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Abstract. The incorporation of technological advances in industry is a must, 
even for traditional sectors where most companies are SMEs and investments 
are limited. Technology can be used to increase productivity and the quality of 
the manufactured product. Drilling is a common procedure in industry. It 
usually consists of multiple drilling of a flat surface with a tool. Usually the tool 
is placed on the surface to be drilled at a safe distance and then it makes the 
drilling in a linear fashion. Optimization of the tool path often involves 
reducing the movement of the tool to place it over the next point to be drilled, 
known as airtime. The problem of minimizing airtime for drill paths is highly 
complex. Most proposals to solve the problem try to adapt it to the formulation 
of the Traveling Salesman Problem (TSP), in which the objective is to navigate 
a list of nodes using the minimum global distance. In this paper, the purpose is 
to provide a solution to the TSP applied to tool path optimization by means of a 
Discrete version of the Teacher-Learner-Based Optimization (TLBO) 
algorithm. To improve performance, the algorithm is implemented using a 
parallel Computer Unified Device Architecture (CUDA) and run on a manycore 
Graphical Processing Unit (GPU). The results show that the parallel 
implementation of Discrete TLBO is faster than 9x the sequential 
implementation. 
 

Keywords: CAM, Tool path computation, Travelling Salesman Problem, 
Optimization, CUDA, Parallelism, GPU 
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1 Introduction 

Most manufacturing industries are involved in incorporating technological advances 

to their processes. Traditional industrial sectors are not an exception, although its 

investment in technology is more limited due to economic considerations and a 

business point of view often based on experience and know-how of workers. One of 

the aims when improving these processes is devoted to reduce the production time. 

Optimization of machining processes plays a key role in order to meet the 

requirements for high precision and productivity. The productivity of machine tools 

can be greatly improved using CAD/CAM systems so as to generate CNC programs. 

These systems provide appropriate numerical control codes for different machining 

processes, one of which is the drilling operation. 

Drilling through numerical control tools is a common procedure in most industrial 

processes. It usually consists of multiple drilling of a flat surface using a cylindrical or 

spherical tool. Although other variants may exist, the usual process using numerical 

control consists of placing the tool on the surface to be drilled at a safe distance and 

then carrying out the drilling process with a linear movement (usually with G01 

movements from the G-Code or RS-274 standard) of the tool perpendicular to the 

surface, and then removing the tool in the same way. The drilling is carried out 

accurately and at the appropriate speed, always depending on both the material to be 

drilled and the tool, while the movement to the next drilling point is carried out at a 

higher speed since it is done at a distance which allows no collision with the material 

to be drilled (usually with G00 movements). 

Since the drilling process is dependent on the material and the tool and must be 

adjusted to the characteristics of the industrial process itself, the optimization of the 

paths for this type of machining usually involves reducing what is known as 

“airtime”, i.e. optimizing the movement of the tool to place it above the next point to 

be drilled [1].  

The problem of achieving a minimum airtime for drilling paths is highly complex and 

has been defined as NP-Complete [2]. The generation of these optimized trajectories 

remains an open problem for researchers.  
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Because of similarity, most solutions adopt strategies based on different variants of 

the Travelling Salesman Problem (TSP). A recent review can be found in [3], where it 

is found that 79% of the approaches use ad hoc algorithms to solve the TSP in 

different variants. Another interesting conclusion from this review indicates that most 

works usually test few examples, which are moreover limited by the number of holes 

to be performed. Unlike the TSP associated with interurban navigation, in the scope 

of machining there is no common database so that researchers can compare different 

drilling schemes to test the robustness of the algorithms developed. 

The increase in the processing power of computers together with the appearance of 

affordable architectures equipped with multi-core processors has allowed the use of 

heuristic and meta-heuristic schemes to approximate the solution to this problem. For 

example, in [4] Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are 

used due to their efficiency and flexibility to generate optimal solutions when applied 

to different engineering problems.  

It is worthwhile emphasizing that the problem of drilling has many variants. The 

TSP has also been used to solve the problem of generating paths on irregular free 

surfaces (freeform surfaces) where the concept of curvature appears as a new 

complexity factor in path calculation [5]. 

In this work, an approach to TSP applied to tool path optimization is proposed by 

means of a discrete version of the metaheuristic optimization algorithm TLBO 

(Teacher Learner Based Optimization). Moreover, with the aim of improving 

performance, the algorithm has been implemented on a parallel architecture, 

specifically a CUDA-based implementation which runs on a GPU platform. 

