Proceedings of the 11th International Conference
on Computational and Mathematical Methods

in Science and Engineering, CMMSE 2011
26-30 June 2011.

Python Interface-Library using OpenMP and
CUDA for solving Nonlinear Systems

Héctor Migallén!, Violeta Migallé6n? and José Penadés?

! Departamento de Fisica y Arquitectura de Computadores, Universidad Miguel
Herndndez, 03202 Elche, Alicante, Spain

2 Departamento de Ciencia de la Computacidn e Inteligencia Artificial, Universidad
de Alicante, 03071 Alicante, Spain

emails: hmigallon@umh.es, violeta@dccia.ua.es, jpenades@dccia.ua.es

Abstract

In this paper we present new featurcs of PyYPANCG. PyPANCG is a parallel
library treated as a high-level interface for solving nonlincar systems. Using the new
features, PyPANCG is able to exploit the parallelism offered by shared memory
platforms and graphics processing units (GPUs). The new library still has two
modules, PySParNLCG and PySParNLPCG, which include new features, both
modules are backward-compatible with the earlier versions of PyPANCG. The
PySparNLCG module parallelizes the conjugate gradient method for solving mildly
nonlinear systems, and the PySParNLPCG module implements the preconditioning
technique based on block two-stage mcthods. In order to create the high-level
interfaces, we have chosen the Python language. Experimental results report the
behavior and the parallel performance of our approach on both the shared memory
platforms and the GPUs.

Key words: CUDA, OpenMP, parallel libraries, nonlinear algorithms, Python
high-level interfaces

1 Introduction

In this paper we present new features of PyPANCG (http://atc.umh.es/PyPANCG), a
Python bascd high-level parallel interface-library for solving mildly nonlinear systems
of the form

Az = &(z), (1)

where A € R™*™ and ® : ®* — R" is a nonlincar diagonal mapping, i.c., the ith
component ¢; of ¢ is a function only of the ith component z; of z.

@CMMSE Page 806 of 1703 ISBN: 978-84-614-6167-7

PYTHON INTERFACE-LIBRARY USING OPENMP anp CUDA

This library, distributed as a standard Python package, provides parallel imple-
mentations of both the nonlinear conjugate gradient method (NLCG) and the nonlin-
ear preconditioned conjugate gradient method (NLPCG). PyPANCG carlier versions
could work with different tools to manage a distributed memory platform through MPI
(www-unix.mcs.anl.gov/mpi). The PyPANCG current version allows to work with
shared memory platforms through OpenMP and, using CUDA, this library is able to
work with GPUs.

This paper is structurcd as follows. Section 2 introduces both the nonlinear conju-
gate gradient method (NLCG) parallelized in the PySParNLCG module of PyPANCG,
and the nonlinear preconditioned conjugate gradient parallelized in the PySParNLPCG
module. In Sections 3, 4 and 5 we explain the main tools used in order to build Py-
PANCG, the involved parameters and the way to implement the nonlincarity, respec-
tively. In Section 6 some cxamples of using the features of PyPANCG are reported
while in Section 7 the behavior of this library is illustrated by means of numerical
experiments. Finally, concluding remarks are presented in Section 8.

2 Nonlinear methods

Consider the problem of solving the nonlinear system (1), where A € R**" is a sym-
metric positive definite matrix and @ : R* — R” is a nonlinear function with certain
local smoothness properties. Let ¥ : R* — R be a nonlincar mapping and consider
(z,y) = 2Ty the inner product in ®*. The minimization problem of finding z € R"
such that

J(z) = ;g;;,l‘ J(y), (2)

where J(z) = -é- (Az,z) — ¥(z), is cquivalent to find z € R” such that F(z) = Az —
®(z) = 0, where ®(z) = ¥'(z).

