman sequences in CIF
format

significant R/D improvement of both 3D-LTW and 3D-SPIHT over the x264
intra encoder (up to 11dB). This R/D improvement is accomplished by ex-
ploiting only the temporal redundancy among video frames when applying
the 3D-DWT. It is also interesting the behavior of 3D-DWT based encoder
for high frame rate video sequences like Ducks. As it can be seen all 3D-DWT
based encoders have a similar behavior than the other encoders, even better
than x264 in INTER mode.

3.3 Subjective Evaluation

We have also performed a subjective evaluation of the proposed encoder. Fig. 3
and Fig. 4 show the 33rd frame of the Ducks sequence in Full-HD format
compressed at 13000 Kbps. As we can see, both 3D-LTW and x264 obtain the

8 Vicente Galiano et al.

(a) 29.21 dB

(b) Original

(c) 31.57 dB

Fig. 3 Subjective comparison between a) MPEG-2 and c) 3D-LTW for Ducks (Full-HD)
at 13000 Kbps, frame # 33

best results. MPEG-2 obtain lower performance. Also, in Fig. 4, we can see
the poor performance of x264 Intra in this frame where disturbing blocking
artifacts appear. Its interesting to see the great behavior of 3D-LTW which

GPU-based 3D Lower tree Wavelet Video Encoder 9

(a) 26.55 dB

(b) Original

(c) 30.71 dB

Fig. 4 Subjective comparison between a) x264-Intra and c) x264 for Ducks (Full-HD) at
13000 Kbps, frame # 33

is even better than x264, even when no ME/MC is applied in the proposed
encoder.

10 Vicente Galiano et al.

3.4 Coding/Decoding time

In Fig. 5 we present the total coding time (excluding I/O) of all evaluated
encoders and for different sequence resolutions. As it can be seen, MPEG-2
encoder is the fastest one due to its block-based processing algorithm. Regard-
ing 3D-DWT based encoders, the proposed encoder 3D-LTW is up to 7 times
as fast as 3D-SPIHT and up to 6 times as fast as x264 encoder.

7.16

1.11

0.01

0.00

6.99

1.30

156.25

31.72

38.96

7.78

0.00

0.01

0.10

1.00

10.00

100.00

1,000.00

ITU-D1
 Full-HD

F
ra

m
es

 p
er

 s
ec

o
n

d

3D-SPIHT
 3D-LTW
 H264
 X264
 MPEG2

Fig. 5 Coding time in frames per second for all evaluated encoders

Also, in Fig. 6(a) we present the total coding time of a frame for different
video sequence resolutions as a function of the GOP size for the 3D-LTW
encoder. As it can be seen, for low resolution sequences there are near no
differences in the total coding time, but for high resolution video sequences,
the total coding time will increase up to 40% as the GOP size increases.
Furthermore, its interesting to see that the time required to perform 3D-DWT
stage ranges between 45% and 80% of the total coding time depending on the
GOP size, as seen in Fig. 6(b). So, improvements in the 3D-DWT computation
will drastically reduce the total coding time of the proposed encoder.

4 3D-DWT optimizations

As 3D-DWT computation requires more than 45% and up to 80% of the total
coding time in the proposed encoder, in this section we present several GPU
based strategies to improve the 3D-DWT computation time.

Two different GPUs architectures are used in this work. The first one is
a GTX280 which contains 240 CUDA cores with 1 GB of dedicated video
memory. The other one is a laptop GPU (GT540M) with 96 CUDA cores and
2 GB of dedicated video memory. We can appreciate significant differences
between both devices that will be reflected in the results shown in this section.

GPU-based 3D Lower tree Wavelet Video Encoder 11

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
o

d
in

g
 T

im
e

(s
ec

.)

16
 0.002
 0.008
 0.028
 0.170

32
 0.002
 0.008
 0.030
 0.226

64
 0.002
 0.009
 0.036
 0.237

128
 0.002
 0.011
 0.040
 0.245

QCIF
 CIF
 ITU-D1
 Full-HD

(a) Total coding time

0.00

0.05

0.10

0.15

0.20

0.25

W
av

el
et

 T
ra

n
sf

o
rm

 T
im

e
(s

ec
.)

