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Abstract 
 

In this paper a new sign coding approximation 

method for the wavelet coefficients in a 2D image 

codec based on a simulated annealing metaheuristic is 

presented. The efficiency of the proposed algorithm 

versus a genetic algorithm using benchmarks of Kodak 

is compared and showing that the proposed sign 

prediction algorithm is efficient and provides a 

significant reduction of wavelet coefficients sign 

information in the final bit-stream. The results show 

that, by including sign coding capabilities to a non-

embedded encoder, the sign compression gain is up to 

17.35%, being the rate-distortion (R/D) performance 

improvement up to 0.25 dB. 

 

1. Introduction 
 

Many image compression algorithms, including the 

standard JPEG2000 [1], employ the Discrete Wavelet 

transform (DWT) [2] into their algorithms.  One of the 

most valuable advantages of the wavelet transform is 

the provision of both frequency and spatial localization 

of image energy. An image can be represented by a 

two-dimensional function f(x,y) where the value of the f 

in spatial coordinates (x,y) gives the image intensity in 

that point. When the image is generated from a 

physical process, their values are proportional to the 

intensity of the energy radiated by the physical source 

resulting f(x,y) different from zero and finite. A digital 

image has been discretized in spatial coordinates and 

brightness, this involves sampling and quantization 

process that creates an array where each point identifies 

the level of light intensity called pixel. Therefore, the 

image energy is compacted into a small fraction of the 

transform coefficients, where the values have been 

represented by magnitude and sign, and the 

compression can be achieved by coding these 

coefficients. The energy of a wavelet transform 

coefficient is restricted to non-negative real numbers, 

but the coefficients themselves are not, and they are 

defined by both a magnitude and a sign.  

Shapiro stated in [3] that a transform coefficient is 

equally likely to be positive or negative and thus one 

bit should be used to encode the sign (raw coding). 

However, in recent years, several authors have begun 

to use context modeling for sign coding [4][5][6]. A 

context model allows defining different schemes for 

grouping subsets based on experience. Schwartz, Zandi 

and Boliek were the first authors to consider sign 

coding, using one neighboring pixel in their context 

modeling algorithm [7]. The main idea behind this 

approach is to find correlations along and across edges. 

 In [4], X. Wu presents a high order context 

modeling encoder. In this coder, the sign and the 

textures share the same context modeling. This model 

is based on a different neighborhood for the HL, LH 

and HH wavelet subbands. For the HL subband, the 

information of North, North-West, North-East, North-

North and South sign is used to predict the current 

coefficient sign. The neighbors sign information used 

for the LH subband is North, North-West, North-East, 

West-West and East. Finally, for the HH subband, an 

inter-band prediction is used besides the intra-band 

prediction used by the HL and LH subbands. In [5] the 

Embedded Block Coding with Optimized Truncation of 

the embedded bit-streams (EBCOT), core coding tool 

of the JPEG 2000 standard, encodes the sign of wavelet 

coefficients using context information from the sign of 

horizontal and vertical neighbor coefficients (North, 

South, East, West directions). Five contexts are used to 

model the sign coding stage. 

In [6], A. Deever and S. Hemami examine sign 

coding in detail in the context of an embedded wavelet 

image coder. The paper shows that a Peak Signal to 

Noise Ratio (PSNR) improvement up to 0.7 dB is 

possible when sign entropy coding and a new 



extrapolation technique based on the mutual 

information that biorthogonal basis vectors provide to 

improve the estimation of insignificant coefficients are 

combined. However, the contribution of sign coding by 

itself to the PSNR improvement is only up to 0.4 dB.  

This work uses a similar context modeling than in 

[5], adapting the context neighborhood to the LTW 

encoder [11].  LTW encoder is a non-embedded tree-

based wavelet image encoder. As other tree-based 

wavelet coders, it is based on the construction and 

efficient coding of wavelet coefficient trees. 

Nevertheless, it does not use an iterative loop in order 

to determine the significant coefficients and to assign 

bits to them. It builds the significance map in only one 

step by using two symbols for pruning tree branches, 

and also codes the significant coefficients in one step. 

Previous studies have verified that there is a strong 

correlation between the sign of a wavelet coefficient 

and the signs of their neighbors. This correlation opens 

the possibility of using a sign predictor in order to 

improve the image compression process. However, this 

relationship between signs is not uniform and constant 

for any image, or even consistent within the same 

image. To obtain an efficient sign prediction scheme a 

simulated annealing algorithm was developed to 

explore the solution space that can not be exhaustively 

tested due to its huge computational and time costs.  