This paper is structured as follows: Section 2 provides a formulation of the TSP 

and its analogy with the problem of optimizing tool path computation and a review of 

the main works found in the literature about the application of different metaheuristics 

regarding TSP and tool path computation. Section 3 provides a description of the 

TLBO method in both continuous (original) and discrete versions. Section 4 explains 

the implementation of TLBO on a parallel CUDA architecture in order to improve 

performance with regard to a traditional, sequential implementation. Section 5 shows 
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the results of applying the parallel discrete TLBO on set of scenarios. Finally, Section 

6 summarizes the findings of the research work and proposes future lines of research. 

 

2 TSP and Metaheuristics for Tool Path Computation 

The TSP belongs to the class of combinatorial problem and has been widely studied. 

Its definition is rather simple but obtaining an optimal solution can be very difficult 

depending mostly on the problem size. The problem can be formulated by means of 

graph theory: it is defined as a graph G = (V, A), where V = {v1,...,vn} is a set of n 

vertices (nodes) and A = {(vi, vj)/ vi, vj  V, i ≠ j} is a set of edges that has an 

associated non-negative cost (distance) matrix D = (dij). The problem is said to be 

symmetric if dij = dji for any pair of nodes (vi, vj)  A, and it is said to be asymmetric 

if dij ≠ dji for some pair of nodes (vi, vj)  A.  

If  R:{1, ..., n }  {1, …, n} is a bijective function that defines a reordering of 

vertices vi in V, the TSP is defined as minimizing the following function: 

 

  ்݂ ௌ௉ ൌ ∑ ݀ோሺ௝ሻோሺ௝ାଵሻ
௡
௝ୀଵ   (1) 

 

A correspondence between the tool path optimization in machining and the TSP 

can be directly devised. The set of nodes are related to the different points to be 

drilled and the aim is minimizing the airtime so as to increase productivity. This 

objective is also related to reduce energy consumption and tool wear. 

Given a set of n nodes to be visited, finding the best solution by exhaustive search 

would involve a complexity of the order of (n − 1)! That is, in case of 5 nodes, it 

would be necessary comparing only 4! = 24  possible solutions, but in case of 20 

nodes it would imply comparing 19! = 121,645,100,408,832,000 possible solutions so 

as to obtain the optimal one.  

A large amount of research works related to TSP has provided different methods so 

as to reduce this complexity. Due to the features of TSP, metaheuristic methods are 

suitable for dealing with the problem, which is supported by the wide variety of 
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research works related to TSP together with metaheuristics. Indeed, while exact 

resolution methods come with a proof that the optimal solution will be found in a 

finite, though often prohibitive, time, metaheuristic methods are suited to finding a 

good enough solution in a small enough computation time. Consequently, they are not 

subject to combinatorial explosion, that is, the situation where the computation time 

needed to find the optimal solution dramatically increases as an exponential function 

of the problem size.  

In [6], a survey of swarm intelligence applied to graph search problems is 

provided. The analysis performed is mainly focused on Ant Colony Optimization 

(ACO) and Bee Colony Optimization (BCO). In [7],  two variations of the Artificial 

Bee Colony (ABC) method are proposed for solving the TSP; experiments are carried 

out on a set of 15 TSP test problems; the performance of both ABC algorithms is 

compared with that of eight different versions of GA, and also with that of Ant 

Colony System (ACS) and BCO; results show the suitability of both version of ABC 

when applied to TSP problems. Most research devoted to provide a solution to TSP 

by using metaheuristic optimization methods apply the ACO method [8 – 11], 

sometimes in a hybrid version with other techniques [12]. Since the method mimics 

the behavior of ants as they search for the shortest path between the colony and a food 

source, it can naturally adapt to TSP where the goal is to obtain a minimum distance 

path. 

With regard to the research on metaheuristic methods applied to the optimization 

of the machining process, a wide variety of works can be highlighted. In [13], it is 

concluded that TSP is included in 92% of the works on soft computing applied to tool 

path optimization. GA and hybrid algorithms are the most frequently used, with about 

20% papers from the ones analyzed. About 18% of the research works uses modified 

algorithms to optimize tool path for drilling. Besides, about 13% of researchers use 

ACO to find the shortest path based on previous works. In [14], it is pointed out that 

60% of research work on TSP and metaheuristics applied to tool path optimization 

involves the use of ACO, PSO or GA. In [15], a review of research works on tool path 

optimization in CNC machines is provided. An overview of different optimization 

methods is shown, such as Artificial Neural Networks (ANN), Artificial Immune 
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Systems (AIS), GA, ACO and PSO. Also, a collection of previous research on tool 

path computation with different types of AI optimization methods is presented to 

show their capability in optimizing the machining processes. Conclusions of the study 

remark that GA and PSO are most widely used to optimize machining efficiency. 