16
 0.001
 0.004
 0.017
 0.136

32
 0.001
 0.004
 0.019
 0.192

64
 0.001
 0.005
 0.028
 0.203

128
 0.001
 0.008
 0.034
 0.211

QCIF
 CIF
 ITU-D1
 Full-HD

(b) Wavelet time

Fig. 6 Total coding time and Wavelet transform time per frame of the 3D-LTW encoder
for different video sequence resolutions and GOP sizes

The algorithm used to compute the 3D-DWT in the GPUs is illustrated
in Fig. 7. Before the first computation step, image data must be transfered
from host memory to the global memory of the device. We must transfer the
number of frames indicated by the GOP size. As we increase the GOP size,
more amount of global memory is needed in the GPU. All frames are stored in
adjacent memory positions. In this way, the memory requirements for the GPU
isWidth× Height×frames×sizeof(float) bytes. As showed in Fig. 7, in this
implementation we are using two memory spaces in the global memory of the
GPU: one for the input data and other for the output data after applying the
filtering process. In the first step, each thread computes the row convolution
and stores the result in the output memory. For computing the second step,

12 Vicente Galiano et al.

LL

LH

HL

HH

Memory Space:

Input in Global Memory

�4

9
�������3

7
���height
�4
�9
�

Memory Space

:Input in Global Memory

Memory Space:

Output in Global Memory

even row:

Low-Pass Filter H
�3
�7
�odd row:

High-Pass Filter G

t

width

H
L

height

width

t
 ���3

7

even col.:

Low-Pass Filter H
����4
9

odd col.:

High-Pass Filter G

height

width

t

LLL

LHL

HLL

HHL

LLH

LLL
 HLL

HLH

H
L

H

H
L

L

H
H

L

H
H

H

� �
Memory Space:

Output in Global Memory

a) First Step: Row Filter

b) Second Step:

 Column Filter

c) Third Step: Time Filter

d) Fourth Step:

Copy LLL for the next level

Fig. 7 Steps for Computing 3D-DWT in GPUs

the source data is now the output data obtained in the previous step, so it is
not needed a copy of memory data for preparing this step. So, in the second
step, the column filter is applied and the 2D-DWT is completed for each frame
and after that, the output is again in the source space memory. After that, in
the third step, a 1D-DWT is performed to consider the temporal dimension. At
the last step, data must be transfered to the host memory to proceed with the
next GOP. The first level 3D-DWT is performed in the output space memory
and if we want compute a second level we must copy data from output to input
space. Then, in the second level only half of the resolution (LLL subband) must
be computed, iterating the same steps that for the first level.

GPU-based 3D Lower tree Wavelet Video Encoder 13

0.00

5.00

10.00

15.00

T
im

e
(m

se
c.

)

16
 0.233
 0.690
 4.764
 11.238

32
 0.284
 0.681
 4.876
 11.539

64
 0.238
 0.724
 4.933
 11.679

128
 0.227
 0.690
 4.946
 11.738

QCIF
 CIF
 ITU-D1
 Full-HD

(a) GT540M

0.00

1.00

2.00

3.00

4.00

5.00

6.00

T
im

e
(m

se
c.

)

16
 0.188
 0.418
 2.125
 4.820

32
 0.229
 0.402
 2.124
 4.927

64
 0.171
 0.393
 2.216

128
 0.209
 0.379
 2.136

QCIF
 CIF
 ITU-D1
 Full-HD

(b) GTX280

Fig. 8 GPU computational wavelet transform times per frame over GT540M and GTX280
for different video resolutions

4.1 Performance evaluation of the GPU 3D-DWT

In this section we present the performance evaluation of our GPU-based 3D-
DWT algorithm in terms of computational and memory transfer times and
the speed-ups obtained when compared to the CPU sequential algorithm. We
present results for both previously mentioned GTX280 and GT540M plat-
forms.