Simulated annealing (SA) is an optimization 

method that implements an iterative local search in an 

intelligent way to avoid terminating in local optima 

through stochastic process [8], and originally has been 

design to find the minimal cost of the objective 

function derived from complex nonlinear systems. The 

technique was first introduced by Kirkpatrick [9]. The 

method is an adaptation of the Metropolis-Hastings 

algorithm [10] to generate sample states of a 

thermodynamic system. 

This paper explores the convenience of employing 

simulated annealing to efficiently predict the wavelet 

coefficient signs based on the correlation found in a 

given neighborhood set (context). If simulated 

annealing algorithm helps to define a good wavelet sign 

predictor, then, instead of coding the sign, encoding the 

result of the prediction (i.e success or failure). A binary 

entropy encoder will be able to get significant 

compression rates if the sign prediction is really good. 

The proposed simulated annealing algorithm 

maximizes the cost function in order to obtain the best 

successful sign predictions, taking into account the 

given neighborhood.  

In order to test the impact of the sign coding 

module in the behavior of an image wavelet encoder, 

employs the non-embedded wavelet-based encoder 

LTW proposed by J. Oliver in [11], to perform the 

experiments and to help us to determine the advantages 

of sign compression and to quantify the bit-rate 

savings. 

The remainder of the paper is organized as follows: 

Section 2 describes the sign coding approximation used 

and the simulated annealing algorithm that gives an 

optimized sign prediction. Section 3, shown the 

experimental results of the sign encoding proposal and 

its impact on the overall performance of the LTW 

image encoder. Finally, in Section 4 some conclusions 

are drawn. 

 

2. Wavelet Coefficient Sign Coding 

 
In a Discrete Wavelet Transform applies a low-pass 

and a high-pass filter over the image and gets four 

subbands called LL(Low-Low), HL (High-Low), LH 

(Low-High) and HH (High-High). The LL subband 

represents the lower frequencies in the image, while the 

HL, LH and HH represent the vertical, horizontal and 

diagonal frequency details. Further decompositions 

could be applied over the LL subband obtaining again 

four frequency subbands which represent the same 

frequencies at a different scale. Typically, for image 

coding applications, five or six wavelet decompositions 

are applied. Figure 1, shows typical wavelet 

decomposition on an image for one and two wavelet 

decompositions. 

 

 
 

Figure 1. Wavelet descomposition for one and two levels 

 

As Deever explained in [6], given a vertical edge in 

an HL subband, it is reasonable to expect that 

neighboring coefficients along the edge have the same 

sign as the coefficient being coded. This is because 

vertical sign correlation often remains very high along 

vertical edges in images. When a low-pass filter is 

applied along the image columns, it results in a series 

of similar rows, as elements in a row tend to be very 

similar to elements directly above or below due to the 

high vertical correlation. Subsequent high-pass filtering 



along similar rows is expected to yield vertically 

correlated transform coefficients.  

It is also important to consider correlation across 

edges, being the nature of the correlation directly 

affected by the structure of the high pass filter. For the 

popular Daubechies' 9/7 filter, wavelet coefficient signs 

are strongly negatively correlated across edges because 

this filter is very similar to a second derivative of a 

Gaussian, so, it is expected that wavelet coefficients 

will change sign as the edge is crossed. Although the 

discrete wavelet transform involves sub sampling, the 

sub sampled coefficients remain strongly negatively 

correlated across edges. In this manner, when a wavelet 

coefficient is optimally predicted as a function of its 

across-edge neighbors (e.g. left and right neighbors in 

HL subbands), the optimal prediction coefficients are 

negative, indicating an expected sign change. This 

conclusion is general for any wavelet with a shape 

similar to a second derivative of a Gaussian. 

To estimate sign correlation in a practical way, have 

been applied a 6-level DWT decomposition of the 

source image. As a first approach and taking into 

account that the sign neighborhood correlation depends 

on the subband type (HL, LH, HH), have been defined 

three different neighborhoods, one for each subband 

type. So, the neighborhood of HL subband is composed 

by the coefficients located at N (North), NN (North of 

North) and W (West). Taking into account symmetry, 

for the LH subband, those neighbors are W, WW, and 

N. For the HH subband they are N, W, and NW, 

exploiting the correlation along and across the diagonal 

edges. So, for each neighborhood there are three 

neighbors whose sign value may be positive (+), 

negative (-) or zero (*). This leads to a maximum of 27 

different Neighborhood Sign Patterns (NSP) for each 

subband type.  