An effective approach for solving nonlinear system (1), by considering the connection
with the minimization problem (2), is the Fletcher-Recves version [5] of the nonlinear
conjugate gradient method (NLCG), which takes the following form:

Algorithm 1 (Fletcher-Reeves Nonlinear Conjugate Gradient)
Given an initial vector z(©
70 = $(z@) — Az
p® =0
Fori=0,1,..., until convergence
a; =— see below
2+ = g6 4 gup®
PO+ = 20) _ () + ®(z(+1)) — a; Apt)

Convergence test
(r(i+1),,.(-'+1))

ﬂi'f-l = - EORG)
P+ = Gt g o0

@CMMSE Page 807 of 1703 ISBN: 978-84-614-6167-7

HECTOR MIGALLON, VIOLETA MIGALLON, JOSE PENADES

Note that, in Algorithm 1, «; is chosen to minimize the associated functional J in
the :i)lrectl(on p®). This is equivalent to solve the one dimensional zero-point problem
Az—m—pz = 0. From thc definition of J it follows that

J(z® + ap®) = % <A(x(i) + a;p®),z® 4 aip(i)> - U(z@ + a;p@).
Then a simple differentiation with respect to a; yields

dJ(z® + aip®) (@) () @) @) @) @y)
dai -”i<AP P >—<T P >+<‘I’(CB)—q)(x +aip)’p >y

where 7 = ®(2)) — Az is the nonlincar residual.
On the other hand, it is easy to scc that the second derivative with respect to o
takes the form
- & DN _ (@) ()Y (d)
1o2 <Ap Ny > <<I> (= + a;p')p'", p >

1

Then usmg~ the Newton method for solving the zero-point problem for a;, we obtain
a (k-+1) — 6®), where

d2J(:1:(’) + a() (i))/da

o) (Ap®, p®Y — (7, p@) 4 <¢(x(i)) — &z + a(k)p(i)),p(i)>
(Ap®),p®) — (#'(2) + o{Ip@)p), p0) '

Note that in order to obtain 6%, the inner products (Ap®,p@) and (@, p®) can
be computed once at the first Newton iteration. Moreover Ap(®) is available from the
conjugate gradicnt iteration.

In order to generate efficient algorithms to solve the nonlinear system (1), we have
designed a parallel version of Algorithm 1 and a parallel nonlincar preconditioned con-
jugate gradient algorithm, based on both Algorithm 1 and a polynomial preconditioner
type based on block two-stage methods [3]; scc [4] and [7] for dctailed description.

Preconditioning is a technique for improving the condition number (cond) of a
matrix. Supposc that M is a symmetric, positive definite matrix that approximates
A, but is casier to invert. We can solve Az = ®(z) indirectly by solving M~!Az =
M~1®(z). If cond(M~!A) << cond(A) we can iteratively solve M~1Az = M~1®(x)
more quickly than the original problem. In this case we obtain the following nonlinear
preconditioned conjugate gradient algorithm (NLPCG).

Algorithm 2 (Nonlinear Preconditioned Conjugate Gradient)
Given an initial vector z(®

7@ = §(z@) — Az©)

Solve Ms(® = 7(0)

@CMMSE Page 808 of 1703 ISBN: 978-84-614-6167-7

PYTHON INTERFACE-LIBRARY USING OPENMP anND CUDA

p® = 5
Fori=0,1,..., until convergence
o; = see Algorithm 1
(D) = () 4 o;p()
rE+D) = 20) _ () + (z(+1) — o Apt)
Solve M sti+1) = (+1)

Convergence test
sti+1) pli+1)
ﬂ‘H—l - = $(0) (D)

P = 241 _ g, (i)

Since the auxiliary system M's = r must be solved at cach conjugate gradient iteration,
this system needs to be easily solved. Moreover, in order to obtain an effective precondi-
tioncr, it wants M to be a good approximation of A. One of the general preconditioning
techniques for solving linear systems is the usc of the truncated series preconditioning
(1]. These preconditioners consist of considering a splitting of the matrix A as

A=P-Q 3)

and performing m steps of the iterative procedure defined by this splitting toward the
solution of As = r, choosing s(°) = 0. It is well known that the solution of the auxiliary
system Ms = r is effected by s = (I + R+ R? + ...+ R™ 1)P~!r, where R = P~1Q
and the preconditioning matrix is My, = P(I+R+R?*+...+ R™ 1)~ cf. [1]. In order
to obtain the preconditioners, choosing s = 0, we use m steps of the block-Jacobi
type two-stage methods toward the solution of As = 7. In order to obtain the inncr
splittings of these block methods, incompletc LU factorizations are considered; sce e.g.,

[4].