In Fig. 8 we present the computational times for both GPU platforms used
in this work and for two different video sequence resolutions considering GOP
sizes varying from 16 to 128 and computing four wavelet decomposition levels.
As shown in Fig. 8, for ITU-D1 video frame resolution, the GTX280 is 2.3
times as fast as the GT540M regarding the GPU computational time. This is
mainly due to the greater number of cores available in the GTX280 (2.5 times
more cores). Moreover, in Fig. 12(a) we compare computational times in GPU
shown in Fig. 8, versus the times needed to compute the wavelet transform in
CPU, shown in Fig. 6(b)), for a GOP size of 32 and we obtain an speed-up
around 16.6 in GT540M, and 38 in GTX280. Computational times for Full-HD
resolution over GTX280 are not available due to global memory constraints.

However, only computational time has been considered in this analysis.
In Fig. 9, we show total times including transfer times between host memory
and GPU memory. We must notice that these times including transfer times
are higher than the ones showed in Fig. 8, being 1.3 in GT540M and 3.73 in
GTX280. The global computational time including the memory transfer time
is lower in the GT540M than in the GTX280 due to the significantly lower
memory transfer time, thanks to a second generation of PCI Express bus which
improves data transfers. As shown, data transfer between device memory and
host memory introduce a significant penalty when using GPUs for general
puporse computing. Comparing times from Fig. 9 with the measured times in
CPU, note that we continue obtaining a good speed-up of 12 in GT540M and
over 10 in GTX280 as shown in Fig. 12(a).

14 Vicente Galiano et al.

0.00

5.00

10.00

15.00

20.00

T
im

e
(m

se
c.

)

16
 0.370
 1.019
 6.708
 15.290

32
 0.442
 0.991
 6.723
 15.673

64
 0.364
 1.086
 6.862
 15.855

128
 0.351
 1.017
 6.949
 15.945

QCIF
 CIF
 ITU-D1
 Full-HD

(a) GT540M

0.00

5.00

10.00

15.00

20.00

T
im

e
(m

se
c.

)

16
 0.456
 1.279
 7.682
 17.869

32
 0.540
 1.250
 7.663
 18.566

64
 0.447
 1.241
 7.850

128
 0.487
 1.219
 7.848

QCIF
 CIF
 ITU-D1
 Full-HD

(b) GTX280

Fig. 9 GPU Computation wavelet transform and transfer times per frame over GT540M
and GTX280 for different video resolutions

4.2 Memory access optimization

The previously presented algorithm uses the global memory to store both
source and output data in wavelet computation. A reasonable speed-up (13)
has been obtained with high video resolutions. However, we can achieve bet-
ter performance if we compute the filtering steps from the shared memory.
A block of the frame (row/column or temporal array) can be loaded into a
shared memory array with BLOCKSIZE pixels. The number of thread blocks,
NBLOCKS, depends on BLOCKSIZE and video frame resolution. We must
note that around the loaded video frame block there is an apron of neighbor
pixels that it is also required to load in the shared memory in order to prop-
erly filter the video frame block. We can reduce the number of idle threads by
reducing the total number of threads per block and also using each thread to
load multiple pixels into shared memory. This ensures that all threads are ac-
tive during the computation stage. Note that the number of threads in a block
must be a multiple of the warp size (32 threads on GTX280 and GT540M)
for optimal efficiency. To achieve better efficiency and higher memory through-
put, the GPU attempts to coalesce accesses from multiple threads into a single
memory transaction. If all threads within a warp (32 threads) simultaneously
read consecutive words then single large read of the 32 values can be performed
at optimum speed.

In this new approach, each row/column/temporal filtering stage is sepa-
rated into two sub-stages: a) the threads load a block of pixels of one row/col-
umn/temporal array from the global memory into the shared memory, and b)
each thread computes the filter over the data stored in the shared memory and
stores the results in the global memory. We must not forget about the cases
when a row or column processing tile becomes clamped by video frame bor-
ders, and initialize clamped shared memory array indices with correct values.
In this case, threads also must load in shared memory the values of adjacent
pixels in order to compute the pixels located in borders.

In Fig. 10, we evaluate the new algorithm for computing the wavelet trans-
form using the shared memory. As we can see, both GPUs have reduced con-

GPU-based 3D Lower tree Wavelet Video Encoder 15

0.00

2.00

4.00

6.00

8.00

T
im

e
(s

ec
.)