Results also allow concluding that GA has been successfully applied for many 

optimization problems related to tool path. The ACO method is mainly used in 

minimizing machining time, airtime, and reduction of tool travel path. On the other 

hand, ANN are used to increase productivity, increase surface quality and decrease 

costs. PSO is mainly employed for reducing tool travel path and cost, and minimizing 

machining time. In [16], research is focused on the optimization of the traversing 

paths of tufting tours for carpet manufacturing. An analogy of the TSP, called 

traversing tuft problem (TTP), is formally presented. GA is hybridized with an ad-hoc 

heuristic method so as to optimize paths. In [17], the general formulation of the TSP 

model is extended by considering the precedence of the tool operations. The objective 

of the model is minimizing the idle time of tools with regard to internal operations. A 

recent optimization algorithm, called Satin Bowerbird Optimizer (SBO), is used to 

cope with the problem. Since SBO is originally applied to global optimization 

problems, the method is modified with discretization and local search procedures. The 

performance of the proposed algorithm is tested on well-known precedence-

constrained TSP benchmark problems by comparing it with other meta-heuristic 

approaches: Adaptive Evolutionary Algorithm (AEA) and ACS. Results show that the 

proposed method outperforms the other algorithms. When applied to real life hole 

drilling scenarios, up to 4.05% improvement in operational time is achieved. In [18], a 

mathematical model of the path optimization problem is proposed, as well as the use 

of ACO based on clustering analysis for minimizing auxiliary time of the path 

optimization. When massive holes are machined, they are divided into many sub-

regions using an improved k-means clustering method. Machining efficiency is 

increased by 18.51% with regard to the original path and improved by 2.08% with 

regard to the traditional ACO algorithm. However, only a TSP problem is used for 

testing. In [19], a method is presented which uses heuristic optimization techniques to 

solve TSP for segments. The proposed method adopts PSO and GA, which are solely 

implemented in MATLAB. The results of the proposal are compared with those of 
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two industry standard CAM systems. Using the proposed optimization method saves 

up to 40 % of the tool airtime during machining. In [5], an approach for compound 

surface finishing by treating the tool path planning task as a TSP is presented. A 

compound surface is usually composed of several patches of trimmed or untrimmed 

surfaces.  The concept of curvature map is proposed. With this concept, the curvatures 

of the surface patches are associated with the corresponding cells of the map, where 

the path intervals are determined at a later stage. The Cutter Contact points and the 

normal vectors are calculated on the mesh model of the compound surface with a 

linear algorithm. The obtained Cutter Contact points are linked as nodes in LKH, in 

which the distance function is redefined to cope with the illegal linking problems. 

With LKH, tool retractions are no longer necessary. The resulting tool path is capable 

of covering the whole compound surface in only one pass. This method is very 

suitable for irregular-shaped compound surfaces, especially when holes appear. In 

[20], GA are used so as to generate sub-optimal tool paths. The method is tested with 

three examples from TSPLIB (QA194, XIT108, and FI10639). The results show a 

fitness of 96%, 95% and 96% respectively. In [21], a path-planning optimization 

study for CNC machining center devoted to machining jobs involving a large number 

of holes to drill, mostly arranged in concentric circular patterns, is proposed. The 

paper proposes a hybrid ACO developed to take advantage of the geometric hole-

pattern arrangement, as well as local search. Results of simulation show that the 

proposed approach achieves higher performance compared to the classic ACO 

approach, to GA, and to the simple spiral path generated by means of commercial 

CAD software. The approach is then applied to the drilling path planning of a 1,000 

holes food-industry separator plate. Numerical simulations of example studies showed 

a higher performance of the modified ACO compared with GA and the basic ACO, 

with up to 15% reduction in total travel distance from the default spiral path in 

complex hole layouts. A model of a full-scale food separator screen with 2,100 holes 

was used to demonstrate the scalability of the proposed approach. In [22], an 

application for tool path optimization of multi position hole machining using GA is 

