
Proceedings of the 10th International Conference
on Computational and Mathematical Methods
in Science and Engineering, CMMSE 2010
27–30 June 2010.

PyPANCG: A Parallel Python Interface-Library for
solving Mildly Nonlinear Systems

Héctor Migallón1, Violeta Migallón2 and José Penadés2

1 Departamento de F́ısica y Arquitectura de Computadores, Universidad Miguel
Hernández, 03202 Elche, Alicante, Spain

2 Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad
de Alicante, 03071 Alicante, Spain

emails: hmigallon@umh.es, violeta@dccia.ua.es, jpenades@dccia.ua.es

Abstract

In this paper we present a parallel library, PyPANCG, treated as a high-level
interface for solving nonlinear systems. This library consists of two modules, PyS-
ParNLCG and PySParNLPCG. The PySparNLCG module parallelizes the conju-
gate gradient method for solving mildly nonlinear system, and the PySParNLPCG
module implements the preconditioning technique based on block two-stage meth-
ods. In order to create the high-level interfaces, we have chosen the Python lan-
guage. On the other hand, the developed Fortran routines offer all the performance
of the low-level language. Experimental results report the numerical accuracy and
the parallel performance of our approach on different parallel computers.

Key words: parallel libraries, nonlinear algorithms, Python high-level interfaces

1 Introduction

The goal of this paper is to present PyPANCG (http://atc.umh.es/PyPANCG), a
Python based high-level parallel interface-library for solving mildly nonlinear systems
of the form

Ax = Φ(x), (1)

where A ∈ �n×n and Φ : �n → �n is a nonlinear diagonal mapping, i.e., the ith
component φi of φ is a function only of the ith component xi of x.

This library, distributed as a standard Python package, provides parallel implemen-
tations of both the nonlinear conjugate gradient method (NLCG) and the nonlinear pre-
conditioned conjugate gradient method (NLPCG). PyPANCG can work with different
tools to manage the parallel environment through MPI (www-unix.mcs.anl.gov/mpi),
by using PyMPI or mpipython included in Scientific Python [4].

@CMMSE Page 646 of 1328 ISBN 13: 978-84-613-5510-5

PyPANCG: A Parallel Python Interface-Library

This paper is structured as follows. Section 2 introduces the nonlinear conju-
gate gradient method (NLCG) and the parallelization we have performed in the PyS-
ParNLCG module of PyPANCG. The nonlinear preconditioned conjugate gradient
method and the parallelization performed in the PySParNLPCG module of PyPANCG
are introduced in Section 3. In Sections 4, 5 and 6 we explain the main tools used to
build PyPANCG, the involved parameters and different ways to implement the non-
linearity, respectively. In Section 7 some examples of using PyPANCG are reported
while in Section 8 the behavior of this library is illustrated by means of numerical
experiments. Finally, concluding remarks are presented in Section 9.

2 Nonlinear Conjugate Gradient Method

Consider the problem of solving the nonlinear system (1), where A ∈ �n×n is a sym-
metric positive definite matrix. An effective approach to solve this nonlinear system is
the Fletcher-Reeves version [3] of the nonlinear conjugate gradient method (NLCG).
In order to describe the parallelization performed of this method, we consider that A
is partitioned into p× p blocks, with square diagonal blocks of order nj,

∑p
j=1

nj = n,
such that system (1) can be written as

⎡

⎢
⎢
⎢
⎣

A11 A12 · · · A1p

A21 A22 · · · A2p
...

...
...

Ap1 Ap2 · · · App

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

x1

x2

...
xp

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

Φ1(x)
Φ2(x)

...
Φp(x)

⎤

⎥
⎥
⎥
⎦

, (2)

where x and Φ(x) are partitioned according to the size of the blocks of A. Analogously,
we consider x(i), r(i), p(i) and Φ(x(i)) partitioned according to the block structure of
A in (2). With this notation we construct the following parallel algorithm.