16
 0.059
 0.396
 2.692
 6.311

32
 0.042
 0.406
 2.706
 6.286

64
 0.038
 0.437
 2.676
 6.293

128
 0.027
 0.358
 2.692
 6.318

QCIF
 CIF
 ITU-D1
 Full-HD

(a) GT540M

0.00

0.50

1.00

1.50

T
im

e
(m

se
c.

)

16
 0.068
 0.418
 0.673
 1.345

32
 0.070
 0.402
 0.662
 1.407

64
 0.049
 0.393
 0.646

128
 0.072
 0.379
 0.638

QCIF
 CIF
 ITU-D1
 Full-HD

(b) GTX280

Fig. 10 GPU computational wavelet transform times per frame over GT540M and GTX280
for different video resolutions using optimized shared memory access

0.00

2.00

4.00

6.00

8.00

10.00

12.00

T
im

e
(s

ec
.)

16
 0.327
 0.726
 4.510
 10.332

32
 0.353
 0.716
 4.493
 10.297

64
 0.314
 0.798
 4.487
 10.334

128
 0.305
 0.686
 4.645
 10.553

QCIF
 CIF
 ITU-D1
 Full-HD

(a) GT540M

0.00

5.00

10.00

15.00

20.00

T

im
e

(m
se

c.
)

16
 0.374
 1.279
 8.219
 16.734

32
 0.371
 1.250
 7.164
 16.716

64
 0.324
 1.241
 7.115

128
 0.350
 1.219
 7.291

QCIF
 CIF
 ITU-D1
 Full-HD

(b) GTX280

Fig. 11 GPU computational wavelet transform and transfer times per frame over GT540M
and GTX280 for different video resolutions using optimized shared memory access

siderably the execution time. As an example, for Full-HD video resolution and
with a GOP size of 32, we have improved the computational time up to 1.83x
and up to 3.5x for GT540M and GTX280 respectively when compared to the
previous algorithm that uses the global memory. Fig. 12(b) compares the times
showed in Fig. 10 with times needed to compute the 3D-DWT in CPU, and it
shows an speed-up over 30 in GT540M and 136 in GTX280. However, transfer
times between host and GPU memory are too high to notice this improvement
in total times over GPU. As shown in Fig. 11, total times increase considerably,
being the computational wavelet time only the 8% of the total time needed
to transfer and compute wavelet. In Fig. 12(b), we show the speed-ups of our
proposal taking into account the transfer times. Speed-ups of 19 and 11 were
obtained with GT540M and GTX280 GPUs, respectively.

5 Performance evaluation of the proposed encoder using GPUs

After analyzing the performance of the GPU 3D-DWT computation, we will
present a comparison of the proposed encoder against the other encoders in
terms of coding delay.

16 Vicente Galiano et al.

0.00

10.00

20.00

30.00

40.00

50.00

S
pe

ed
up

GT540M-COMP
 3.52
 5.88
 4.10
 16.64

GTX280-COMP
 4.36
 9.96
 9.41
 38.97

GT540M-TOTAL
 2.26
 4.04
 2.98
 12.25

GTX280-TOTAL
 1.85
 3.20
 2.61
 10.34

QCIF
 CIF
 ITU-D1
 Full-HD

(a) Using Global memory access

0.00

50.00

100.00

150.00

S
pe

ed
up

GT540M-COMP
 23.79
 9.85
 7.39
 30.55

GTX280-COMP
 14.34
 9.96
 30.20
 136.41

GT540M-TOTAL
 2.84
 5.58
 4.45
 18.65

GTX280-TOTAL
 2.70
 3.20
 2.79
 11.49

QCIF
 CIF
 ITU-D1
 Full-HD

(b) Using optimized shared memory access

Fig. 12 Speed-ups over GT540M and GTX280 for different video resolutions and a GOP
size of 32

In Fig. 13 we present the total coding time (excluding I/O) in frames per
second of all evaluated encoders and for different sequence resolutions for a
quality of 30dB. Now, our proposal uses the GPU to compute the 3D-DWT
stage. As it can be seen, 3D-LTW encoder is the fastest one being up to 3.2
times on average as fast as the non-GPU version of the proposed encoder, up
to 22 times as fast as 3D-SPIHT and up to 19 times as fast as x264 which
is a fully optimized version of H.264. After the GPU optimization of the 3D
wavelet transform stage, the proposed encoder is able to compress a Full-HD
sequence in real time. Remark, that the optimizations performed are due only
to GPU strategies while other encoders like x264, H263, MPEG-2 and MPEG-
4 are fully optimized implementations, using CPU capabilities like Multimedia
Extensions (MMX2, SSE2Fast, SSSE3, etc.) and multithreading.

