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a b s t r a c t

Mobile ad hoc networks (MANETs) show very significant difference with respect to other
computer networks due to the presence of extremely large packet loss bursts. The devel-
opment of protocols for mobile ad hoc networks, especially multimedia protocols, require
extensive evaluation either through simulation or real-life tests. Such testing consumes a
great amount of resources both in terms of time and trace file sizes. Therefore, finding effi-
cient means of reducing the amount of data that is stored and processed is quite important
to accelerate the evaluation of different audio/video streaming applications. If, moreover,
we are able to model the loss pattern experienced, we can further accelerate the evaluation
process.

In this work we propose two models based on hidden Markov chains that are able to
grasp both packet arrivals and packet loss patterns in MANETs. A simpler two-state model
is proposed to model losses when proactive routing protocols are used, while a more com-
plex three-state model is proposed for reactive routing protocols. We also introduce a new
set for packet loss pattern measurements that can be of interest for the evaluation of audio/
video streaming applications.

Experimental results show that the proposed models can adequately reproduce extre-
mely long packet loss patterns, typical of MANET environments, with a high degree of accu-
racy. Overall, we find that the proposed models are able to significantly reduce both the
simulation time and the trace file sizes required.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Mobile ad hoc networks (MANET) [1] are wireless net-
works where nodes can either be end-points of a data
interchange or can act as routers when the two end-points
are not directly within their radio range. Such networks are
a solution to extend Internet connectivity to remote areas
where no support infrastructure is available.

The most widely deployed technology to implement
this kind of networks is based on the IEEE 802.11 [2] stan-

dard. Wireless ad hoc networks suffer from frequent topol-
ogy changes and provide a poor QoS support. However,
support for real-time communication in wireless networks
is becoming more and more important due to the increas-
ing demand for multimedia applications.

The issue of topology variability can only be handled
through efficient routing mechanisms. A couple of years
ago near to 60 proposals of routing protocols were being
evaluated. Nowadays only four proposals, respectively
the ‘‘Ad hoc On Demand Distance Vector” (AODV) [3], the
‘‘Dynamic Source Routing Protocol for Mobile Ad hoc
Networks” (DSR) [4], the ‘‘Optimized Link State Routing
Protocol” (OLSR) [5], and the ‘‘Dynamic On-demand Rout-
ing Protocol” (DYMO) [6], are being supported; AODV,
DSR and OLSR have reached the Request For Comments
(RFC) state.

Proactive routing protocols such as OLSR periodically
send ‘‘Hello” messages for link state sensing. The delay
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necessary to detect a broken link can be calculated as:
BLT ¼ HI �MHL, where HI is the average Hello interval
and MHL is the minimum number of consecutive Hellos
lost that triggers a broken link event. Since 1 6 HI 6 2 s
and 2 6 MHL 6 3, nodes will typically require between 2
and 6 s until the network topology updating task is acti-
vated. AODV and DSR are reactive routing protocols that
typically use information from lower layers in order to de-
tect broken links earlier. However, even though we achieve
lower reaction times to link changes by enabling link
awareness, the re-routing process can still introduce quite
long disconnection periods.

Extremely long interruptions in communication is
therefore a relevant problem that must be taken into con-
sideration while evaluating different proposals at the high-
er layers of the communication model, like for example
VoIP, video communication, or session management proto-
cols. In the former cases, long loss bursts may cause the
quality of an audio/video communication between two
users to be unacceptable since the data flow is interrupted
(silent audio/frozen video) during long periods of time
(may be several seconds).In addition to mobility-related
losses, other conditions such as channel fading, interfer-
ence, noise and congestion also cause packet losses in
wireless ad hoc networks.

By modeling the packet error bursts in an error prone
network environment we achieve interesting benefits in
terms of testing/simulation time and required resources
for running and storing our simulation experiments, yet
preserving the behavior in terms of packet loss bursts. A vi-
deo codec is an example of a higher layer software which
can benefit from this solution: distinct strategies can be
tested in terms of error resilience and quick error recovery,
obviating the need for several long simulation runs.

In this work we present two models for characterizing
packet arrivals and packet loss patterns in MANETs based
on hidden Markov models [7] (HMMs) theory. Though
the models derived could be used in other packet net-
works, our focus on MANETs is due to the unusually large
packet loss bursts that are prone to occur in these net-
works. We believe that such packet loss patterns impose
great demands on the model, so that model validation is
done in an extreme situation. We also propose new metrics
aiming specifically at audio and video streams by extend-
ing some of the concepts presented in [8].

The article is organized as follows: in the next section
we refer to some related works in the field. In Section 3
we describe our model and the methodology followed,
and we also present the two proposed models to charac-
terize packet loss bursts in multihop wireless paths. Sec-
tion 4 presents a novel set of metrics for packet loss
bursts, which are used to assess the degree of accuracy
of the proposed modeling strategy. These metrics allow
assessing how different routing protocols perform during
a well-defined period in terms of loss bursts. Section 5
illustrates with an example the benefits obtained in terms
of simulation time and resources saved when using the
models derived. An extensive model validation work is
presented in Section 6, including both congestion and
mobility modeling. Finally, Section 7 presents the conclu-
sions of our work.

2. Related work

Hidden Markov models have initially been developed
to address the requirements of speech recognition. How-
ever their use has been spread to several other areas, like
the computer networks area. Wei et al. [9] propose a solu-
tion based on modeling that uses periodic end-to-end
probes to identify whether a ‘‘dominant congested link”
exists along an end-to-end path. In [10], Liu et al. obtain
an improved TCP version through end-to-end differentia-
tion between wireless and congestion losses, providing
effective operation in hybrid wired/wireless environ-
ments. Their approaches integrate HMMs with packet loss
pairs (PLP).