developed, which is capable to deal with G-code files as input data for any component 

to be machined on CNC machining centers. The results of GA applied to the case of a 

series of nodes are compared with those determined by the manual calculation of all 
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possible paths, and therefore the minimum of them. Both methods gave exactly the 

same results which demonstrate the robustness of the GA algorithm. Comparing the 

results of GA and branch-and-bound methods for different cases, GA provides better 

results than branch-and-bound in the case of irregular position patterns and equal 

results in the cases of regular patterns. The results of a 50-position case study 

conducted by 25 CNC programmers show that they have only a 4.26% chance of 

achieving the optimal solution. In [23], GA with modified crossover method is used 

so as to cope with a drilling problem involving an energy efficient path. Results show 

that the energy efficient tool path consumed less energy than the tool path optimized 

for minimum time. In [24], a hybrid GA is proposed to optimize tool path; the initial 

seed solution is generated by special heuristic and combined with random initial 

solution generated by simple GA. An index known as Relative percentage deviation 

(RPD) is defined and used for analyzing the results by varying the size of the jobs. 

The tool gets retracted and repositioned several times in multi pocket tasks during 

rough machining. Depending on the complexity of the job, these actions consume 

from 15% to 30% of total machining time. Three types of problems have been 

considered for comparing hybrid GA and simple GA: the number of nodes determines 

whether the problem is hard, medium or easy (275, 150 and 85 nodes respectively). 

Results show that hybrid GA performs well for all three easy, medium and hard sized 

problems. As the number of nodes increases, the hybrid GA proves to be more 

effective in minimizing non-productive machining time, taking into account the 

calculation time limit as a stop criterion. In [25], simulated annealing (SA), GA and a 

hybrid algorithm (hybrid-GASA) combining both techniques are applied to tool-path 

optimization problems for minimizing airtime during machining. These three 

algorithms were tested on three-axis-cartesian robot for wood materials milling. Their 

performances were compared with a minimum path and, therefore, minimum airtime. 

Experimentation on two examples shows that hybrid-GASA provides better results 

than the other heuristic algorithms working alone. The hybrid approach produces 

about 1.5% better minimum path solutions than simple GA and 47% better minimum 

path solutions than simple SA. With regard to a random selection of the tool path, in 

the hard case reduction of machining time reaches up to 84.1%, and in the easy case 

the reduction is 79.48%. In [26], a methodology to generate optimal or sub-optimal 
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sequences of G-commands to minimize the manufacturing time is proposed. The 

solution starts from original G-codes provided by a CAD/CAM software tool. For 

optimizing the time along the travel path, an implementation of ACO known as 

Parallel ACO (P-ACO) is developed which allows achieving the optimization task 

efficiently by speeding up the original ACO. Processors used vary from 1 up to 6. 

Results are verified using a professional CNC machine. The analysis of numerical 

results demonstrates that the use of the proposed methodology provides 

improvements of up to 62% over solutions obtained by CAD/CAM commercial 

software.  

As a summary of this review, it can be concluded that metaheuristic methods 

applied to the optimization of the tools' trajectory is an area of productive research 

and work continues in this area. However, it is not easy to find work that includes the 

parallel implementation of these techniques with regard to their application to 

machining processes. This situation leads to the idea that it is necessary to investigate 

the parallelization of these processes, given that there are currently parallel hardware 

platforms of affordable cost with a large computing power, whose characteristics in 

many cases make them very suitable for addressing problems of metaheuristic 

optimization.  

3 The TLBO optimization method 

3.1 Original TLBO Definition 

TLBO is a metaheuristic optimization method based on the teaching-learning 

process which involves a teacher and a set of students (learners), in such a way that 

knowledge is increased by means of an iterative series of stages where each learner 

learns from the teacher, but also from another learners [27]. Instead of the natural 

goal of increasing knowledge, the aim of TLBO is the optimization of a function f. A 

population of individuals is initially created, and each one of them is then assigned a 

random value for each one of the design variables defined in function f.  