1.11

35.97

0.05

0.01

0.00

1.30

156.25

31.72
24.15

7.16

507.16

150.65

24.36

6.99

548.85

0.00

0.01

0.10

1.00

10.00

100.00

1,000.00

CIF
 ITU-D1
 Full-HD

F
ra

m
es

 p
er

 s
ec

o
n

d

3D-SPIHT
 3D-LTW
 H264
 X264
 MPEG2

Fig. 13 Average coding time in frames per second for all evaluated encoders after GPU
optimization of the proposed encoder

GPU-based 3D Lower tree Wavelet Video Encoder 17

Although, the GPU version of the 3D-LTW encoder has been speeded up
to 3.2 times, now, the bottleneck in the global encoder is the coding stage
after computing the 3D-DWT transform, specially at low compression rates,
where there are lots of significant coefficients to encode. Several strategies
could be performed in order to speed up even more the proposed encoder, like
overlapping both GPU computation and memory transfer times, overlapping
CPU processing times with GPU processing time, or using several GPUs to
compute multiple 3D wavelet transforms from different GOPs.

6 Conclusions

In this paper we have presented the 3D-LTW video encoder based on 3D
wavelet transform and lower trees with eight nodes. We have compared our
algorithm against 3D-SPIHT, H.264, x264, and MPEG-2 encoders in terms of
R/D, coding delay and memory requirements.

Regarding R/D, our proposal has a better behavior than MPEG-2. When
compared to 3D-SPIHT, our proposal has a similar behavior for sequences with
medium and high movement, but slightly lower performance for sequences
with low movement like Container. However, our proposal requires 6 times
less memory than 3D-SPIHT. Both 3D-DWT based encoders (3D-SPIHT and
3D-LTW) outperforms x264 in Intra mode (up to 11 dB) exploiting only the
temporal redundancy among video frames when applying the 3D-DWT. It is
also important to see the behavior of 3D-DWT based encoders when applied
to high frame rate video sequences obtaining even better PSNR than x264 in
Inter mode.

In order to speed up our encoder, we have presented an exhaustive analysis
of GPU memory strategies to compute the 3D-DWT transform. As we have
seen, the GPU 3D-DWT algorithm obtains good speed-ups, up to 16 in the
GT540M platform and up to 39 in the GTX280. Using these optimizations,
the proposed encoder (3D-LTW) is a very fast encoder, specially for Full-HD
video resolutions, being able to compress a Full-HD video sequence in real
time.

The fast coding/decoding process and the avoiding of the use of motion
estimation/motion compensation algorithms, makes the 3D-LTW encoder a
good candidate for applications where the coding/decoding delay are critical
for proper operation or for applications where a frame must be reconstructed
as soon as possible. 3D-DWT based encoders could be an intermediate solution
between pure Intra encoders and complex Inter encoders.

Although the proposed 3D-LTW encoder has been developed for natural
video sequences where Daubechies 9/7F filter for the 3D-DWT stage has been
widely used in the literature, other bi-orthogonal filters could be applied, de-
pending on the final application. Even though longer filters capture better the
frequency changes on an image, differences on R/D for natural images are neg-
ligible with respect to Daubechies 9/7F filter. This effect could be extended
to the temporal domain case. However, longer filters introduce an increment

18 Vicente Galiano et al.

on the DWT computation complexity because more operations per pixel must
be performed, making the encoder slower. Obviously, if a longer filter is used
in the DWT stage, the speed-up will be greater, because more operations per
pixel will be performed in a parallel way.

As future work, we pretend to move other parts of the coding stage, like
the quantization stage to the GPU to speed up even more the encoder. Fur-
thermore, we pretend to overlap the CPU computation stage with the GPU
computation of the 3D-DWT stage. Regarding quantization step over GPU,
our first attempts shows that the 3D-DWT stage over GPU will be increased
a 12% on average while the coding stage will be reduced a 17% on average,
which makes our encoder even faster.