In the literature we can also find uses of the simpler
Markov chains in the Internet. Jiang and Schulzrinne [11]
propose some extensions to the Gilbert model for Voice
over IP (VoIP) applications taking into consideration play-
back delay adjustments and FEC. Their focus is on Internet
behavior and the interactions between the model and the
FEC mechanism. Sanneck et al. [12] also focus on Inter-
net-related losses by describing model parameters using
packet loss metrics existing in the literature.

Concerning the applications of Markov chains to MAN-
ETs, Lin and Midkiff [13] propose a link connectivity model
using two-states Markov chains to estimate the link up/
down times between a pair of nodes and compare it to
the Random Waypoint Mobility Model. Each potential link
for all pairs of nodes is modeled as a separate two-states
Markov chain to derive a node connectivity matrix. In their
work they focus solely on modeling mobility, and not on
packet loss patterns.

In terms of loss burst metrics, IETF’s RFC 3357 [8] de-
fines two metrics, namely the ‘‘loss distance” and the ‘‘loss
period”, and the associated statistics that together capture
loss patterns experienced by packet streams on the Inter-
net through probes. However, the statistics proposed do
not offer an in depth view of the packet loss phenomena.

To the best of our knowledge, our proposal is the first
one to use hidden Markov models to model the extremely
large packet loss bursts that are prone to occur in MANET
environments at the application layer (end-to-end). More-
over, we introduce novel metrics that are able to ade-
quately characterize the loss phenomena detected.

HMMs are well known for their effectiveness in model-
ing bursty behavior [14,15], relatively easy configuration,
quick execution times achieved and general applicability.
Therefore, we consider that they fit our purpose of acceler-
ating the evaluation of multimedia streaming applications
adequately, while offering similar results as with simula-
tion or real-life testbeds.

3. Model description and proposed methodology

The IEEE 802.11 standard for wireless LANs [2] defines
several mechanisms for reliable packet transmission in
noisy wireless channels. Since all data is protected with a
CRC field, it is unlikely that a corrupted packet gets to
the destination, even if using an unacknowledged service,
like with broadcast or multicast traffic. We can therefore
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assume that either the packet is completely received, or it
is dropped.

In a previous work [16] we found that routing related
losses can provoke quite large packet loss bursts. Fig. 1
shows an example of the impact of mobility on a real-time
H.264 video stream in a typical MANET scenario with no
additional sources of traffic, and using DSR as the routing
protocol. As it can be seen, even in these ideal conditions
the data stream is affected by various communication gaps.

We assume that stations belonging to the MANET are
found in different routing states (e.g. route available, route
discovery, re-routing, etc.). Anyway, independently of the
routing state, packet losses can occur for a variety of other
reasons (collisions, channel noise, queue dropping, etc.).
Therefore, an outside observer cannot relate a packet loss
with a certain routing state. We deal with a situation
where the observation is a probabilistic function that de-
pends on the state. This means that only the output of
the system, and not the state transitions, are visible to an
observer. We will therefore try to solve the state assign-
ment problem using a hidden Markov model (HMM) [7].

3.1. General methodology

We start by selecting a data stream (e.g. audio, video,
etc.) for analysis, as well as the criteria for considering a
packet good or unusable by the application. We can take
into account factors such as which packet arrives to desti-
nation within a maximum delay, the delay jitter limits, the
dependency among packets, etc. We then label each packet
sequence number with value 1 – considering the packet
good – or value 0 if the packet does not arrive to destina-
tion, or does not meet any of the chosen criteria. Starting
from this sequence of observations we obtain the distribu-
tions of consecutive packets arriving (CPA) and consecutive
packets lost (CPL). The latter two will be used to tune the
proposed HMMs for a particular network profile (area,
number of nodes, mobility pattern, traffic load, etc.).

In a HMM the number of states is not defined by the
possible output events. To choose an adequate HMM con-
figuration we propose starting from a very simple 2-state
model as presented in the next section. We consider that

one of the states models a currently broken path, where
the probability for a packet to reach destination is zero.
The other state models packets lost mostly due to colli-
sions, but also due to channel noise, packet fragmentation,
buffers overflow, and the type of MAC used; the probability
for a packet to reach destination is given by function h(s),
where s is the packet size.

Starting from the 2-state model, we can compare the
model’s output with the distributions used for its tuning,
and assess if the desired degree of accuracy is achieved.
If the results are not accurate, we add one more state to
the model and repeat the process until the results are
satisfactory.

We estimate the different parameters of the HMM tak-
ing as input the results of experiments from the ns-2 sim-
ulator [17]. The characteristics of the routing protocol
employed can be useful to provide an insight on how to en-
hance the model (see Section 3.3 for an example). In our
experiments we did not have to use more than three states,
showing that the model complexity can be kept low and
still provide the desired results.

In the two following sections we show how to model
the transmission of data streams on MANETs using routing
protocols such as OLSR or DSR using 2-states and 3-states
HMMs. In order to speed up the determination of the opti-
mum values for the model parameters, we also present, for
each case and for each parameter, a set of heuristics that
offers good estimates.

3.2. Two-states packet loss burst model

In this section we present the simplest HMM that is able
to model large lost bursts. The idea is to focus on two dis-
tinct situations: when a path towards the destination is
lost and no packet can arrive successfully, and when a path
to the destination exists but some of the packets are
dropped due to congestion, transmission errors, buffer
overflow, etc. It consists of a two-states HMM based on
the Markov chain shown in Fig. 2 (also known as the Gil-
bert model).