After the initial assignment of parameters to learners, the method iterates through 

the following two stages until a stop criterion is fulfilled: 
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3.1.1 Teacher stage. In this stage, each individual i evaluates the function f with 

its own parameters, f (X(i)), and the one with the optimal (usually minimal) evaluation 

is designed as the population Teacher. Each individual updates its parameters 

according to the ones of the Teacher and the mean population parameters. The 

Teacher (Xbest) of the current generation is therefore used to create a new version of 

each individual (Xnew) according to the following equation: 

 

  ܺ௡௘௪ሺ݅, ݆ሻ ൌ ܺሺ݅, ݆ሻ ൅ ሺ0,1ሻሺܺ௕௘௦௧ሺ݆ሻ݀݊ܽݎ െ ݎ݋ݐܿܽܨܶ ൉ ܺ௠௘௔௡ሺ݆ሻሻ (2) 

 

In (1), X(i, j) is the design variable j of individual i. It is modified by using the 

value of variable j from the Teacher, Xbest(j), the variable mean from the whole 

population, Xmean(j), and the TFactor. The TFactor parameter adopts the integer value 

1 or 2 according to the following expression: 

 

ݎ݋ݐܿܽܨܶ   ൌ ሺ1݀݊ݑ݋ݎ ൅  ሺ0,1ሻሻ (3)݀݊ܽݎ

 

After modifying the variables of an individual i, it evaluates the function again. In 

case that the evaluation of f (Xnew(i)) provides a better (lower) result than that of the 

original individual, the new values of parameters replace the old ones for that 

individual i.  

3.1.2 Learner stage. After the teacher stage, each individual is compared with a 

random contestant from the population. The individual with a better function 

evaluation is designed as the Best Learner, being the other designed as the Worst 

Learner. Their parameters are used to generate a new individual by means of the 

following expression: 

  ܺ௡௘௪ሺ݅, ݆ሻ ൌ ܺሺ݅, ݆ሻ ൅ ሺ0,1ሻ݀݊ܽݎ ൉ ሺݎ݁݊ݎܽ݁ܮݐݏ݁ܤሺ݆ሻ െܹݎ݁݊ݎܽ݁ܮݐݏݎ݋ሺ݆ሻሻ (4) 
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When every variable Xnew(i, j) is generated, this new individual evaluates the 

function. If this evaluation is better than that of the original one, the values of the old 

one are replaced by the new values in the design variables. 

The main advantage of TLBO over other metaheuristic algorithms is that has no 

algorithm-specific control or tuning parameters. Indeed, only population size and 

generations, e.g., number of iterations, should be configured. In recent research 

works, it has been demonstrated that TLBO is more efficient than other optimization 

methods [28 – 31]. Hence, research related to TLBO has reached a remarkable 

development in the last years, and it keeps on be studied, improved and applied in a 

wide range of scientific and engineering scopes. 

3.2 Discrete TLBO 

The original version of TLBO was developed for being applied to functions or 

problems where design variables are in the continuous domain. On the other hand, 

combinatorial problems are those which involve finding a grouping, ordering, or 

assignment of a discrete, finite set of objects that satisfies a set of conditions. TSP is a 

combinatorial problem since its solution is a reordering of the whole set of vertices 

from a graph. When applying TLBO to TSP, an in-depth modification must be made 

so as to adapt the continuous formulation to discrete, combinatorial problems. Some 

research works can be found that proposes and approach to TLBO for discrete 

problems, being the resulting method called Discrete-TLBO (DTLBO).  

In the current work, an implementation of the DTLBO based on the work 

developed in [32] has been carried out, although several relevant modifications have 

been performed.  

3.2.1 Representation of individuals. Each individual is a sequence of nodes, 

representing a solution to be evaluated. As an example, if the problem deals with 8 

nodes (v0, v1... v7) to be navigated, an individual could be represented as shown in Fig. 1. 

The solution represented in Fig. 1 consists of starting in node v6 and finishing in node v0 

before returning to the starting node v6, visiting thus the different nodes following the 

order v6v1v2v5v7v3v4v0. 
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In [32], the initial assignment of individuals is performed by random permutations of 

the nodes to be visited and the global population is divided into subpopulations in order 

to avoid becoming prematurely trapped in local minima, concretely four subpopulations 

are considered. In the current work, a modification is proposed which consists in using a 

greedy strategy when generating one of the individuals of each subpopulation, while the 

others are randomly created; in this way, a sub-optimal solution is generated as a 

starting point, which can accelerate convergence towards an optimal solution. 

 
Fig. 1. Representation of an individual solution. 

 

3.2.2 DTLBO Teacher stage. A Partial Teacher with the best evaluation is 

determined from each subpopulation. This individual will be used so as to update 

learners in the subpopulation. The mean values within each subpopulation are also 

gathered into a Mean individual that will also be used for updating each learner. A 

global Teacher is also determined as the individual with the best evaluation within the 

whole population. 