References

1. ISO/IEC 14496-10 and ITU Rec. H.264. Advanced video coding, 2003.

2. M. Aviles, F. Moran, and N. Garcia. Progressive lower trees of wavelet coefficients:
Efficient spatial and SNR scalable coding of 3D models. Lecture Notes in Computer

Science, 3767:61–72, 2005.

3. P. Campisi and A. Neri. Video watermarking in the 3D-DWT domain using perceptual
masking. In IEEE International Conference on Image Processing, pages 997–1000,
September 2005.

4. Y. Chen and W.A. Pearlman. Three-dimensional subband coding of video using the
zero-tree method. In Visual Communications and Image Processing, volume Proc. SPIE
2727, pages 1302–1309, March 1996.

5. P.L. Dragotti and G. Poggi. Compression of multispectral images by three-dimensional
SPITH algorithm. IEEE Transactions on Geoscience and Remote Sensing, 38(1):416–
428, January 2000.

6. J. Franco, G. Bernabé, J. Fernández, M.E. Acacio, and M. Ujaldón. The gpu on the 2d
wavelet transform. survey and contributions. In In proceedings of Para 2010: State of

the Art in Scientific and Parallel Computing, 2010.

7. V. Galiano, O. López, M.P. Malumbres, and H. Migallón. Improving the discrete wavelet
transform computation from multicore to gpu-based algorithms. In In proceedings of

International Conference on Computational and Mathematical Methods in Science and

Engineering, 2011.

8. http://ffmpeg.arrozcru.org/autobuilds/blog/2010/09/14/ffmpeg-r25117-swscale-
r32222-ok/. ffmpeg, September 2010.

9. B.J. Kim, Z. Xiong, and W.A. Pearlman. Very low bit-rate embedded video coding with
3D set partitioning in hierarchical trees (3D SPIHT), 1997.

10. B.J. Kim, Z. Xiong, and W.A. Pearlman. Low bit-rate scalable video coding with 3D
set partitioning in hierarchical trees (3D SPIHT). IEEE Transactions on Circuits and

Systems for Video Technology, 10:1374–1387, December 2000.

11. J. Oliver and M. P. Malumbres. Low-complexity multiresolution image compression
using wavelet lower trees. IEEE Transactions on Circuits and Systems for Video Tech-

nology, 16(11):1437–1444, 2006.

12. C.I Podilchuk, N.S. Jayant, and N. Farvardin. Three dimensional subband coding of
video. IEEE Tran. on Image Processing, 4(2):125–135, February 1995.

13. Jang-Seon Ryu and Eung-Tea Kim. Fast intra coding method of h.264 for video
surveillance system. International Journal of Computer Science and Network Secu-

rity, 7(10):76–81, 2007.

14. A. Said and A. Pearlman. A new, fast and efficient image codec based on set partitioning
in hierarchical trees. IEEE Transactions on Circuits, Systems and Video Technology,
6(3):243–250, 1996.

GPU-based 3D Lower tree Wavelet Video Encoder 19

15. P. Schelkens, A. Munteanu, J. Barbariend, M. Galca, X. Giro-Nieto, and J. Cornelis.
Wavelet coding of volumetric medical datasets. IEEE Transactions on Medical Imaging,
22(3):441–458, March 2003.

16. J.M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE

Transactions on Signal Processing, 41(12), December 1993.
17. D. Taubman and A. Zakhor. Multirate 3-D subband coding of video. IEEE Tran. on

Image Processing, 3(5):572–588, September 1994.
18. C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, and F. Tirado. Parallel implementation

of the 2d discrete wavelet transform on graphics processing units: Filter bank versus
lifting. Parallel and Distributed Systems, IEEE Transactions on, 19(3):299 –310, march
2008.

19. Tien-Tsin Wong, Chi-Sing Leung, Pheng-Ann Heng, and Jianqing Wang. Discrete
wavelet transform on consumer-level graphics hardware. Multimedia, IEEE Transac-

tions on, 9(3):668 –673, april 2007.