State B models the situation where a path towards the
destination has been lost; the probability for a packet to
reach the destination is zero. In state F packets are lost
according to a probability defined by function hðsÞ, where
s is the packet size. Mapping state B with 0 and state F with
1 we obtain the following transition probability matrix:

A2 ¼
a00 a01

a10 a11

� �
: ð1Þ

For our experiments based on ns-2 [17] we have tested
several different scenarios with different mobility and traf-
fic patterns, and we have chosen one that was particularly
representative in terms of large packet loss bursts. This
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Fig. 1. Impact of mobility on a real-time video stream. Fig. 2. Two-state Markov chain for the multi-hop wireless path model.
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choice aimed at stressing the model using a very demand-
ing example.

Our setup consists of a 1000 m � 1000 m scenario with
80 nodes. The wireless interfaces are based on the IEEE
802.11b standard with radio range limited to 250 m. The
medium access used is the distributed coordination func-
tion (DCF). The node mobility is generated using the ran-
dom waypoint model with node speed between 0 and
12 m/s. The source of the reference flow sends packets
with random sizes ranging between 64 and 2300 bytes at
a rate of 50 pkt/s. The background traffic consists of 4
UDP sources generating 512 bytes packets at a rate of
4 pkt/s. We evaluate both a reactive (DSR) and a proactive
(OLSR) routing protocol. Applying a filter to the simula-
tion’s output we obtain a trace file (ST) where increment-
ing packet sequence numbers are tagged with either a 1
or a 0 (for packets received and packets lost respectively).
Our criteria is that all packets that arrive to destination in
less than 300 ms are considered good packets (tagged 1);
the remaining were tagged as lost (0). From this sequence
of observations we calculate the distribution of consecutive
packets lost (CPL) and of consecutive packet arrivals (CPA).
These distributions will be used as training sequences
when tuning our model.

Using trace ST we first analyzed the correlation between
packets size and the event of losing, or not, a packet. The
correlation coefficient found is r2 ¼ 6:03� 10�6 which
indicates that, within our simulation framework, the event
of losing a packet is basically independent from packet
size. Therefore, in our experiments, the probability func-
tion associated to state F will be fixed at a constant value
hðsÞ ¼ �h.

From the first distribution obtained (CPL) we calculate
the ratio between the total number of packets lost and
the sum of the lengths of CPL sequences bigger than one;
we do the same with the packets received. Table 1 shows
the obtained values. The ratios for the packets received is
high, as expected. The interesting result is that the ratios
for packets dropped are also high, indicating that packet
loss bursts are the dominant cause of losses, contrarily to
a random-loss situation. Notice that in mobile ad hoc net-
works frequent route losses due to mobility are the main
cause for the bursty loss phenomenon. Thus, since the
main reason for sequential packet losses is a route failure,
these events shall take place mostly in state B.

From these results, and since parameter �h accounts
mainly for non-consecutive packet losses, we consider that
�h ¼ 1� e � 1. This allows us to propose an heuristic to find
the vector of estimated parameter values v̂ ¼ ðâ10; â01; ĥÞ
that offers a high degree of accuracy (near-optimal solu-
tion). Notice that if the condition �h � 1 no longer holds,
the accuracy of the heuristic we now present would only
be slightly reduced.

We estimate â10 and â01 taking into account that the
runs at each state of a Markov chain are memoryless, hav-
ing by definition a geometric distribution. Using this infor-
mation we find that run lengths for B and F states have an
average size of 1

a01
and 1

a10
respectively. Therefore we have:

â10 ¼
1

lCPA
and â01 ¼

1
lb
;

where lCPA is the average length of the sequences of con-
secutive packets arriving, and lb is the average length of
the consecutive packets lost (CPL) after removing all iso-
lated packet losses ðCPL > 1).

The value ĥ is estimated using the transition probability
matrix A2. We can find the steady-state probability p for all
states by evaluating p ¼ pA2. After finding p we can define
the exact probability for a packet to arrive to destination,
parrival, using the following expression:

parrival ¼ ĥ � p1 ¼ ĥ � â01

â01 þ â10
: ð2Þ

Since we have already estimated values for a10 and a10, and
since parrival can be found using the simulation results, we
can obtain from Eq. (2) the value for ĥ.

Starting from the vector of estimated parameter values
v̂ ¼ ðâ10; â01; ĥÞ, we proceeded to find a more precise solu-
tion through an iterative process, which can be any of
the many available in the literature [7]. We consider that
our estimates v̂ are close to the definitive ones, and so
the method we use is a hybrid iterative/brute force tech-
nique. Starting from the estimated parameter values we
select a search interval for each parameter testing several
points in this interval and choosing the one that minimizes
error function f. In the next iteration we reduce the search
interval around the point that minimizes f in the previous
iteration. We proceed with this algorithm until the output
from function f is smaller than a pre-defined error value
ðnÞ. This value defines the desired degree of accuracy of
the model.

The minimization function used for the iterative pro-
cess was:

f ¼ l0CPA � lCPA

lCPA

����
����þ l0CPL � lCPL

lCPL

����
����; ð3Þ

where lCPA and l0CPA refer to the mean values of the consec-
utive packet arrival distribution for the simulator and the
model output respectively, and lCPL and l0CPL refer to the
mean values of the consecutive packets loss distributions.
We have chosen this function for minimization since it also
allows to set bounds on the probability of packet arrivals. If
we impose that f < n, and since parrival can also be defined
as:

parrival ¼
lCPA

lCPA þ lCPL
; ð4Þ

we find that the relative error for parrivalðeÞ is bounded by
1�n
1þn < e < 1þn

1�n. We consider f a good choice because similar
values for parrival obtained from the simulator and the mod-
el will allow us to perform consistent comparisons when
evaluating multimedia applications. In fact, if we achieve
similar distributions for CPL and CPA but do not achieve

Table 1
Ratios relative to the total number of packets lost/received with respect to
the sum of the sequences bigger than 1 of packets lost/received.