3 Development resources

This section analyzes the basic resources used in the building process of the designed
library. The main language uscd for the development of the basic routines and on which
the final library will be bascd is Fortran. However, C language is also used in order
to develop CUDA-based routines. The desired objective is to unite the development
features offered by Python in a single platform and to approach the execution features
offered by, in this case, Fortran and CUDA.

In order to access the routines developed in Fortran from Python, the F2PY
tool (cens.ioc.ce/projects/f2py2e) has been used. These routines were developed us-
ing OpenMP cxtensions to run on shared memory platforms. An enhanced feature is
the least influence on the behavior of the method of both the use and handling of arrays
or vectors and the communication between Python and Fortran. However, two equiv-
alent options can still be uscd: the Python modules for vector management Numeric
and numarray (numarray is part of NumPy). The new featurcs arc not able to usc

@CMMSE Page 809 of 1703 ISBN: 978-84-614-6167-7

HECTOR MIGALLON, VIOLETA MIGALLON, JOSE PENADES

main routines developed in Python. Hence, vector communications between languages
remain an important aspect to consider in order to achieve the best performance.

On the other hand, to access the CUDA-bascd routines developed in C language
from Python, the PyCUDA package was used. PyCUDA is a package that offers access
to Nvidia’s CUDA parallel computation API from Python in such a way that it is
not neccessary to access to a set of CUDA-based routines included in a library to link
to from Python. The PyCUDA package uses CodePy, a C/C++ metaprogramming
toolkit for Python. CodePy compiles C source code and dynamically loads it into the
Python interpreter, a key aspect in the nonlinearity implementation.

4 Parameters of the methods and platform

This section deals with the parameters which have to be passed to the Python functions
which solve a sparse nonlinear system using the NLCG or NLPCG method. The only
indispensable parameters are the parameters of the system to be solved (Az = ¢(z)),
which are the size of the system, the matrix A stored in CSR (Compressed Sparse Row)
format, and the nonlincar mapping ¢(z). In addition the derivative of ¢(z) (¢'(z)) is
required for computing & as seen in Section 2. There is also a sct of optional parameters
to modify the NLCG and NLPCG methods. If values for the optional paramecters are
not specified, default values arc used. The optional paramecters are (see [7] for more
information):

e The initial vector to start procedure (initial_vector).

The stopping critcrion to stop procedure (global_stopping_error).

The maximum number of iterations performed in the iterative procedure to com-
pute « (iter_alfa).

Way to communicate integers from Python to Fortran or C (trash.int).

Way to communicate doubles from Python to Fortran or C (trash_double).

Level of the incomplete LU factorization performed in the NLPCG method (level).
e Number of outer iterations in the NLPCG mecthod (niter_2e).

e Number of inner iterations in the NLPCG method (val.q).

Another important parameter, that the library can calculate, is the size of the
problem assigned to each process; this is given by the paramcter block_dimensions. This
parameter is an integer vector whose dimension corresponds to the number of processes
and which stores the block sizc assigned to each process. In the examples provided
by PyPANCG, the parameter is internally calculated, such that a load balancing is
achieved. On the other hand, this parameter has no relevance if CUDA is used, since

The stopping criterion to stop the itcrative procedure to compute a (alfa.stopping_error).

@CMMSE Page 810 of 1703 ISBN: 978-84-614-6167-7

PyYTHON INTERFACE-LIBRARY USING OPENMP anD CUDA

in this case the shared memory multiprocessor is not used even if it is available. In this
casc a single process manages the GPU computing.

The parameter For_or_Py sclects the set of routines and the platform to be used.
In [7] we can see the options to use in a distributed memory platform: Python_full,
Python, Fortran or Fortran_full. The following options can be chosen with regard to
this parameter in order to use a shared memory platform or a GPU:

1. Fortran_mp: The routines are codified in Fortran using OpenMP. Moreover ¢ and
¢’ are codified independently.

2. Fortran_mp_full: All of the routines arc codified in Fortran using OpenMP but ¢
and ¢’ arc not codificd independently.

3. GPU: All of the routines are codified in C as CUDA kernels. Morcover ¢ and ¢’
are codified as CUDA kerncls independently.