The selection neighborhood criterion has been 

chosen as an example, being available other 

configurations that will be more appropriate or not 

depending on the encoder features (i.e. coefficient 

scanning order, bit-plane coding or one pass coding, 

etc). Figure 2, shows the neighborhood to be analyzed 

when coding the current coefficient ‘x’ for each 

subband type. Using the previously mentioned 

neighborhood for each subband type, a simulated 

annealing algorithm (SA) has been developed in order 

to find an accurate sign predictor.  
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Figure 2. Neighborhood selection criteria for each subband 

type. Solid line (red) for LH subband, dotted line (green) for 

HH subband and slashed line (blue) for HL subband 

2.1. Simulated Annealing Algorithm for 

Wavelet sign Prediction 
 

The goal of the proposed algorithm is to find a sign 

prediction that is accurate for each Neighborhood Sign 

Pattern (NSPk, K=0……3
3
-1). Although for a particular 

NSPk the current coefficient sign is not always positive 

(+) or negative (-), this can be not significant (*), it is 

posible to determinate the probability which would 

help the optimization algorithm to establish the 

apropiate prediction (Table 1). But, the problem is still 

more complex, because a sign prediction for a neighbor 

sign pattern could fit well for an image and not for 

others. Therefore, the idea is to find a sign pattern 

prediction of the wavelet coefficients that better fit for 

a representative set of images. 

The SA algorithm to compress the sign of wavelet 

coefficients note that if the number of neighbors used 

to analyze the sign correlation grows or when is a great 

number of images to be used to the analysis, the search 

space is excessively wide. Therefore, it is not intuitive 

to find a way of combining the predictions obtained for 

several images. The SA algorithm is based on a 

stochastic method for deciding to accept or not a 

solution, whether good or bad, based on a probability 

of acceptance to involve cost-evaluation of the 

objective function, with this, SA is able to avoid local 

optimum. The acceptance probability is based in 

Boltzmann function [8]. 

Figure 3, presents the SA pseudo code for wavelet 

sign prediction. First of all defined an initial solution 

(s), which is formed by a data structure containing an 

integer element for the cost of the solution and a 

prediction vector to containing a sign prediction for 

each 3
3
 NSP, then each NSP sign prediction is 

randomly initialized as a positive or negative, 

subsequently evaluated the quality of the solution using 

the objective function (Eq. 1)  where N,M are the image 

dimensions, S
^
Ci,j [k] is the sign prediction for NSP(k) 

and SCi,j is the sign of wavelet coefficient Ci,j.  

 



function SignPrediction (SubbandType,ImageFiles) 

   Initialize(s,T0,Tf) 

   EvaluateCostFunction(SubbbandType,ImageFiles,s) 

   Repeat 

      s’ = GenerateRandomSolution(s) 

      EvaluateCostFunction(SubbbandType,ImageFiles,s’) 

      if (f(s’) > f(s)) 

         s = s’ 

      else 

         ProbabilityAcceptance = exp( (f(s’) > f(s)  /  T
0
 ) 

         α = Random [0,1) 

         if (α < ProbabilityAcceptance ) 

            s = s’ 

         End 

      //Temperature cooling 

      T0 = T0 * β 

      until T0 ≤ Tf 

End of function 

 

Figure 3. Simulated annealing for the sign prediction 

 

Then, during cooling process, SA algorithm 

attempts to replace the current solution (s) by a new 

solution (s’) in which one of the NSP sign prediction is 

changed. The new solution (s’) will be accepted if it´s 

cost of the objective function f(s’) is better than cost of 

the current solution f(s) one. Also, in case the cost of 

the new solution f(s’) < f(s), the quality of the solution 

s’ is checked with the Boltzmann function, for possible 

acceptance, despite being a bad solution. Remember 

that SA algorithm minimizes cost-function originally, 

to solve this problem the following adjustments were 

made to maximize. Eliminates the negative sign of the 

exponential and the inequality that verifies the cost 

difference is reversed in Metropolis cycle, to compare 

if f(s’) > f(s). When the algorithm finishes, a quality 

prediction for each NSP is provided. This prediction is 

not known if the global optimum for the problem is.  