DSR RB (%) OLSR RB (%)

Packets dropped 97.9 99.77
Packets arriving 99.74 99.98
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very similar values of parrival, it would not be possible to val-
idate the model against the simulator correctly. It would
mean that different goodput values are achieved with the
simulator and with the model, making any kind of compar-
ison unfair.

Table 2 presents both the v̂ values and the final values
obtained through the iterative process ðviÞ. In addition,
Table 3 presents a comparison, in terms of consecutive
packets arriving (CPA) and consecutive packets lost (CPL),
of the two-state model using either the values of vector v̂
or vector vi, taking the simulation results as reference.

Notice that, as shown in Table 2 the heuristic proposed
to calculate v̂ offers values that are very close to those of vi.
Yet, as shown in Table 3 we must further refine these val-
ues iteratively because very small differences in v provoke
large variations in terms of burst behavior, which explains
why the error varies so greatly.

Figs. 3 and 4 show a comparison of the consecutive
packet arrivals patterns and the consecutive packet loss
patterns respectively. Using vector vi we compare the

probability density function and the cumulative distribu-
tion function for the simulation and for the model outputs.
From Fig. 3 we can observe that the statistical distribution
provided by the model has a close resemblance with the
simulator output.

Concerning the distribution of consecutive packet
losses, Fig. 4 shows that the two-state model fails at accu-
rately modeling the desired consecutive packets loss pat-
tern for DSR. Concerning OLSR, we consider that the
HMM is able to approximate the consecutive packet loss
distribution satisfactorily.

The different precision of the results for the two routing
protocols is due to their different routing nature. DSR be-
longs to the reactive family of protocols. These protocols
are able to reestablish a path very quickly until there are
no more available routes on the source node’s cache.
Afterward they have to proceed with the possibly high
time-consuming process of route discovery until commu-
nication is resumed. Proactive protocols such as OLSR rely
on frequent ‘‘Hello” and topology update messages to man-
age the routing tables. Therefore, these are not prone to
present the asymmetry encountered with DSR, being more
closely modeled with the two-states HMM presented be-
fore. Modeling more accurately DSR’s distribution for con-
secutive packet losses can be done at the cost of
introducing more complexity to the model. In the next sec-
tion we show how this can be achieved using a three-state
Markov model.

3.3. Three-states packet loss burst model

In this section we present an enhancement of the model
described in the previous section which obtains a much

Table 2
Estimated parameters values ðv̂Þ vs. the values obtained through the iterative process ðviÞ.

DSR v̂ vi OLSR v̂ vi

P 10:786� 10�3 11:043� 10�3 P 5:440� 10�3 5:011� 10�3

S 1:357� 10�3 1:312� 10�3 S 2:868� 10�3 1:850� 10�3

�h 0.99560 0.99998 �h 0.96902 0.99904

Table 3
Statistical average matching for the estimated and iterated model values.

Simulator Model

v̂ Error (%) vi Error (%)

DSR
lCPA 737.04 554.65 24.75 746.58 1.29
lCPL 86.91 71.53 17.70 88.99 2.39

OLSR
lCPA 348.69 29.58 91.54 346.96 0.50
lCPL 129.99 17.49 86.55 129.92 0.05
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Fig. 3. Cumulative distribution function of consecutive packet arrivals (CPA) for DSR and OLSR.
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better approximation of DSR’s packet loss bursts distribu-
tion. Analyzing DSR’s behavior we find that path breaks
can be either short if breakage is handled by a quick re-
routing process using the node’s cache, or long if a route
discovery process is required. Taking into account this dif-
ferent behavior, we replace state B from the two-states
model with states L and R, where state L models short path
breakages and state R models route discovery processes
(R). The resulting three-states HMM is shown in Fig. 5.

As in the two-states model, packets arrive to destina-
tion in state F only, with probability �h. In states L and R
all packets are lost. Mapping state L as 0, state F as 1, and
state R as 2, we obtain the following transition probability
matrix:

A3 ¼
a00 a01 0
a10 a11 a12

0 a21 a22

2
64

3
75: ð5Þ

Similarly to the previous section, we obtain a trace file ST
with the mapping between packet sequence number and
packet received/lost events. From this sequence of obser-
vations we obtain the distribution of consecutive packets
lost and consecutive packets received. These distributions
will be used as training sequences to find the optimum val-
ues for matrix A3.

As in the previous section, we maintain �h ¼ 1� e � 1.
We classify consecutive packets lost (CPL) events into

two groups by picking a threshold t. The value for t can
be chosen by determining the inflection point of the cumu-
lative distribution for consecutive packets lost, or using
any other criteria. Notice that the optimum aij values ob-
tained through iteration are independent of the threshold
t, but better guesses for t allow finding such values with
fewer iterations. In this example, the value we have chosen
for t is 200 (see Fig. 6), which is slightly above the inflec-
tion point and corresponds to 4 s at a source rate of
50 pkt/s.