Algorithm 1 (Parallel Nonlinear Conjugate Gradient)
Given an initial vector x(0)

In processor j, j = 1, 2, . . . , p
r
(0)

j = Φj(x(0)) − [Aj1 Aj2 · · ·Ajp]x(0)

p
(0)

j = r
(0)

j

For i = 0, 1, . . . , until convergence
In processor j, j = 1, 2, . . . , p

αi =→ see Algorithm 2
x

(i+1)

j = x
(i)
j + αip

(i)
j

r
(i+1)

j = r
(i)
j − Φj(x(i)) + Φj(x(i+1)) − αi[Aj1 Aj2 · · ·Ajp]p(i)

Convergence test
In processor j, j = 1, 2, . . . , p

ϑj = 〈r(i+1)

j , r
(i+1)

j 〉
σj = 〈r(i)

j , r
(i)
j 〉

Processor 1 computes and broadcasts βi+1 = −∑p
j=1

ϑj/
∑p

j=1
σj

@CMMSE Page 647 of 1328 ISBN 13: 978-84-613-5510-5

Héctor Migallón, Violeta Migallón, José Penadés

In processor j, j = 1, 2, . . . , p
Compute and perform an allgather p

(i+1)

j = r
(i+1)

j − βi+1p
(i)
j

Note that, in Algorithm 1, αi is obtained as follows:

Algorithm 2 (Computing α)
α

(0)

i = 0
For k = 0, 1, 2, . . . , until convergence

δ(k) =
α

(k)
i 〈Ap(i),p(i)〉−〈r(i),p(i)〉+

�
Φ(x(i))−Φ(x(i)+α

(k)
i p(i)),p(i)

�

〈Ap(i),p(i)〉−
�
Φ′(x(i)+α

(k)
i p(i))p(i),p(i)

�

α
(k+1)

i = α
(k)

i − δ(k)

Stopping criterion (
∣
∣δ(k)

∣
∣ < ζ)

3 Nonlinear Preconditioned Conjugate Gradient Method

Preconditioning is a technique for improving the condition number (cond) of a matrix.
Suppose that M is a symmetric positive definite matrix that approximates A, but is
easier to invert. We can solve Ax = Φ(x) indirectly by solving M−1Ax = M−1Φ(x). If
cond(M−1A) << cond(A) we can iteratively solve M−1Ax = M−1Φ(x) more quickly
than the original problem. In this case we obtain the following nonlinear preconditioned
conjugate gradient algorithm.

Algorithm 3 (Nonlinear Preconditioned Conjugate Gradient)
Given an initial vector x(0)

r(0) = Φ(x(0)) − Ax(0)

Solve Ms(0) = r(0)

p(0) = s(0)

For i = 0, 1, . . . , until convergence
αi =→ see Algorithm 2
x(i+1) = x(i) + αip

(i)

r(i+1) = r(i) − Φ(x(i)) + Φ(x(i+1)) − αiAp(i)

Solve Ms(i+1) = r(i+1)

Convergence test
βi+1 = −〈s(i+1),r(i+1)〉

〈s(i),r(i)〉
p(i+1) = r(i+1) − βi+1p

(i)

Since the auxiliary system Ms = r must be solved at each conjugate gradient itera-
tion, this system needs to be easily solved. Moreover, in order to obtain an effective
preconditioner, a good approximation M to the matrix A is needed. One of the gen-
eral preconditioning techniques for solving linear systems [1] consists of considering a
splitting of the matrix A as

A = P − Q (3)

and performing m steps of the iterative procedure defined by this splitting toward the
solution of As = r, choosing s(0) = 0. In order to obtain the preconditioners suppose

@CMMSE Page 648 of 1328 ISBN 13: 978-84-613-5510-5

PyPANCG: A Parallel Python Interface-Library

that system (1) is partitioned as in (2). Let us consider the splitting (3) consists of
the diagonal blocks of A in (2), that is P = diag(A11, . . . , App). Note that in this case,
performing m steps of the iterative procedure defined by the splitting (3) to approximate
the solution of As = r, corresponds to perform m steps of the Block Jacobi method.
Thus, at each step l, l = 1, 2, . . . , of a Block Jacobi method, p independent linear
systems of the form

