
Proceedings of the 10th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2010
27–30 June 2010.

Introducing High Performance Software Tools in Cloud

Computing with PyACTS-PyOpenCF

F. Almeida1, V. Blanco1, V. Galiano2, H. Migallón2 and A. Santos1

1 Dpto. Estadstica, I.O. y Computacin, Universidad de La Laguna, S/C de Tenerife,
Spain

2 Dpto. Fsica y Arq. Computadores, Universidad Miguel Hernndez, Elche, Spain

emails: falmeida@ull.es, vblanco@ull.es, vgaliano@umh.es, hmigallon@umh.es,
asmarre@ull.es

Abstract

Many computational applications rely heavily on numerical linear algebra op-
erations. Part of these applications are data and computation intensive that need
to run in high performance computing environments. On the other hand, Cloud
Computing is emerging as a new computing paradigm which aims to provide re-
liable, customized and QoS guaranteed dynamic computing environments for end
users. For research groups, while the ACTS Collection brings robust and high-end
software tools to the hands of application developers, cloud Computing provides
convenient access to reliable, high-performance clusters and storage without the
need to purchase and maintain sophisticated hardware. In this paper we propose
to join these two paradigms of scientific computing in a framework that allows ex-
ecuting high performance tools included in ACTS in a heterogeneous and dynamic
system.

Key words: Cloud Computing, high performance, Software Tools, ACTS, Python,
Web Services, instructions

1 Introduction

Scientists and engineers in virtually every field are turning to high performance parallel
computers to simulate and solve some of their problems. One reason for this trend
resides in the fact that the models, algorithms, and phenomena are becoming more
complex. Unfortunately, parallel architectures are expensive and hard to configure and
administrate. Only major research centers have the necessary financial and human
resources to manage a center of High Performance Computing.

@CMMSE Page 65 of 1328 ISBN 13: 978-84-613-5510-5

High Performance Software Tools in Cloud Computing

In last two years, a new concept is emerging: Cloud Computing [2]. Clouds are
hinting at a future in which we will not compute on local computers, but on central-
ized facilities operated by third-party computing and storage utilities. We can relate
it to other similar technologies, especially grid-computing, but there are significant dif-
ferences show in Table 1. In resume, Cloud computing describes a new supplement,
consumption and delivery model for IT services based on Internet, and it typically
involves the provision of dynamically scalable and often virtualized resources as a ser-
viceover the Internet.

Grid Cloud

Underlying Concept Utility Computing Utility Computing

Main Benefit Solve computationally Provide a scalable
complex problems standard environment for

network-centric application
development, testing

and deployment

Resource distribution Negotiate and manage Simple user
/allocation resource sharing Provider model

schedulers pay-per-use

Domains Multiple domains Single domain

Character/history Non-commercial, Commercial
publicly funded

Figure 1: Main differences between Cloud and Grid Computing

In previous work, OpenCF [8, 11] has been presented as a framework on a Cloud
Computing infrastructure, where users can access to the computing facilities on demand
according to their needs. A significant difference between OpenCF and others Cloud
Computing projects is that OpenCF does not revolve around the creation of virtual
machines as a way to offer services to users. Rather, it allows for direct instances of
applications to be run on the computing servers(SaaSapproach).This, which at first
glance might seem like a disadvantage, is proposed as a way to facilitate access to this
type of tool to end users with limited knowledge of programming or high performance
computing.

This paper proposes the use of scripts such as computing service to users of cloud
computing. That is, in addition to providing access to applications compiled on com-
puting servers, the user can program interpreted Python code programming its own
high performance application to be executed on any platform in the cloud. Users can
make use of precompiled libraries in high performance computing servers through dis-
tributions like PyACTS [5]. Thus, the code can make use of high performance libraries
to the lowest level and to be independent of the platform on which to run.

This paper is arranged as follows. Section 2 and 3 introduces OpenCF and PyACTS
respectively. In section 4, we present the framework that integrates both architectures
and we show several examples that illustrates the advantages of these new paradigm.

@CMMSE Page 66 of 1328 ISBN 13: 978-84-613-5510-5

F. Almeida, V.Blanco, V. Galiano, H. Migallón, A. Santos

request #1 request #2

Final User #1 Final User #2

Access Control

Req. Processor
Collector

request #1 request #2request #3

Access Control Access Control

Req. ProcessorReq. Processor

Collector Collector Queue Manager
Interface

Queue Manager

Gen. Scripts Gen. Scripts

Cluster #2
FrontEnd

node

Cluster #1
FrontEnd

node

Launcher Launcher

Queue Manager
Interface

Queue Manager

Server ModuleServer Module

(a) OpenCF Architecture

PYTHON INTERPRETER: mpipython

PyACTS

PySuperLU

Module

PyBLACS

Module

PyScaLAPACK

Module

Tools

init, read,

write, ...