Using OpenMP or CUDA, the nonlincar functions must be codified in Fortran or
C respectively. Using Fortran.mp or Fortran_mp_full implics codifying the nonlinecar
functions in Fortran and the compilation of the Fortran library linked to from Python.
However, the use of GPU avoids the explicit recompilation of the nonlinear functions
developed as CUDA kernels, by exploiting the CodePy features.

Finally, there are new parameters to work with the new options of the For_or_Py
paramcter, i.c. to work using OpenMP and CUDA. The first parameter, nprocs_mp,
is the number of processes used in the shared memory platform when OpenMP is
selected. The rest of the new parameters are used by CUDA. In a CUDA kernel
calling, in addition to classical function paramecters, there are two parameters that
define the structure of threads that will be generated to run the CUDA kernel. Both
parameters arc the number of blocks to be generated (grid) and the number of threads
in each block (block), see for example [8] to obtain detailed description. Morcover
there are two global variables in order to tune the inner products, VECTOR_N and
ELEMENT_N, sce [4] for detailed description. Notc that, both considered algorithms
intensively use inner product, which is also a special operation involving a reduction
process.

5 Encoding nonlinear functions

In a library for solving nonlincar systems it is important how to implement the non-
linearity of the problem to be solved. In [7] we show that PyYPANCG can work cither
at component level and at vector level. However, when OpenMP or CUDA is used,
for usability reasons and for the nature of the GPU computing, the library works at
component level. The example below shows the Fortran code for the function ¢(z) used
in the examples of PyPANCG.

double precision function phi(input,trash_int,trash_double)
implicit none

@CMMSE Page 811 of 1703 ISBN: 978-84-614-6167-7

HECTOR MIGALLON, VIOLETA MIGALLON, JOSE PENADES

real*8 input,trash_double(*),sc
integer trash_int(*)

sc = trash_double(1)

phi = -sc*exp(input)

return

The C CUDA kernel code to compute the same function is:

__device__ double Fi_x(double x,double sc){
return (-sc*__expf(x))

3

We would like to note that both functions require a paramcter transfer (sc) for
the computation of ¢. Using Fortran and OpenMP, in order to realize this transfer
-both real values and integer values if needed- we use two vectors, onc integer vector
trash_int and one double precision real vector trash_double. These vectors are dynamic
and thus all parameters required for the computation can be passed to functions ¢ and
¢'. Naturally, these functions must always be implemented in order to adapt them to
the problem to be solved. On the other hand, using CUDA the memory allocation and
the GPU-CPU communication processes can be expensive, therefore the memory used
is the strictly necessary memory. In the previous example we only communicate the
necessary double parameter.

6 Python examples using OpenMP and CUDA

The usc of the modules PySparNLCG and PySParNLPCG using OpenMP or CUDA
is closcly similar to carlier version presented in [7]. In order to use the library the
size of the system (nrow), thc matrix A in CSR format (tcol, trow, tval), and the
nonlinear functions (¢ and ¢') must be passed at the very least, and optionally, the block
size assigned to cach process (block_dimensions). Morcover, as we have mentioned,
additional paramecters, if nceded, can be passed by using the variables trash_int and

trash_double. The following code shows the most simple NLCG function call using
OpenMP.

1 from math import exp

2 import numpy

3 import PyPANCG

4 import PyPANCG.PySParNLCG as PySparNLCG
S nprocs = 4

6 trash_double = numpy.zeros(((1),),float)
7 trash_double[0] = 6/(float(49)**3)

8 nrow = 125000

9 nrow,block_dimensions,bls = _
PyPANCG .MakeBlockStructure (nrow=nrow)

10 nnz,tcol,trow,tval = PyPANCG.PartialMatrixA
(Mx=Mx, s=nrow,d=nrow)

@CMMSE Page 812 of 1703 ISBN: 978-84-614-6167-7

PYTHON INTERFACE-LIBRARY USING OPENMP AND CUDA

11 x,error,time,iter = PySParNLCG.nlcg(nrow=nrow,tcol=tcol,trow=trow,tval=tval, _
block_dimensions = block_dimensions,Fi_x=Fi_x,Fi_prime_x=Fi_prime_x, _
For_or_Py=’Fortran_mp’,trash_double = trash_double,nprocs_mp=nprocs)

The number of processes to use is established in line 5. Notc that the number of
processes must be fixed before the block structure be defined in line 9. The matrix A is
obtained in line 10 following the block structure above defined. This matrix is included
in PyPANCG as an example or test. It is important to point out that in line 10 root
process computes the full matrix A, we maintain the PartialMatrizA as routine name in
order to accomplish the compatibility. In line 11, the actual call to the NLCG method
takes place, whereby we assume that Fi_z (¢) and Fi_prime_z (¢') were developed in
Fortran and the vector trash_double is passed, in this case of a single component. Note
that OpenMP is not used in the development of Fi_z (¢) and Fi_prime.z (¢') because
they are implemented at component level.