Ajjs
(l)
j = (Qs(l−1) + r)j, 1 ≤ j ≤ p, (4)

need to be solved; therefore each linear system (4) can be solved by a different processor.
However, when the order of the diagonal blocks Ajj, 1 ≤ j ≤ p, is large, it is natural
to approximate their solutions by using an iterative method, and thus we are in the
presence of a two-stage iterative method; see e.g., [6]. In a formal way, let us consider
the splittings

Ajj = Bj − Cj, 1 ≤ j ≤ p, (5)

and at each lth step perform, for each j, 1 ≤ j ≤ p, q(j) iterations of the iterative
procedure defined by the splittings (5) to approximate the solution of (4). That is, to
solve the auxiliary system Ms = r of Algorithm 3, we use m steps of the following
algorithm, choosing s(0) = 0.

Algorithm 4 (Parallel Block Two-Stage)

Given an initial vector s(0) =
(
(s(0)

1
)T , (s(0)

2
)T , . . . , (s(0)

p)T
)T

, and a sequence of numbers
of inner iterations q(j), 1 ≤ j ≤ p

For l = 1, 2, . . ., until convergence
In processor j, j = 1, 2, . . . , p

y
(0)

j = s
(l)
j

For k = 1 to q(j)
Bjy

(k)

j = Cjy
(k−1)

j + (Qs(l−1) + r)j

s(l) =
(
(y(q(1))

1
)T , (y(q(2))

2
)T , . . . , (y(q(p))

p)T
)T

Therefore, using similar notation as in Section 2, we construct the following parallel
nonlinear algorithm.

Algorithm 5 (Parallel Nonlinear Preconditioned Conjugate Gradient)
Given an initial vector x(0)

In processor j, j = 1, 2, . . . , p
r
(0)

j = Φj(x(0)) − [Aj1 Aj2 · · ·Ajp]x(0)

Use m steps of Alg. 4 to approximate As(0) = r(0)

p(0) = s(0)

For i = 0, 1, . . . , until convergence
In processor j, j = 1, 2, . . . , p

αi =→ see Algorithm 2
x

(i+1)

j = x
(i)
j + αip

(i)
j

r
(i+1)

j = r
(i)
j − Φj(x(i)) + Φj(x(i+1)) − αi[Aj1 Aj2 · · ·Ajp]p(i)

@CMMSE Page 649 of 1328 ISBN 13: 978-84-613-5510-5

Héctor Migallón, Violeta Migallón, José Penadés

Use m steps of Alg. 4 to approximate As(i+1) = r(i+1)

Convergence test
In processor j, j = 1, 2, . . . , p

ϑj = 〈s(i+1)

j , r
(i+1)

j 〉
σj = 〈s(i)

j , r
(i)
j 〉

Processor 1 computes and broadcasts βi+1 = −∑p
j=1

ϑj/
∑p

j=1
σj

In processor j, j = 1, 2, . . . , p
Compute and perform an allgather p

(i+1)

j = r
(i+1)

j − βi+1p
(i)
j

4 PyPANCG basic tools

This section analyzes the basic tools used in the developed library. The language
used for the development of the basic routines and on which the final library will be
based was Fortran. The desired objective is to unite the development features offered
by Python in a single platform and to approach the execution features offered by, in
this case, Fortran. To do this, equivalent routines were developed in both languages.
In addition, mixed routines which work with both languages at different levels were
developed.

In order to access the routines developed in Fortran from Python, the F2PY tool
(cens.ioc.ee/projects/f2py2e) was used. To increase the possible parallel environments,
the library has been developed to enable work with two of the most common tools,
mpipython, which forms part of Scientific Python [4], and pyMPI.