We now proceed to determine vector v̂ ¼ â10; â12;ð
â01; â21; ĥÞ with estimated values for the model. We con-
sider that lCPA is the average length of the sequences of
consecutive packets arriving (CPA), lb is the average length
of the consecutive packets lost (CPL) when their length is
greater than 1 and less or equal than t � 1, and lB is the
average length of the CPL when their length is equal to
or greater than t. We can then calculate the values for âij

using the following equations:

â10 ¼
1

lCPA
� PðCPL < t jCPL > 1Þ; ð6Þ

â12 ¼
1

lCPA
� PðCPL P t jCPL > 1Þ; ð7Þ

â01 ¼
1
lb

and â21 ¼
1
lB
: ð8Þ

After determining these values a00; a11 and a22 are also de-
fined, thus completely defining transition probability
matrix A3; hence, we may proceed to determine the stea-
dy-state probability for all states, p, obtaining:

pðFÞ ¼ p1 ¼ 1þ â10

â01
þ â12

â21

� ��1

: ð9Þ

The expression parrival ¼ ĥ � p1 gives us the exact probability
that a packet arrives to destination, and it is used to calcu-
late the value for ĥ, thus completely defining vector v̂. We
then find the final parameters values using the same meth-
ods exposed in the previous section. Table 4 presents both
the vector of estimated values ðv̂Þ and the vector of values
obtained through the iterative process ðviÞ.
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Fig. 4. Cumulative distribution function of consecutive lost packets (CPL) for DSR and OLSR.

Fig. 5. Three-states Markov chain for the multi-hop wireless path model.
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Table 5 presents a comparison of the error values when
comparing the estimated ðv̂Þ and iterated ðviÞ vectors for
the three-state model. The comparison is made in terms
of consecutive packets arriving (CPA) and consecutive
packets lost (CPL). We observe that now the probability
density function and cumulative distribution function ob-
tained with the model fit the desired distribution with a

much higher degree of accuracy, as shown in Fig. 6. It is
evident that the introduction of two loss states instead of
one improves the accuracy of the model’s cumulative dis-
tribution function. We also observe from the probability
density function that our model can reproduce very large
bursts.

Concerning the consecutive packet arrivals distribution
shown in Fig. 7, both density and distribution functions are
very similar to the ones obtained with the two-states mod-
el, as expected. Though the model could be further ex-
tended in order to achieve small values of consecutive
packet arrivals, thus offering a better fit to the cumulative
distribution curve of the simulator, we consider that it is an
irrelevant issue to our purposes.

In the sections that follow, all the results related with
the models proposed in this section are obtained using
the optimum solution ðviÞ, that is, the values for the differ-
ent model parameters are refined through the iterative
process.

4. Novel metrics for model accuracy testing

In this section we validate the models proposed in
Sections 3.2 and 3.3, verifying their correctness and ade-
quateness for the purpose of evaluating multimedia
streaming applications.
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Fig. 6. Probability density function and cumulative distribution function for packet loss bursts.

Table 4
Estimated parameters values ðv̂Þ vs. the values obtained through the
iterative process ðviÞ.

v̂ vi

a10 1:274� 10�3 1:173� 10�3

a12 0:08324� 10�3 0:07669� 10�3

a01 59:21� 10�3 59:21� 10�3

a21 0:79821� 10�3 0:79820� 10�3

�h 0.99916 0.9999

Table 5
Statistical average matching for the estimated and iterated model values.

Simulator Model

v̂ Error (%) vi Error (%)

lCPL 86.91 28.59 67.10 85.82 1.25
lCPA 737.04 268.15 63.62 737.12 0.01
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Fig. 7. Probability density function and cumulative distribution function for consecutive packet arrivals.
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With that purpose we define a set of metrics that mea-
sure packet loss bursts. Then, we use these metric to com-
pare both the simulator and model outputs in order to
verify the effectiveness of the models proposed.

4.1. Metrics for packet loss burst measuring

Before detailing the different metrics proposed to char-
acterize packet loss bursts, we provide a definition of the
boundaries of a packet loss burst specifically designed for
video and audio data flows. We consider that data flows
belonging to different applications will not be affected by
packet loss bursts in the same way. It is also important
to point out that loss burst measurements are always done
focusing on a single traffic flow, and not for all the traffic in
the network simultaneously, even if there are other similar
flows.

To delimit a burst we follow an approach based on hys-
teresis where we transit into the burst state whenever ns

consecutive packets are lost. Similarly, we transit out of
the burst state whenever ne consecutive packets arrive suc-
cessfully. The values of both ns and ne shall depend on the
type of information sent and the packetization granularity.
For example, if we consider that at least one entire video
frame has to be lost for a burst to be meaningful and that
one entire frame has to arrive for communication to be re-
sumed, ns and ne will have the same value, and it will be
equal to the number of packets per frame defined in the vi-
deo codec.

We will now proceed with the definition of some indi-
cators to describe packet loss burst occurrences. The most
simple indicator is burst percentage (PBP), defined as:

PBPð%Þ ¼
PK

i¼1Bi

N
; ð10Þ

where Bi is the size of loss burst i in number of packets, K is
the total number of loss bursts and N the total number of
packets sent. The PBP gives a measure of the relative burst
incidence. To measure the relative impact of bursts over
the total number of packets lost L, we define the Relative
Burstiness (RB) metric as:

RB ¼
PK

i¼1Bi

L
; 0 6 RB 6 1: ð11Þ

In a situation where most packets are lost in a random
manner the RB parameter approaches 0, while when pack-
et loss bursts dominate, RB will be greater than 0.5.

This parameter allows us to detect where the network
needs more improvements: if on the routing protocol side
ðRB > 0:5Þ or on the MAC support for traffic flows
ðRB < 0:5Þ.