The most simple NLPCG using an OpenMP function call is similar to the NLCG
cxample above showed. In this case, the PySParNLPCG module must be imported
instead of the PySParNLCG module in line 4, and line 11 must be modified by the
main function of the PySParNLPCG module.

4 import PyPANCG.PySParNLPCG as PySparNLPCG

11 x,error,time,iter = PySParNLPCG.nlpcg(nrow=nrow,tcol=tcol,trowstrow,tval=tval, _
block_dimensions = block_dimensions,Fi_x=Fi_x,Fi_prime_x=Fi_prime_x, _
For_or_Py='Fortran_mp’,trash_double = trash_double,procs_mp=nprocs)

The following example shows the simplest cxample to call NLCG method using
CUDA.

from math import exp

import numpy

import PyPANCG

import PyPANCG.PySParNLCG as PySparNLCG

import PyPANCG.PySparNLCG_ModGPU as PySParNLCG_ModGPU

b WwN =

nprocs = 1

trash_double = numpy.zeros(((1),),float)
trash_double[0] = 6/(float(49)**3)

nrow = 125000

O o ~NO®

10 nnz,tcol,trow,tval = PyPANCG.PartialMatrixA _
(Mx=Mx, s=nrow,d=nrow)

11 x,error,time,iter = PySParNLCG.nlcg(nrow=nrow,tcol=tcol,trow=trow,tval=tval, _

Fi_x=0,Fi_prime_x=0,For_or_Py=’'GPU’, _
trash_double = trash_double,nprocs_mp=nprocs)

In line 5 the PyPANCG.PySparNLCG.ModGPU module is imported. This mod-
ule contains all CUDA kernels needed by the NLCG method, including Fi_z (¢) and

@CMMSE Page 813 of 1703 ISBN: 978-84-614-6167-7

HECTOR MIGALLON, VIOLETA MIGALLON, JOSE PENADES

Fi_prime_z (¢'). Note that the encoding of the nonlincar functions must be donc in that
module without any compiling process. In the NLCG method, the CPU only performs
the management of the GPU, thercfore only one process is used (sce line 6). The full
matrix A is computed in line 10 by the¢ CPU. In line 11, the call to the NLCG method
to be computed in the GPU takes place. Note that the nonlincar functions Fi_z (¢)
and Fi_prime_z (¢') arc not defined in this call because, as we have mentioned, they
are included inside CUDA kernels from PyPANCG.PySparNLCG_ModGPU module.
Finally, the most simple NLPCG function call, using CUDA, is similar to the
previous example. In this case the PySParNLPCG module must be imported instcad of
the PySParNLCG module in line 4. The PyPANCG. PySparNLPCG_ModGPU module
containing the CUDA kernels used by the NLPCG method, is also imported in line 5.

4 import PyPANCG.PySParNLPCG as PySparNLPCG
5 import PyPANCG.PySparNLPCG_ModGPU as PySParNLPCG_ModGPU

The main function for the NLPCG mecthod takes, in this casc, the following form:

11 x,error,time,iter = PySParNLPCG.nlpcg(nrow=nrow,tcol=tcol,trowstrow,tval=tval, _
Fi_x=0,Fi_prime_x=0,For_or_Py='GPU’, _
trash_double = trash_double,procs_mp=nprocs)

In (4] some aspects of GPU computing are pointed out in order to tune the perfor-
mance of the NLCG and NLPCG mcthods. Essentially this improvements are related
to the inner products computation and the number of threads by block in the CUDA
kernels. The following lines show an improvement of the NLPCG method with the use
of some parameters (grid and block) as described in [4].