Another very important aspect, both for communication between Python and For-
tran and for performance, is the use and handling of arrays or vectors; here too, two
equivalent options can be used. This is important with regard to the performance of
the Python codes and is indispensable when it comes to communication between lan-
guages. For the manipulation of vectors, we can use Numeric or the numarray module
included in NumPy. The use of one tool or the other is directly related to the tool used
to manage the parallel environment. If mpipython is used, Numeric must be used; if
pyMPI is chosen, numarray must be used instead.

We have developed four specific routines for each functionality. These routines
were developed in pure Fortran, or in pure Python, or using two different mixed mod-
els. The basic routines have been grouped into operations for sparse matrices (based on
SPARSKIT, www-users.cs.umn.edu/∼saad/software/SPARSKIT/sparskit.html), basic
operations between vectors (based on BLAS, www.netlib.org/blas), and specific func-
tions for the methods at hand, which are associated with different steps of the NLCG
and NLPCG algorithms.

5 PyPANCG parameters

This section deals with the parameters which have to be passed to the Python functions
which solve a sparse nonlinear system using the NLCG or NLPCG method. The only
indispensable parameters are the parameters of the system to be solved (Ax = φ(x)),

@CMMSE Page 650 of 1328 ISBN 13: 978-84-613-5510-5

PyPANCG: A Parallel Python Interface-Library

which are the size of the system, the matrix A stored in CSR (Compressed Sparse
Row) format, and the nonlinear mapping φ(x). In addition the derivative of φ(x)
(φ′(x)) is required for computing δ according to Algorithm 2. However, there is a
series of parameters that permits the modification of these algorithms. If values are
not specified, default values are used. The optional parameters used in both algorithms
and their default values are as follows:

• initial vector : Initial iterate equal to zero.

• global stopping error ξ = 10−7: Global stopping criterion evaluated using the
euclidean norm of the residual vector (‖r‖

2
).

• alfa stopping error ζ = 10−7: Stopping criterion for computing α evaluated using
the absolute value of δ.

• iter alfa = 0: By setting this parameter to a value higher than 1, we can limit
the number of iterations performed to calculate α.

• For or Py = “Python full”: It selects one of the four different sets of routines to
be used during the algorithm execution. As it has been mentioned above, these
routines differ in the coding language.

• trash int : Integer vector (see Section 6).

• trash double: Double precision vector (see Section 6).

The NLPCG specific parameters and their default values are:

• level = 1: Level of fill-in of the incomplete LU factorization used in Algorithm 4
in order to obtain the inner splittings (5) (see Section 8).

• niter 2e = 3: Number of steps m performed by Algorithm 4 to approximate the
corresponding linear system in Algorithm 5.

• val q = 3: Number of inner iterations q(j), 1 ≤ j ≤ p performed in Algorithm 4.

Another important parameter that the system can calculate -if the matrix is available in
the root processor- is the size of the problem assigned to each processor; this is given by
the parameter block dimensions. This parameter is an integer vector whose dimension
corresponds to the number of processors and which stores the block size assigned to
each processor. In the examples provided by PyPANCG, the parameter is internally
calculated, such that a load balancing is achieved. If the matrix is distributed among
processors, this parameter must specify the portion available at each processor.

The parameter For or Py selects the set of routines to be used. The following
options can be chosen with regard to this parameter:

1. Python full : All of the routines used are codified in Python.

@CMMSE Page 651 of 1328 ISBN 13: 978-84-613-5510-5

Héctor Migallón, Violeta Migallón, José Penadés

2. Python: The routines used are codified in Python but the functions that come
from SPARSKIT and BLAS are in Fortran.

3. Fortran: All of the routines used are codified in Fortran. Moreover φ and φ′ are
codified independently.

4. Fortran full : All of the routines used are codified in Fortran but φ and φ′ are not
codified independently.

The options are listed in performance order from poorest to best and in usability and
development speed order from best to poorest. It is worth pointing out that the Python
option is a mixed option whereas the rest of the options use either Python or Fortran
for the basic routines. The difference between Fortran and Fortran full is that in the
first option the user must only codify the functions φ and φ′ in Fortran, whereas in the
latter option all routines implementing these functions must be codified in Fortran, and
thus the user must understand the internal development of the method in great depth.