Both these indicators are burst size independent. They
penalize equally very small bursts occurring in a distrib-
uted fashion and very large bursts, as long as the total
number of packets lost is the same. From the user’s point
of view, however, long communication breaks may be
unacceptable. To take into account such discrepancies,
we introduce the Burstiness Factor (BF):

BF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
i¼1B2

i

q
N

; 0 6 BF 6 1: ð12Þ

In Fig. 8, we show how BF decays when increasing burst
granularity. The burst granularity indicates that the original
(single) burst was split into g smaller independent bursts.
The BF is a metric of the impact of the re-routing time of
different routing protocols over a given flow; smaller val-
ues indicate that interruptions caused by routing protocols
are either fewer or smaller.

Though BF is a good indicator to measure improve-
ments on routing protocols, it does not take into account
the relative position of the bursts, which can have different
impact on multimedia streams from a codec point of view.
We therefore introduce the media smoothness factor (MSF):

MSF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
i¼1F2

i

q
N

; 0 6MSF 6 1; ð13Þ

where T is the total number of inter-bursts or burst delim-
ited periods, identified as Fi, and N is the total number of
packets. Fig. 9 shows an example of plotting the values of
Fi and Bi. In this example ns and ne are set to 3 packets, thus
obtaining K ¼ 2 and T ¼ 3. Applying this threshold we
have two well defined loss bursts, shown on the left side
of the figure; as it can be seen, these are complementary.

The MSF measures the fluidity experienced by a multi-
media data stream; obviously, MSF� BF must hold for
communication to be sustainable. To better illustrate the
different properties of BF and MSF, we propose a case study
scenario, depicted in Fig. 10, where we have a train of K
bursts of length G, separated by exactly X packets. The
burst sequence is centered so that Y packets separate the
first and last bursts from the beginning and end of the
observation period, where Y ¼ ðN � K � G� ðK � 1Þ � XÞ=2.

In this scenario BF ¼
ffiffiffiffi
K
p
� G=N, which is independent

from the bursts separation value ðXÞ, while:

MSF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK � 1Þ � X2 þ 2 � Y2

q
N

; ð14Þ

which depends not only on the size and number of bursts,
but also on the distance between them. Considering that
the upper limit for X when Y ¼ 0 is given by:

Xmax ¼
N � K � G

K � 1
; ð15Þ
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we can normalize Eq. (14) using z ¼ X=Xmax, obtaining:

MSF ¼ N � K � G
N

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2

K � 1
þ 1

2
� ð1� zÞ2

r
ð16Þ

Fig. 11 shows the behavior of Eq. (16) as a function of K,
taking G

N ¼ 0:02.
Eq. (14) reaches its minimum when xm ¼ ym ¼ N�K�G

Kþ1 .
This indicates that the minimum value of MSF is reached
when interruptions on communication are evenly sepa-
rated, that is, when distance between loss bursts is equal
to the distance to the extremes.

The normalized expression for zmin is:

zmin ¼
xm

Xmax
¼ K � 1

K þ 1
; K P 2; ð17Þ

which depends solely on the number of loss bursts present
on the sequence.

We can directly check the results from Fig. 11, and also
check that it approaches 1 for large values of K. Since typ-
ically we will have a large number of gaps ðK � 1Þ, the MSF
will be monotonically decreasing. This result allows us to
conclude that MSF offers a measure of burst concentration
for similar values of BF, increasing as the concentration of
bursts increases.

In summary, we have defined four metrics for analyzing
packet loss bursts: the PBP (burst percentage), the RB (rel-
ative burstiness), the BF (burstiness factor), and the MSF
(media smoothness factor). These metrics give us different
information about loss burst patterns, and they will help us
in the model validation process.

4.2. Model accuracy testing

We now apply the previously defined metrics to com-
pare the two-state and three-state HMM results with the
simulator’s output when using the DSR protocol. We set
ns equal to ne for the sake of simplicity in the presentation
of results.

The bursts percentage over the total number of packets
sent (PBP) and the RB parameter vary with increasing
thresholds for burst start/end values, see Fig. 12. The RB
parameter represents clearly the relation between packet
losses that pertain to bursts and those that do not. As it
can be seen, the three-states model approaches the refer-
ence curve from the simulator with greater accuracy than
the two-states model.

In Fig. 13 we compare the output from the HMMs and
the simulator in terms of the Burstiness Factor (BF) and
the Media Smoothness Factor (MSF). We observe that the
results for the three-states HMM are much closer to the
reference values. We consider that the degree of accuracy
achieved is acceptable for applications such as video codec
enhancing and tuning. In terms of the MSF, which takes
into account consecutive packet arrivals instead, we ob-
serve that the three-states HMM approaches the reference
MSF value with increasing thresholds. The slight difference
is expected since the accuracy of the consecutive packet
arrivals distribution was not the main focus of ours model.
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It could be improved by increasing the number of states in
the HMM, similarly to was done for DSR’s consecutive
packet losses distribution.

5. Benefits of the proposed models

In this section, to illustrate the applicability of our mod-
els, we use them as a tool to speed up the evaluation and
tuning of a video codec (in this example, an H.264 video
codec). A video codec is one of the most representative
applications for our model since, when optimizing a video
codec for a certain network environment, we must test
several options related to video resilience, error recovery,
packetization, etc. to maximize performance. Hence, in-
stead of having to run several simulations for each param-
eter combination being tested (which would take a lot of
time), we propose using the model developed.