PySuperLU

Wrapper

PyBLACS

Wrapper

PyScaLAPACK

Wrapper

SuperLU Libraries

(seq, shared,dist)

Numerical

Python

Python

World

ScaLAPACK

(libscalapack.a)

PyPBLAS

Module

PyPBLAS

Wrapper

BLACS

MPI

BLAS LAPACK

PyACTS.so

(b) PyACTS Architecture

Figure 2: OpenCF and PyACTS’s models

2 OpenCF

This section describes the architecture of OpenCF. OpenCF software architecture is
shown in Figure 2(a). As introduced in [9], OPenCF is highlighted by a modular
design: module server and client module. The modules can be replaced independently
and even extended to provide new functionality without disturbing the rest of the
system components. The client and server implement the three lower layers of the
stack that describes the Web service: Description of Services, XML Messaging and
Transport. The fourth level, Service Discovery has not been implemented for security
reasons. Therefore, system administrators still control access by of customers to parallel
platforms through traditional techniques authentication.

The client provides an interface for the end user and translates the requests queries
to the server. The server receives requests from clients Authenticated and transforms
them into jobs for the queue manager. These modules, in turn, are also modularized.
The module Control Access, Submission Process and Collector can be found on
both the server and client. The client also maintains a database to manage information
generated by the system. The server includes elements for generating scripts and work
release the queuing system.Briefly, we should describe the features of the modules listed.

1. Client Module: The client is the interface between the end user and the system,
where users are registered through a form. Below is a list of sub-modules.

@CMMSE Page 67 of 1328 ISBN 13: 978-84-613-5510-5

High Performance Software Tools in Cloud Computing

• The Database stores information about users, servers, work, input and out-
put files, etc.. It has been implemented as a base MySQL relational data [6]
and is accessed through PHP scripts.

• The Request processor is via a Web interface which the user can access the
list of available applications. Each entry in the list shows a short description
of the routine. Tasks grouped according to the servers that support them.
It also manages dynamically generate XHTML form input data according
to the job description.

• The Collector manages the output generated by launched work on the
server. We can also check the status of submissions through the Web inter-
face, and download the results.

2. Server Module: The server handles all matters related to the work, making them
available through the service and monitor its status and implementation.

• The Request Processor consists of a set of PHP scripts that are responsible
for analyzing the requests received from the client. In addition, it is also
responsible to generate and export the Web service, to maintain updated
the WSDL document [13] (Web Service Description Language) encapsulated
with the protocol messages SOAP generated by NuSOAP [12].

• The Queue Manager Interfacemanages the queue of the HPC system. The
server needs to know how to run a work and how to check its status on the
server is installed. Additionally, we need an XML description of each of the
routines available to specify the job. In section 4 we will show an integrated
example with the PyACTS library. In current version of OpenCF, once the
user sends a job request, the server executes the code binary associated with
the supplied arguments. In this way, we can incorporate new services by
adding the file with the XML description with compiled code in the server
module. This is the main difference with the proposed system in 4, where
the application are programmed in a scripting language and not need to be
compiled.

• The Script Generator produces the necessary scripts for execution of work
in different systems of queues. It is composed of a set of templates. We need
a different template for each one of the queue managers supported.

• The Launcher is the interface between OpenCF and operating system. For
security reasons, you need a non-privileged user created to run the OpenCF
code.

3. The collector is the interface that delivers the output data produced by execu-
tion of a job. Once work is complete, the queuing system automatically sends an
email to the user, and moves output files to a temporary directory until they are
downloaded by the client collector.

@CMMSE Page 68 of 1328 ISBN 13: 978-84-613-5510-5

F. Almeida, V.Blanco, V. Galiano, H. Migallón, A. Santos

PyOpenCF born from the idea of developing OpenCF in a single programming lan-
guage, so that it is more portable and independent as well as more efficient in upgrad-
ing the platform. For this, the language used was Python [7]. Python is an scripting
language widely used by scientific and academic community. Same functions and char-
acteristics of OpenCF have been implemented in this version. In this way, PyOpenCF
offers a platform to submit precompiled jobs to the computing servers. However, if we
would program our algorithm we could do it with an scripting language like Python,
and submit this script with PyOpenCF. The main disadvantage is the bad performance
in scripting languages, but according to [3], an application can be written in Python
but the hard computational tasks can be executed in tunned libraries to each HPC
system, without significant penalty in performance. In this sense, we will introduce
PyACTS concepts in the next section.