It should be pointed out that, while the Teacher is always a valid individual, the Mean 

individual could not be, since some nodes could be repeated and others could not 

appear. Therefore, a feasibility operation must be carried out on this Mean individual so 

as to convert it to a valid individual. This feasibility operation is as follows: 

Step 1: The nodes that did appear in the individual are directly represented in vector 

TempFeasibleInd. Those nodes which appeared more than once occupy the last 

component where they appeared. Otherwise, the vector component is set to empty 

(symbol − ). In the example shown in Fig. 2, nodes 1 and 7 appear twice, while nodes 0, 

2, 3, and 5 appear just once. 

0 1 2 3 4 5 6 7

6 1 2 5 7 3 4 0

4 3

0

6

2

7

1 5

Node

Ordering Index



13 

Step 2: Determine the nodes that did not appear in the individual. For the individual 

in Fig. 2, they would be nodes 4 and 6. Each node that did not appear is written into the 

first free component, obtaining thus the resultant feasible individual. 

Crossover operation. Symbol  represents the crossover operation in (5). There are 

four different crossover operations that can be selected so as to create a new individual: 

 Xnew(i) = X(i)  Teacher (5) 

 Xnew(i) = X(i)  PartialTeacher(i) 

 Xnew(i) = X(i)  Mean(i) 

 Xnew(i) = PartialTeacher(i)  Mean(i) 

 
 
 
 
 

 
 
 
 
 
 

Fig. 2. An example of the feasibility operation. 
 

In the current work, a random selection of each one of the above crossover operations 

is performed each iteration and for each individual. This strategy is different from the 

one used in [32], where each subpopulation is assigned a fixed calculation for the 

crossover operation. With the change proposed in this work, a wider variety of 

individuals is achieved and, therefore, a new strategy is added to prevent a 

subpopulation from being prematurely trapped in a local minimum. By introducing this 

random selection, new solutions appear since the crossover for each individual within a 

subpopulation could be different each one of the iterations. 

The crossover operation works in the following way: given two individuals, X and Y, 

a new individual Xc is generated; a starting and an ending position in the order of 

visiting the nodes are randomly selected, so that individual X replaces its components by 

the ones of individual Y. Fig. 3 shows an example of this operation. Since the creation of 

5 7 0 1 2 1 7 3

5 ‐ 0 ‐ 2 1 7 3

5 4 0 6 2 1 7 3

Original unfeasible individual 

TempFeasibleInd

Resultant feasible individual 
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a new individual by crossover can produce an invalid individual, the feasibility 

operation must be performed on it. 

 

 

Fig. 3. An example of the crossover operation. 
 

Mutation operation. After the new individual is created crossover, a mutation is 

applied on it. Symbol  is used so as to indicate the mutation operator in (6). The 

mutation is performed as follows: a starting and an ending position in the order of 

visiting the nodes are selected; then the elements are flipped between the two positions 

so as to generate a mutation. 

  

 Xcm(i) = Xc(i) (6) 

 

As an example, given an individual Xc, a starting position 3 and an ending position 6 

in the order of visiting the nodes are randomly selected; the mutated individual Xcm is 

obtained by the mutation operation as shown in Fig. 4: 

 

 
Fig. 4. An example of mutation operation. 

 

3.2.3 DTLBO Learner stage. After the teacher stage, the learner stage is performed. 

Like in the original TLBO, for each individual X(i) a learner X(k) is randomly selected 

within its subpopulation. The learner X(i) is updated as indicated in (7). 

 

6 1 2 5 7 3 4 0 5 4 0 6 2 1 7 3

6 1 2 6 2 1 7 0

Individual X Individual Y

Individual Xc

5 4 0 6 2 1 7 3 5 4 0 7 1 2 6 3

Individual XcmIndividual Xc
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 Xnew(i) = X(i)  X(k) (7) 

 

where  represents the crossover operation, working in the same way as the 

crossover operation in the teacher stage. 

Once the crossover operation is carried out, the feasibility operation is performed 

again on the new individual. Then the mutation operation is carried out just the same 

way as in the teacher stage. 