We measure the impact of the different steps required
for simulation and data extraction using either the ns-2
simulator or HMMs for both DSR and OLSR. We simulate
the streaming of a typical movie 1 h and 30 min long in a
MANET scenario. Our setup is similar to that of Section 3,
consisting of a 1000 m � 1000 m scenario with 80 nodes.
The node mobility is generated using the random waypoint
model with node speed between 0 and 12 m/s. The wire-

less interfaces are based on the IEEE 802.11b standard with
radio range limited to 250 m, and background traffic con-
sists of 4 UDP sources generating 512 bytes packets at a
rate of 4 pkt/s.

Results presented in Table 6a and b allow comparing
the time consumed at each step using the ns-2 simulator
only or using the models. The values presented are
achieved on a dual 2.6 GHz Pentium-IV server with
2 Gbytes of RAM running GNU/Linux version 2.6.22.

0

2

4

6

8

10

12

14

2 4 6 8 10 12 14 16 18 20

B
ur

st
 (

%
)

Burst start/end threshold

Simulator (reference)
2 States HMM
3 States HMM

94

95

96

97

98

99

100

2 4 6 8 10 12 14 16 18 20

R
el

at
iv

e 
B

ur
st

in
es

s 
(%

)

Burst start/end threshold

Simulator (reference)
2 States HMM
3 States HMM

Fig. 12. PBP (left) and Relative Burstiness (right) comparison.

0.01

0.1

1

2 4 6 8 10 12 14 16 18 20

Bu
rs

tin
es

s 
Fa

ct
or

 (B
F)

Burst start/end threshold

Simulator (reference)
2 States HMM
3 States HMM

0.01

0.1

1

2 4 6 8 10 12 14 16 18 20

M
ed

ia
 S

m
oo

th
ne

ss
 F

ac
to

r (
M

SF
)

Burst start/end threshold

Simulator (reference)
2 States HMM
3 States HMM

Fig. 13. BF (left) and MSF (right) comparison.

Table 6
Duration of different simulation steps using (a) ns-2 simulator and (b)
HMMs.

DSR OLSR

(a)
Mobility generation time (s) 840 840
Single simulation time (s) 1320 9720
Extraction of packet loss details (s) 60 60
100 simulations total time 61 h 40 m 295 h

(b)
Mobility generation (s) – once 840 840
Single simulation time (s) – once 1320 9720
Extraction of packet loss details (s) – once 60 60
Determination of model parameters (s) – once 3600 3600
Single simulation time using model (s) 0.40 0.39
100 simulations total time 1 h 38 m 3 h 58 m
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Table 6a shows that simulating with OLSR takes much
longer than with DSR. We can also see that mobility gener-
ation takes a considerably long time.

On Table 6b we show that almost all the time is con-
sumed in simulation and in the determination of model
parameters. Once that is done, though, the execution of
the model is very fast. Relatively to the entry named
‘‘Determination of model parameters”, we wish to point
out that this time takes into account not only the time to
determine the initial estimates for the different parameters
ðv̂Þ, but also to find the final iterated values ðviÞ. In the bot-
tom of both tables we present the estimated time to run
100 simulations, a value required to extract statistically
significant results.

Relatively to the improvements achieved, we find out
that our algorithm allows executing the same set of 100
simulations up to 38 times faster with DSR, and up to 74
times faster with OLSR. In fact, we find that applying our
model we obtain time efficiency if we wish to run more
than 3 simulations when using DSR, or more than 2 simu-
lations when using OLSR. Such low values justify the need
for models when the desired number of simulation runs is
higher, which typically happens when strict confidence
intervals for a certain parameter are desired. We should
point that the desired confidence intervals are for codec le-
vel performance metrics, and not simulation metrics.

In terms of trace file output, we can see (Table 7) that,
comparing trace file sizes, the model’s output is
300–12,000 times smaller than the simulator’s output,
though the output from the last can be reduced. Concern-
ing real-life experiments, the trace file size can be reduced
to the size of the HMM’s trace file.

Optimal tuning of the video codec using both the simu-
lator’s output and the HMM’s output was also performed.
We find that the most error-resilient parameter choices
for the codec are the same with both solutions, which al-
lows us to conclude that the methods and techniques ex-
posed in this paper fit our purpose adequately.

6. Validation through large scale experimentation

In this section we will compare the results obtained
from a large set of experiments in MANETs to those offered
by the model. The purpose is not only to check if our
Hidden Markov Model consistently models losses and the
respective loss patterns, but also of analyzing if the proba-
bility of being in each of the model’s states is related to the
events they represent (e.g., Route Discovery, Route Error).

To accomplish this we devise a MANET scenario where
50 nodes are moving in an area sized 870 � 870 meters.
Node mobility is based on the random way-point model,
and speed is fixed at 4 m/s. The routing protocol used is
DSR, and we use the 3-state model developed since it offers
the best accuracy in terms of loss pattern modeling. Our

routing protocol choice allows us to stress the model to
the limit, forcing it to replicate very asymmetric burst con-
ditions such as those generated by DSR, something that did
not occur with OLSR, as we have shown in Section 3.2. This
asymmetry in DSR is mainly due the existence of both
small loss bursts – caused by path loss and quick re-rout-
ing using cached routes – and more sporadic losses related
to route discovery, which conform significantly longer
bursts. This is in contrast with OLSR, were we typically
have very large loss bursts whenever routes are updated
(only a single route updating strategy is available). In fact,
the high latency associated with OLSR re-routing tasks is
one of the main factors hindering performance when sup-
porting real-time multimedia applications, as we show in
[16].