3 PyACTS

The Advanced CompuTational Software (ACTS) Collection [4] is a set of software tools
for computational sciences that helps programmers write high performance scientific
codes for high-end computers. ACTS tools are mostly libraries (some are C libraries,
some C++ class libraries, and some are Fortran libraries). They are primarily designed
to run on distributed memory parallel computers. Portability and performance were
both considerations in their design and implementation. The ACTS tools use the
standard Message Passing Interface (MPI) [10] for communication. The computational
model of ScaLAPACK, BLACS and PBLAS (included in the ACTS tools) consists of a
one or two-dimensional process grid, where each process stores pieces of matrices and
vectors. The prime beneficiaries of ACTS tools are developers of parallel engineering
and scientific applications. Many areas of scientific computing are covered by ACTS
tools, and can potentially make use of them. Nevertheless, parallel software can be
more complex than serial software and significantly more expensive to implement.

In this context, we developed PyACTS as a set of modules which can be imported
from the Python interpreter to enlarge the number of users that can make use of
the routines included in ACTS. PyBLACS, PyPBLAS and PyScaLAPACK were our
first steps to achieve our goal: an easy and integrated set of tools that can be used
from Python but offers all the performance of the libraries in the original development
environment (Fortran and C).

In Figure 3, we present a script used to test the interface to the PBLAS level 3
routine (pvgemm, αAB + βC, α, β ∈ IR, A,B,C ∈ IRn×n). This example reads the
data from three text files and stores them in PyACTS Arrays. Note that this reading
is completed by a single process (usually, [0,0] in the process grid) and it sends the data
to the rest of the processes using PyBLACS to obtain a two-dimensional block-cyclic
distribution. After executing Txt2PyACTS in Figure 3, the variables a, b and c are
PyACTS Arrays and can be used as parameters in PyACTS routines. Once the matrix
multiplication is done, the routine PyACTS2Text collects the (distributed) results and
writes them into the text file. It is interesting to compare this script of with a Fortran or

@CMMSE Page 69 of 1328 ISBN 13: 978-84-613-5510-5

High Performance Software Tools in Cloud Computing

from PyACTS import *

import PyACTS.PyPBLAS as PyPBLAS

ACTS_lib=PyACTS.ScaLAPACK_ID # ScaLAPACK ID

PyACTS.gridinit() # Grid initialization

alpha=Scal2PyACTS(1.2,ACTS_lib) # Distribute scalars

beta=Scal2PyACTS(2,ACTS_lib)

a=Txt2PyACTS("data_a.txt",ACTS_lib) # Read Text files and

b=Txt2PyACTS("data_b.txt",ACTS_lib) # store in PyACTS Arrays

c=Txt2PyACTS("data_c.txt",ACTS_lib)

result=PyPBLAS.pvgemm(alpha,a,b,beta,c) # Call routine

PyACTS2Text("data_result.txt",result) # Write results

PyACTS.gridexit()

Figure 3: Example of PyPBLAS: pvgemm

C implementation with same functionality. The implementation with python is usually
more readable and easily, allowing faster development. Performance tests demonstrated
that the Python interfaces do not involve a significant performance penalty. In sum,
PyACTS is an intuitive, handy, and powerful tool to access ACTS tools from Python
in a parallel setting.

4 A well-matched couple

We present an evolution of both tools (and PyACTS PyOpenCF) which is precisely
the union and interaction to achieve high performance platform for cloud computing
philosophy. For this purpose, a new service called PyOpenCF&PyACTS Web Client
was added to the PyACTS’ distribution web (http://pyacts.umh.es). Thus, a user
can log into the portal and submit their papers through the web browser, without
need for compilation or libraries linking. The same code can be executed by Python
different computing platforms without being rewritten. The work environment OpenCF
management control processes and their results in the various computer servers as
explained in section 2. The innovation introduced by the union of both tools are the
programming flexibility and power in performance we achieved by making use of ACTS
library routines from the Python language. In Figure 4, the pyacts.umh.es web client
is shown.

The features of the application that has been developed in this version are the
following:

• List of servers: the list of registered computing servers in the system, including
server name and the address on the same.