In [32], DTLBO is compared to ACO, ABC, PSO, and GA when facing different 

TSP instances; conclusions remark that DTLBO achieves better approximate solutions 

than the other algorithms in most cases, being its percentual relative error from 0.01 to 

1.64 in those cases. ABC achieves better results than DTLBO only in two instances and 

ACO achieves the same result as DTLBO in one TSP instance. Conclusions also 

highlight that DTLBO performance decreases when dealing with very large problems; 

therefore, it is suggested that efforts should be made to focus on strategies to improve 

DTLBO performance for those larger TSP problems. 

4 Parallel TLBO implementation on GPU 

The modifications made on the original TLBO so as to adapt it to combinatorial 

problems involve adding more complexity and computational cost to the different 

stages. Therefore, DTLBO iterations are much more costly than those of the original 

TLBO, which may worsen the overall execution time. To minimize the impact of these 

changes on the algorithm performance, a parallel version of DTLBO has been 

implemented using CUDA architecture and run on a GPU platform. It must be taking 

into account that parallelizing an algorithm by means of CUDA not always means a 

better performance. In case of DTLBO, its specific features can be exploited to achieve 

substantial performance improvement over sequential solutions using this parallel 

architecture. 
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4.1 Design of the memory organization 

An essential step when facing the parallelization of the algorithm is to devise a 

correct design of the memory organization and the execution flow in order to minimize 

the global thread locks. If GPU memory is poorly managed, the result can be a negative 

impact on the execution time, since transfer operations between memory levels within 

the GPU are time-consuming and, therefore, they must be minimized. Therefore, the 

GPU memory levels will be organized so that each of them manages different type of 

information (thread, subpopulation, and global levels) as depicted in Fig. 5. 

 

 
Fig. 5. Organization of CUDA memory. 

 

Global memory. Two main blocks of information are stored in global memory: an 

array where all the necessary points for the generation of the individuals of the 

populations in each block are stored; and an array with all the pre-calculated distances 

between points. Global memory also stores the best individual of the whole population 

together with its evaluation (global Teacher) in each iteration; it must be global so as to 

be used by the whole population. Most information stored in global memory is read-

only and is used to avoid distance calculations within the evaluation of each individual 

and to save memory in the individuals of each subpopulation; only the data about the 

best individual (global Teacher) will be modified if necessary each iteration. 

Block memory. The information shared by a subpopulation is stored in block 

memory. This storage is organized as a matrix where each row represents an individual 
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and each column represents the index of a point; an additional column stores the 

individual’s solution to avoid repeating the evaluation. 

Thread memory. The thread local memory store variables which are used for the 

required calculations within each phase of the algorithm and updated each one of the 

iterations. This memory is private to each thread and is not shared with the rest of the 

population. 

4.2 Execution flow 

An execution flow has been designed in order to minimize the blockages of the 

threads when synchronizing during the execution of the algorithm. TLBO involves a 

series of stages that force the threads to be synchronized so as to obtain common 

information for the whole population, such as the mean individual and the best 

individual (Teacher). Moreover, the reduction technique is applied to minimize the 

iterations required to obtain these values from the population. In order to parallelize the 

execution of the algorithm, each thread is used as an individual of the population. The 

first thread (with index 0) of each sub-population is responsible for performing the 

operations in local memory, while the first thread of the first population is responsible 

for performing the necessary operations in global memory. This is depicted in Fig.6. In 

this way, conflicts and delays when accessing the different memory levels are avoided. 

 

 
Fig. 6. Subpopulations organization and memory accesses. 
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Experiments are focused on comparing the computation time when solving four well-
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Board (PCB) file example. A comparison is made between a sequential implementation 

and a manycore GPU implementation using CUDA. The hardware used for the 

experimentation is a Pentium i7 processor at 3.2GHz with an NVIDIA GeForce 1060p 

graphics card, 6 GB GPU RAM and 32 GB DDR4 RAM. The CUDA platform version 

was 9.2 compiled on Visual Studio 2017 with the most recent Windows C++ runtime 

available. Different scenarios are defined for each problem by modifying the population 

sizes (64 and 100 individuals) as well as the number of iterations to run the algorithm 

(1,000, 5,000 and 10,000 iterations).  The problems from TSPLIB which are used for 

experimentation are KroA100, KroB100, KroC100, with 100 nodes, and Lin105, with 

105 nodes. KroA100, KroB100, and KroC100 belong to the Krolak/Felts/Nelson set. 