We used IEEE 802.11g/e enabled interfaces in all the
experiments performed. Stations transmit at the maximum
rate of 54 Mbit/s up to a range of 250 m and, moreover,
benefit from QoS as offered by annex E of the IEEE
802.11 standard [18]. Concerning traffic, we have six
sources of background traffic transmitting FTP/TCP traffic
in the Best Effort MAC Access Category throughout the en-
tire simulation time.

The total simulation time is of 450 s, and results are ex-
tracted from a 300 s period where all traffic sources are ac-
tive. All the values related to simulation in the graphs
shown below are obtained from 10 distinct experiments
under the same conditions (only the scenario differs).
Concerning the model, it was tuned using the aggregated
output of the same set of 10 simulation experiments.

6.1. Congestion modeling

In our tests we start by modeling losses due to increas-
ing degrees of congestion as experienced by an H.264 video
flow transmitted with real-time constraints. With this pur-
pose we obtained real traces of a H.264 video encoded at a
data rate of 1 Mbit/s. Then, we increase the number of
simultaneous H.264 connections in the MANET to increase
congestion, using one of them as reference for measure-
ment purposes. Both the reference and the additional
H.264 flows are mapped to the Video MAC Access Cate-
gory, almost eliminating completely possible congestion
losses that typically take place in MANETs when compet-
ing with TCP traffic.

In Fig. 14 (left) we present confidence intervals for the
packet loss results obtained from simulation, along with
the results obtained from the model. As can be seen, the
model is able to reproduce similar packet loss values; the
same holds for video PSNR values (see right picture of
Fig. 14).

Since we are more interested in packet loss patterns
than the packet loss rate itself, in Fig. 15 we show the
cumulative histogram for bursty losses obtained via simu-
lation and with our model for comparison. We see that
there is a resemblance between both, especially in the re-
gion of interest (large burst sizes).

With respect to the relationship between routing events
and the probability of being in each of the model’s states,
Fig. 16 shows that DSR’s route discovery and route loss
events have a strong relationship with the model’s states

Table 7
Trace file sizes using ns-2 and the proposed models.

DSR OLSR

ns-2 output (Mb) 149 5700
HMM output (Mb) 0.5 0.5
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representing them (states R and L, respectively). Since in
this case video losses occur due to both mobility and con-
gestion, there is not a perfect match between simulation
events and model states. In the next section, where the
congestion is minimal, we show that the relationship is
much more evident.

6.2. Mobility modeling

We now proceed by modeling losses due to increasing
degrees of mobility. In our tests we increase node speed
from 1 m/s up to 10 m/s. In terms of QoS traffic, we have
a single H.264 video stream with real-time constraints as
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reference. Since the congestion encountered by the video
flow is minimal, mobility alone is responsible for most of
the losses encountered.

In Fig. 17 (left) we show confidence intervals for the
packet loss rate obtained via simulation, along with the
values obtained through the Hidden Markov model
proposed. As occurred for variable congestion, the model
offers an acceptable degree of accuracy, and the same is
true in terms of video PSNR (see right picture in Fig. 17).

Concerning the packet loss patterns obtained from the
model, they closely resemble the ones obtained from sim-
ulation at all speeds (see Fig. 18), demonstrating the effec-
tiveness of the proposed technique.

Regarding the relationship between DSR’s events (route
discovery and link loss) and the model’s states (R and L),
and keeping in mind that results are not directly compara-
ble, Fig. 19 shows that there is a very high degree of simil-
itude among the curve shapes of related parameters (that
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is, route discovery and state R, route loss and state F).
Notice that, despite the input of our model lacks any infor-
mation about routing data or routing states (only arrival
and loss patterns are used), MANET environments are
characterized by an intrinsic relationship between routing
and bursty losses, which explains the success of the pro-
posed model in representing both.

7. Conclusions

Modeling end-to-end loss patterns in mobile ad hoc
networks in an important challenge due to the large loss
bursts that are prone to occur in these networks.

Developing and validating novel application-layer pro-
tocols and applications for these networks is an effort that
consumes too much time and too many CPU/disk re-
sources. To solve this problem, in this work we developed
a Hidden Markov representation of end-to-end path
behavior in MANETs that is quite effective in modeling
bursty behavior. The proposed technique allows to evalu-
ate the effects of packet loss and arrival patterns when
sending a compressed audio/video stream using different
routing protocols. We proposed a simpler solution that
uses a two-state HMM, and a more elaborate solution
with a three-state HMM. For both solutions we presented
a heuristic that allows estimating the model parameters
with a good degree of accuracy, greatly reducing the
number of iterations necessary to find accurate parameter
values.

We validated our models showing that the proposed
HMMs provide similar results in terms of the loss burst
metrics we defined. In terms of benefits, we compared
time and resource consumption when using either a
simulator or our model, showing dramatic improve-
ments when the number of simulation runs is moder-
ate/high.

Finally, we have employed our model in the scope of
a large scale MANET test environment where the pur-
pose is to confirm model compliance at the user level.
Experimental results have showed that the model’s out-
put in terms of both packet losses and video Peak
Signal-to-Noise Ratio (PSNR) are within the confidence
intervals obtained from simulation. In terms of loss pat-
terns we confirmed that the model’s losses, similarly to
what occurs in simulation, are essentially due to
large loss bursts. We also pointed out the strong rela-
tionship between actual routing events and the probabil-
ity of being in each of the burst-related states in the
HMM.

Overall, we verified that the model is able to retain its
effectiveness for a wide range of loss burst patterns. Hence,
we consider that our proposal is an adequate alternative to
the developers of multimedia streaming applications for
MANETs, showing excellent results in terms of both accu-
racy achieved and speedup, and avoiding repetitive,
time-consuming simulations.
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