6 Nonlinearity implementation

One of the major obstacles to develop libraries for solving nonlinear systems is the
implementation of the nonlinearity of the problem to be solved. One important aspect
is that the ith component φi of φ only depends on the ith component of x. Thus, φ
and φ′ can be developed at vector level or at vector component level. For performance
reasons, development will take place at vector level if the development is realized in
Python and, for usability reasons, it will take place at component level when Fortran
language is used. The example below shows the Python code for the function φ(x) used
in the examples of PyPANCG.

def Fi_x(vector,trash_int,trash_double):

sc = trash_double[0]

x = -sc*numpy.exp(vector)

return x

The same function developed in Fortran is:

double precision function phi(input,trash_int,trash_double)

implicit none

real*8 input,trash_double(*),sc

integer trash_int(*)

sc = trash_double(1)

phi = -sc*exp(input)

return

In addition to observing that the Python code works using vectors whilst Fortran
works using a single component, it is important to note that both functions require a
parameter transfer (sc) for the computation of φ. To realize this transfer -both real
values and integer values if needed- we use two vectors, one integer vector trash int and

@CMMSE Page 652 of 1328 ISBN 13: 978-84-613-5510-5

PyPANCG: A Parallel Python Interface-Library

one double precision real vector trash double. These vectors are dynamic and thus all
parameters required for the computation can be passed to functions φ and φ′. Naturally,
these functions must always be implemented in order to adapt to the problem to be
solved. If they are implemented in Python, the option Python or Python full must be
used. If they are implemented in Fortran, the option Fortran or Fortran full must be
used. Moreover, in the latter case, the module must be installed and compiled again
following the development of the functions.

The options Python and Fortran are very similar; both use basic functions in
Fortran but differ in their implementation of the functions φ and φ′. The option
Fortran full does not use these functions except for integrating them in the routines that
use these functions. Thus, its adaptation is more complicated and laborious. However,
it is the option that provides the best performance. On the other hand, Python full
option does not use any Fortran code, which enables much faster development but an
excessively poor performance.

7 Using PySParNLCG and PySParNLPCG

As already mentioned, in order to use the library the size of the system (nrow), the
matrix A in CSR format (tcol, trow, tval), the block size assigned to each processor
(block dimensions), and the nonlinear functions (φ and φ′) must be passed at the very
least. However, if we wish to pass additional parameters we will use the variables
trash int and trash double. The following code shows the most simple NLCG function
call, in which we assume that the functions φ and φ′ were implemented in Python
beforehand.

1 from math import exp

2 import numpy

3 import PyPANCG

4 import PyPANCG.PySParNLCG as PySparNLCG

5 iam = PySParNLCG.iam

6 trash_double = numpy.zeros(((1),),float)

7 trash_double[0] = 6/(float(49)**3)

8 nrow = 125000

9 nrow,block_dimensions,bls = _

PyPANCG.MakeBlockStructure(nrow=nrow)

10 nnz,tcol,trow,tval = PyPANCG.PartialMatrixA _

(Mx=Mx,s=bls[iam],d=block_dimensions[iam])

11 x,error,time,iter = PySParNLCG.nlcg(nrow=nrow, _

tcol=tcol,trow=trow,tval=tval, _

block_dimensions = block_dimensions, _

Fi_x=Fi_x,Fi_prime_x=Fi_prime_x, _

trash_double = trash_double)

The matrix A is obtained in lines 9 and 10; this code is enclosed with the library
but can only be used as an example or test. It is important to point out that each