11 if (nrow == 125000)
VECTOR_N = 128
ELEMENT_N = 2916
grid = (1458,1,1)
block = (256,1)
12 x,error,time,iter = PySParNLPCG.nlpcg(nrow=nrow,tcol=tcol,trow=trow,tval=tval
Fi_x=0,Fi_prime_x=0,For_or_Py='GPU’, _
trash_double = trash_double,procs_mp=nprocs, _
block=block, grid=grid)

7 Numerical experiments

In order to illustrate the behavior of PyPANCG, we have tested the algorithms provided
by this library on an Intcl Core 2 Quad Q6600, 2.4 GHz, with 4 GB of RAM, called
SULLL The GPU available in SULLI is a GeForce GTX 280. The performed analysis
is based on the run-times measured on the GeForce GTX 280, and on the parallel run-
times measured on SULLI using OpenMP, when purc Fortran code (using OpenMP) or
pure C code (using CUDA) are used, compared with the times obtained by PyPANCG.

As our illustrative example we have considered a nonlinear clliptic partial differ-
ential equation, known as the Bratu problem. In this problem, heat generation from

@CMMSE Page 814 of 1703 ISBN: 978-84-614-6167-7

PYTHON INTERFACE-LIBRARY USING OPENMP anDp CUDA

0,60 -—
0.40 -
g [
5 s —
=] (=] 3
= = 0.20 - At
w w ".‘"{
S 0,00 4—L il
%00 2 Proc 2 Proc 3 Proc 4 Proc.
[BPySParNLCG] 094 OPYSParNLPCG 0.57 028 020
(a) PySParNLCG (b) PySParNLPCG

Figure 1: Efficiency using OpenMP, n = 373248.

a combustion process is balanced by heat transfer due to conduction. The three-
dimensional model problem is given as

Viu — e =0, (4)

where u is the temperature and A is a constant known as the Frank-Kamenectskii pa-
rameter; see e.g., [2]. There are two possible steady-state solutions to this problem for
a given value of A. One solution is close to u = 0 and it is casy to obtain. A starting
point near to the other solution is needed to converge to it. For our model case, we
consider a 3D cube domain €2 of unit length and A = 6. To solve equation (4) using the
finite difference method, we consider a grid in Q of d® nodes. This discretization yields
a nonlinear system of the form Az = ®(x), where ® : R" — R" is a nonlinear diagonal
mapping, i.c., the ¢th component ®; of ® is a function only of the ith component of z.
The matrix A is a sparse matrix of order n = d® and the typical number of nonzero
elements per row of this matrix is seven, with fewer in rows corresponding to boundary
points of the physical domain.

First, we analyze the efficiency for both methods using OpenMP. The NLCG
method is performed by PySParNLCG module and the NLPCG method is performed by
PySParNLPCG module. Optimal values of the parameters are used when the NLPCG
method is computed, these parameters are the level of fill-in of the incomplete LU
factorization (level), the number of outer iterations of the block two-stage method
(niter_2e), and the number of inner iterations of the block two-stage method (val_g).
On the other hand, in all experiments reported here the values of global_stopping_error
and alfa_stopping_error are 1077, and we sct iter_alfa paramecter cqual to 2. Figure
L shows the efliciency of both methods using OpenMP and up to 4 cores available
in SULLI. The efficiency behavior of the methods is not influenced by the use of the
Python library; a pure Fortran code obtains similar efficiencies. For the NLCG method
we obtain a good efficiency with a slight decrease when the number of processes is
increased. However, as we showed in [6], the NLPCG method is a very good algorithm
but with poor scalability, even for very large systems.

In order to select OpenMP, we have two options for parameter For_or_Py (sce
Section 4). In Figure 2 we can observe the behavior for both options. Setting For-