The tuning of the parameters of SA algorithm is 

obtained by performing sensitive analysis based on 

[14]. The parameters for sign prediction of the wavelet 

coefficients are: cooling control parameter β = 0.965, 

the initial temperature parameter T0 = 5, the stop 

criterion or frozen known as final temperature Tf = 2 

and Markov chain length is 27.    

After running the SA algorithm for each subband 

type and the representative image set, is obtained a 

solution containing the prediction of the current 

coefficient sign S
^
Ci,j [k], that will be shared for both 

encoder and decoder. In table 1 shown the sign 

prediction table for the HL subband. The next step is to 

encode the sign prediction found for each subband. The 

will be lighter image with a lower number of bits 

maintaining image quality. 

 

 
 

Table 1. Sign prediction for HL subband for some NSPs 

 

Figure 4, shows the integration of the prediction 

vector for sign prediction obtained for the SA 

algorithm within the encoder. The original image is 

applied the discrete wavelet transform with a 

decomposition level, subsequently applies 

quantification process to reduce the values of the 

discrete wavelet transform matrix divided by any value. 

In this way reduces the magnitude of the wavelet 

coefficients. Then a sign matrix is created with symbols 

for the coefficients sign using 0 for positive sign (+), 1 

for negative sign (-) and 2 for non-significant (*). So, 

SA algorithm works with the sign matrix to find the 

sign prediction for each NSP and the encoder is the 

sum of the compression of the magnitude and the sign 

compression to obtain the bit stream ratio.   
 

 

 
 

Figure 4. Integration of sign in the encoder 

 

3. Performance Evaluation 
 

This section analyzes the behavior of the sign 

coding proposal. After developing and properly tuning 

the SA algorithm, the SA algorithm runs over Kodak 

test image set [17] in order to obtain the sign prediction 

tables for HL, LH and HH subbands. Then, these tables 

(sign prediction for each NSP) were included in the 

encoding and decoding modules of the reference 

wavelet image encoder, LTW [11]. The new encoder 



version including the sign coding module is called S-

LTW [12].  

In general, to perform the evaluation of sign coding 

proposal includes results from the original LTW, 

JPEG2000 (Jasper 1.701.0), and SPIHT (Spiht 8.01) 

encoders. The test images used in the evaluation were: 

Lena (512x512), figure 5, Barbara (512x512), figure 6, 

and Bike (2560x2048), figure 7. 

 

 
 

Figure 5. Lena  

 

 
 

Figure 6. Barbara 

 

 
 

Figure 7. Bike  

 

Figure 8, shows the relative compression gain with 

respect to the original LTW due only to the sign coding 

capability for several test images. The maximum sign 

compression gain is up to 17.35% for Barbara image at 

1 bpp and 9% on average for all tested images, being 

the improvement greater at low compression rates and 

for high textured images. This behavior is mainly due 

to the higher number of significant coefficients in the 

neighborhood that lead to increase the sign prediction 

success rate. On the other side, the lowest compression 

gain is achieved on low textured images like Lena. 

 

 
 

Figure 8. Sign compression performance at different bit-

rates. 

 

In [12], authors performed estimation of the bit-rate 

savings for the SPIHT encoder if the sign coding 

proposal is applied. They show that up to 9,482 bits 

could be saved for Barbara image and up to 184,711 

for Bike image.  

Figure 9, shows the R/D improvement when 

comparing original LTW versus JPEG2000/SPIHT and 

S-LTW versus JPEG2000/SPIHT. As shown, there is 

an increase in the PSNR difference between SPIHT 

and the new S-LTW encoder, and regarding 

JPEG2000, there can be observed that S-LTW has a 

minor loss in PSNR than original LTW. This behavior 

is similar for the rest of tested images and the use of 

our sign coding proposal represents, in general, a 

PSNR increase of 0.25 dB.  

 

 
 

Figure 9. PSNR-Gain for Bike image 

 

Finally, remark that this improvement is exclusively 

due to our sign coding proposal, being unaltered the 

rest of the encoder modules. 



4. Conclusions 

   

The simulated annealing optimization algorithm 

that is able to find a good sign predictor for wavelet 

coefficients sign. The sign prediction result (success or 

failure) will be highly compacted in the final bit-stream 

using an entropy encoder. Have been Included the sign 

prediction tables provided by the SA algorithm (one for 

each subband type) using a three-neighborhood 

configuration into a non-embedded encoder. The new 

encoder version (S-LTW) exhibits better R/D 

performance (up to 0.25 dB), or in terms of bit-stream, 

it is able to reduce it up to 17% the sign information for 

the same quality level.  