Lin105 represents the conversion to Euclidean 2D space of the positions of 105 cities of 

the Lin/Kernighan problem, extracted from the original problem with 318 cities. These 

problems have been used as a benchmark not only to measure the computation time, but 

also to evaluate the approach to the best solutions since these problems have 

documented those optimal. Experimentation has also included a “Centroid” file.  This 

type of file defines the positions of the electrical components on a PCB design. From 

this file, the components that should be soldered have been extracted and a path has 

been created to optimize the soldering time of the components to the board. The number 

of nodes is 74. In this case, the optimal path is unknown. 

Figures 7-11 show the results with regard to the CPU and GPU average time in 

milliseconds of 50 runs of DTBLO applied to every problem with the different 

scenarios. Results demonstrate that the GPU parallel implementation of DTLBO 

achieves an improvement in performance higher than 9x in case of a large number of 

individuals and iterations. Table 1 shows the optimal for every problem (with the 

exception of Centroid), the solutions achieved by parallel DTLBO, and the 

corresponding percentual relative errors. It can be observed that the approximation of 

the DTLBO solution to the optimal of the different problems is very satisfactory. The 

paths obtained for the different problems are shown in Figures 12 and 13. Moreover, the 

Centroid path obtained by DTLBO has been simulated with the open-source CAMotics 

tool, which emulates the execution of 3-axis G-Code programs for CNC and displays 

the results in 3D (see Figure 13 right). 
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Table 1. Optimal, DTLBO solution, and percentual relative error for the TSP tested. 

 KroA100 KroB100 KroC100 Lin105 Centroid 

Optimal 21,282 22,141 20,749 14,379 Unknown 

DTLBO 21,294 22,169 20,782 14,391 279.01 

% Relative error 0.056 0.126 0.159 0.083 Unknown 

 

Given the characteristics of the GPU and the possibility of processing a large number 

of threads per block, it can be seen that the increase in population does not have as much 

time penalty as the CPU, being the GPU times only affected by the number of iterations. 

In addition, the GPU block architecture is well suited for algorithms with 

subpopulations, since they can be placed on different GPU blocks and, therefore, run in 

parallel if the number of subpopulations allows for it. For real-world applications, 

different problems can be run on the same GPU, maximizing GPU utilization and 

minimizing system response time. 

 

 

Fig 7. Results from KroA100 with regard to different number of individuals (64 and 100) and 
iterations (1000, 5000 and 10000). CPU and GPU time (left); corresponding speedup (right). 
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Fig 8. Results for KroB100 with regard to different number of individuals (64 and 100) and 
iterations (1000, 5000 and 10000). CPU and GPU time (left); corresponding speedup (right). 
 

 

 
Fig 9. Results for KroC100 with regard to different number of individuals (64 and 100) and 
iterations (1000, 5000 and 10000). CPU and GPU time (left); corresponding speedup (right). 
 

 

 
Fig 10. Results for Li105 with regard to different number of individuals (64 and 100) and 
iterations (1000, 5000 and 10000). CPU and GPU time (left); corresponding speedup (right). 
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Fig 11. Results for Centroid with regard to different number of individuals (64 and 100) and 
iterations (1000, 5000 and 10000). CPU and GPU time (left); corresponding speedup (right). 

 

Fig. 12. DLTBO solution for KroA100 (left) and KroB100. 

 

 

Fig. 13. DTLBO solution for Centroid (left); result of the simulation with CAMotics. 
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GPU approach to improve performance is proposed. This algorithm has proven in 

previous works to be a good choice for solving TSP problems. Since the algorithm 

complexity is increased when transformed so as to cope with combinatorial problems, 

the parallel, manycore GPU implementation is used so as to improve substantially the 

speed of the algorithm, obtaining significant speedups with regard to a sequential 

implementation. In case of a large number of individuals and iterations, the speedup 

reaches more than 9x. These results make the algorithm suitable to be applied in 

problems where the number of points to be visited following an optimized path is very 

high. The implementation developed could still be improved trying to emphasize the 

thread blocks to optimize the use of GPU resources. Moreover, in the TSP instances 

tested the percentual relative error achieved with DTLBO is very satisfactory. 

The parallel implementation of DTLBO on CUDA has been carried out on an 

affordable computer and, therefore, it can easily be applied to industrial sectors that 

cannot cope with large investments in technology. As a continuation of this research, it 

would be interesting to further improve the algorithm in its various stages and in the use 

of GPU resources. Also, it would be interesting to carry out tests in real machining 

environments to check if the results obtained are viable when they are manufactured.  
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