@CMMSE Page 815 of 1703 ISBN: 978-84-614-6167-7

HECTOR MIGALLON, VIOLETA MIGALLON, JOSE PENADES

20,00 100,00
16,00 | 80.00 +
E 12,[}“ ' - - E w‘m | —-— "
o 4 " o H =
§ 8,00 - I ‘g 40,00
= 4.00 L I "] ' F 000 - J] . " ;
oo HH IH BE ml| o B TN wl u'nm
1Proc. 2Prec. | 3Proc. | 4Proc. | 1Proc. 2 Proc, 3Proc. 4Proc.
[m Pure Fortran 833 | 443 | 345 | 287 | W Pure Fortran 820 | 21127 1559 1291
| Fortean_mp 168 | 892 | 681 536 | : Fortran_mp 76,60 40,76 28,97 22,99
[wForran_mp_full| 1186 | 64 | 431 | 403 | mortran_mp_full| sa18 2041 138 1693
(a) 125000 (b) 373248
Figure 2: PySparNLCG using OpenMDP.
8,00
5,00 -
i — 500 +—
i3 B 400 -
g e —
= o200 |
100 o
0,00 o . htH
n=884736 ne592704 | n-884736
wPuweCUDA | a8 T2 as " Pure CUDA ; a6 | em
“Python < CUDA| 176 ; 278 an | 1 Python = CUDA. 2,65 4,30 [6.88
(a) PySParNLCG (b) PySParNLPCG

Figure 3: PyPANCG using CUDA.

tran_mp_full option we obtain results closer to those obtained with pure Fortran than
using Fortran_mp option. Note that the development effort using Fortran_mp_full is
higher than using Fortran_mp.

Finally, we compare the results obtained by both modules when CUDA is used.
Concretely, Figure 3 shows the results of these PyYPANCG modules compared with a
pure CUDA code for several problem sizes. As it can be appreciated both implemen-
tations report similar exccution times.

8 Conclusion

In this paper we have presented new features of PyPANCG, a Python library-interface
that implements both the conjugate gradient method and the preconditioned conjugate
gradient method for solving nonlinear systems. The aim of this library is to develop
high performance scientific codes for high-end computers hiding many of the underlying
low-level programming complexities from users with the use of a high-level Python
interface. The new features are designed to allow PyPANCG to be able to work on
both shared memory platforms and GPUs. We have described the use of the library
and its advantages in order to get fast development. The library has been designed for

@CMMSE Page 816 of 1703 ISBN: 978-84-614-6167-7

PYTHON INTERFACE-LIBRARY USING OPENMP AND CUDA

adapting to different stages of the design process, depending on whether the purpose is
computational performance or fast devclopment. We have achicved both objectives at
once using the GPU as a computation platform, which is also the platform on which
the proposed algorithms have better performance.

Acknowledgements

This research was supported by the Spanish Ministry of Science and Innovation under
grant number TIN2008-06570-C04-04.

References

[1] L. ADAMS, M-step preconditioned conjugate gradient methods, SIAM Journal on
Scientific and Statistical Computing 6 (1985) 452-462.

[2] B.M. Averick, R.G. CARTER, J.J. MORE AND G. XUE, The MINPACK-
2 Test Problem Collection, Technical Report MCS-P153-0692, Mathematics and
Computer Science Division, Argonne, 1992.

(3] R. Bru, V. MIGALLON, J. PENADES AND D.B. SzYLD, Parallel, Synchronous
and Asynchronous Two-Stage Multisplitting Methods, Electronic Transactions on
Numerical Analysis 3 (1995) 24-38.

(4] V. GaL1aNO, H. MIGALLON, V. MIGALLON AND J. PENADES, GPU-Based Par-
allel Nonlinear Conjugate Gradient Algorithms, Proceedings of the Second Inter-
national Conference on Parallel, Distributed, Grid and Cloud Computing for En-
gineering (2011) Paper 24.

(5] R. FLETCHER AND C. REEVES, Function Minimization by Conjugate Gradients,
The Computer Journal 7 (1964) 149-154.

(6] H. MIGALLON, V. MIGALLON, J. PENADES, Parallel Nonlinear Conjugate Gra-
dient Algorithms on Multicore Architectures, Proccedings of the 9th International
Conference on Computational and Mathematical Mecthods in Scicnce and Engi-
neering (2009) 689-700.

(7] H. MIGALLON, V. MIGALLON AND J. PENADES, PyPANCG: A Parallel Python
Interface-Library for solving Mildly Nonlinear Systems, Proccedings of the 10th
International Conference on Computational and Mathematical Methods in Science
and Engineering (2010) 646-657.

[8] NVIDIA CORPORATION, NVIDIA CUDA C Programming Guide, Version 3.2,
2010, http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/
docs/CUDA_C_Programming_Guide.pdf

@CMMSE Page 817 of 1703 ISBN: 978-84-614-6167-7