 

5. References 
 
[1] González, R. C., Woods R. E., Tratamiento digital de 

imágenes, Addison Wesley/Díaz de Santos, 1996. 

  

[2] Antonini, M., Barlaud, M., Mathieu, P., & Daubechies, 

I., “Image Coding Using Wavelet Transform”, IEEE  

transaction on Image Processing, 1992, pp. 205–220. 

 

[3] Shapiro, J. M., “A Fast Technique for Identifying Zero 

Trees in the EZW Algorithm”, Proc. IEEE Int. Conf. 

Acoustic, Speech, Signal Processing, vol. 3, 1996, pp. 1455-

1458. 

 

[4] Wu, X., “High-Order Context Modeling and Embedded 

Conditional Entropy Coding of Wavelet Coefficients for 

Image Compression”, Proc. Of 31 St. Asilomar Conf. On 

Signals, Systems, and Computers, 1997, pp. 1378-1382. 

 

[5] Taubman, D., “High Performance Scalable Image 

Compression with EBCOT”, IEEE Transactions on Image 

Processing, vol. 9, no. 7, 2000, pp. 1158-1170. 

 

[6] Deever, A, Hemami, S.S., “What’s your sign?: Efficient 

Sign Coding for Embedded Wavelet Image Coding”, Proc. 

IEEE Data Compression Conf., Snowbird, UT, 2000, pp. 

273-282. 

 

[7] Schawrtz, E. L., Ahmad, Z., Boilek, M., “CREW: 

Compression with Reversible Embedded Wavelets”, In Proc. 

SPIE, 1995, pp. 212-221. 

 

[8] E. Aarts and J. Korts, Simulated Annealing and 

Boltzmann Machines, John Wiley, New York, 1989. 

 

[9] Vecchi, M. P. and Kirkpatrick, S., “Global wiring by 

simulated Annealing”, IEEE Trans. Computer-Aided Design, 

vol. CAD-2, 1983, pp. 215-222. 

 

[10] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N. , 

Teller, A. H. and Teller, E., “Equations of State Calculations 

by Fast Computing Machines”, The Journal of Chemical 

Physics, vol. 21, no. 6, 1953, pp. 1087-1092. 

 

[11] Oliver, J.  and Malumbres, M. P., “Low-Complexity 

Multiresolution Image Compression using Wavelet Lower 

Trees”, IEEE Transactions on Circuits and Systems for 

Video Technology, vol. 16, no. 11, 2006, pp. 1437-1444. 

 

[12] López, O.,  Martínez, M. , Piñol, P., Malumbres, M. P.,  

Oliver, J., “E-LTW: an Enhanced LTW Encoder with Sign 

Coding and Precise Rate Control”, ICIP'09 Proceedings of 

the 16th IEEE international conference on Image 

processing, 2009, pp. 2821-2824. 

 

[13] Otoniel M. López Granado, Fast and Efficient Coding 

Tools for Digital Image and Video Signals, Tesis Doctoral, 

Alicante España, 2010. 

 

[14] Cruz-Chávez, Marco Antonio, Martínez-Oropeza, Alina, 

Serna Barquera, Sergio A., “Neighborhood Hybrid Structure 

for Discrete Optimization Problems”, Electronics, Robotics 

and Automotive Mechanics Conference, CERMA 2010, 

IEEE-Computer Society, México, 2010, pp. 108-113. 

 

[15] Said, A. and Pearlman, W., “A new, Fast and Efficient 

Image Codec based on Set Partitioning in Hierarchical 

Trees”, IEEE Trans. Circuits Syst. Video Technol., vol. 6, 

1996, pp. 243–250. 

 

[16] R. García Gutiérrez, Implementación de un algoritmo 

Genético para la Búsqueda de una Solución Óptima o 

Subóptima, Asociada a la Codificación del Signo de los 

Coeficientes de la Transformada Wavelet 2D, Trabajo para 

obtención del Diploma de Estudios Avanzados por la 

Universidad Miguel Hernández dentro del programa de 

doctorado Tecnologías Industriales y de Telecomunicación, 

del Departamento de Ciencia de Materiales, Óptica y 

Tecnología Electrónica, 2010 

 

[17]http://www.kodak.com/digitalImaging/samples/classic.sh

tml 

 