• List of scripts: shows the user a list of previously existing scripts or stored on a
remote system.

@CMMSE Page 70 of 1328 ISBN 13: 978-84-613-5510-5

F. Almeida, V.Blanco, V. Galiano, H. Migallón, A. Santos

Figure 4: PyACTS-PyOpenCF Web Client

• Creation of new scripts / applications: allows user to define their own algorithms
and programs using the Python scripting language.

• Launch a job from a script: From a Python uploaded code , user can launch a
job selecting a computing server.

• Job Status: You can view the status of a particular job. It shows both the ID of
the job, as the status in the remote server.

• Download results: if the job produces results as a file, we could it at any time by
downloading from the web service.

• Deleting scripts: You can remove applications you no longer need to use.

In short, it seeks to achieve a more comfortable computing services work without
worrying about the implementation of where or how the computation is done. Com-
puting as a service is achieved with this architecture.

5 Conclusions

In this work we have presented a new web service which provides a framework to
execute user applications in high performance servers in a comfortable and simple way.
Python example has demonstrated that PyACTS is a user friendly interface that hides
the challenges of parallel programming from non professional users, and PyOpenCF
has illustrated a integrated framework for managing jobs in a set of remote servers.
Both architectures allows users writing and submitting their own codes in available
computing servers without worrying about compiling, linking, queue management, etc.
The proposed web client is available for scientific community at pyacts.umh.es.

@CMMSE Page 71 of 1328 ISBN 13: 978-84-613-5510-5

High Performance Software Tools in Cloud Computing

Acknowledgements

This research was partially supported by the Spanish Ministry of Science and Education
under grant number TIN2008-06570-C04-04.

References

[1] Blackford LS, Choi J, Cleary A, D’Azevedo E, Demmel JW, Dhillon I,

Dongarra J, Hammarling S, Henry G, Petitet A, Stanley K, Walker

D, Whaley RC ScaLAPACK User’s Guide. SIAM, Philadelphia, Pennsylva-
nia(1997)

[2] Foster IT, Zhao Y, Raicu I, Lu S, Cloud computing and grid computing 360-
degree compared, CoRR abs/0901.0131 (2009).

[3] L. A. Drummond and V. Galiano and V. Migallón and J. Penadés Py-
ACTS: A High-Level Framework for Fast Development of High Performance Ap-
plications Lectures Notes in Computer Science Vol.4395: 417–425, 2007

[4] L. A. Drummond ,O. A. Marques The ACTS Collection. Robust and high-
performance tools for scientific computing: Guidelines for tool inclusion and retire-
ment. Tech. Rep. LBNL/PUB-3175, Computational research division, Lawrence
Berkeley National Laboratory, Berkeley

[5] L. A. Drummond, V. Galiano, V. Migallón José Penadés, PyACTS: A
Python Based Interface to ACTS Tools and Parallel Scientific Applications, Inter-
national Journal of Parallel Programming, ISSN 0885-7458. DOI 10.1007/s10766-
008-0083-4 (2008).

[6] MySQL Database Manager, http://www.mysql.org/

[7] Python Programming Languaje, http://www.python.org/

[8] A. Santos, F. Almeida , V. Blanco and J. C. Castillo, Web services based
scheduling in OpenCF, The Journal of Supercomputing, ISSN 0920-8542. DOI
10.1007/s11227-009-0352-z (2009).

[9] A. Santos, F. Almeida, V. Blanco, Lightweight Web Services for High Per-
formance Computing”, European Conference on Software Architecture Madrid.
Spain.(2007)

[10] Snir M, Otto S, Huss-Lederman S, Walker D, Dongarra J MPI: The
complete reference. The MIT Press, Cambridge, MA (1998)

[11] A. Santos, F. Almeida, V. Blanco, The OpenCF: an Open Source Com-
putational Framework based on Web Services technologies Seventh International
Conference on Parallel Processing and Applied Mathematics PPAM2007, Gdansk,
Poland.(2007)

@CMMSE Page 72 of 1328 ISBN 13: 978-84-613-5510-5

F. Almeida, V.Blanco, V. Galiano, H. Migallón, A. Santos

[12] NuSOAP. Librera SOAP PHP, http://dietrich.ganx4.com/nusoap/

[13] WSDL (WS Description Language), http://www.w3.org/TR/wsdl/

@CMMSE Page 73 of 1328 ISBN 13: 978-84-613-5510-5