@CMMSE Page 653 of 1328 ISBN 13: 978-84-613-5510-5

Héctor Migallón, Violeta Migallón, José Penadés

0.00

5.00

10.00

15.00

20.00

Programming model

T
im

e
(s

.)

n=125000 12.13 15.79 15.37 455.50

Fortran_full Fortran Python Python_full

(a) n = 125000

0.00

20.00

40.00

60.00

80.00

Programming model

T
im

e
(s

.)

n=373248 51.50 67.78 70.94 2034.72

Fortran_full Fortran Python Python_full

(b) n = 373248

Figure 1: PySParNLCG using 2 processors, pyMPI, SULLI.

processor only contains the portion of the matrix that it requires. In line 11, the actual
call to the NLCG method takes place, whereby we assume that Fi x (φ) and Fi prime x
(φ′) were declared in Python and the vector trash double is passed, in this case of a
single component.

The most simple NLPCG function call is similar to the NLCG example above
showed. In this case it must import PySParNLPCG module instead of PySParNLCG
module in line 4,

4 import PyPANCG.PySParNLPCG as PySparNLPCG

and it must call NLPCG method in line 11,

11 x,error,time,iter = PySParNLPCG.nlpcg(nrow=nrow, _

tcol=tcol,trow=trow,tval=tval, _

block_dimensions = block_dimensions, _

Fi_x=Fi_x,Fi_prime_x=Fi_prime_x, _

trash_double = trash_double)

8 Numerical experiments

In order to illustrate the behavior of PyPANCG, we have tested the algorithms provided
by this library on two multicore computers. The first platform, Bi-Quad, is a DELL
PowerEdge 2900 with two Quad-Core Intel Xeon 5320 sequence processors at up to
1.86 GHz, with 8 GB of RAM. The second platform, SULLI, is an Intel Core 2 Quad
Q6600, 2.4 GHz, with 4 GB of RAM.

As our illustrative example we have considered a nonlinear elliptic partial differen-
tial equation, known as the Bratu problem [2]. To solve this problem using the finite
difference method, we consider a grid in Ω of d3 nodes, where Ω is a 3D cube domain
of unit length. The discretization of this problem yields a nonlinear system of the form

@CMMSE Page 654 of 1328 ISBN 13: 978-84-613-5510-5

PyPANCG: A Parallel Python Interface-Library

0.00

0.20

0.40

0.60

0.80

1.00

Programming model

E
ff

ic
ie

n
c
y

2 Proc. 0.82 0.86 0.90

3 Proc. 0.59 0.66 0.68

4 Proc. 0.37 0.44 0.46

Fortran_full Fortran Python

(a) SULLI

0.00

0.20

0.40

0.60

0.80

1.00

Programming model

E
ff

ic
ie

n
c
y

2 Proc. 0.81 0.85 0.99

3 Proc. 0.68 0.74 0.83

4 Proc. 0.56 0.63 0.74

5 Proc. 0.41 0.46 0.55

6 Proc. 0.34 0.39 0.42

Fortran_full Fortran Python

(b) Bi-Quad

Figure 2: Efficiency of PySParNLCG, n = 373248, pyMPI.

Ax = Φ(x), where Φ : �n → �n is a nonlinear diagonal mapping. We present here
results obtained with d = 50, d = 72 and d = 84, that lead to nonlinear systems of size
125000, 373248 and 592704, respectively. The convergence test used was ‖r‖2 < 10−7

and the stopping criterion for α was |δ| < 10−7. Concretely, these are the default values
for global stopping error and alfa stopping error in PyPANCG.

First, we analyze the behavior of PyPANCG.PySParNLCG depending on differ-
ent values of the parameter For or Py. Figure 1 shows that the best results are ob-
tained using routines fully developed in Fortran such that the computation of φ and
φ′ is performed inside these routines. The worst results are obtained with the option
For or Py=’Python full’. Note that this option uses pure Python routines and it should
only be used in the development process. On the other hand, the options that combine
Fortran and Python code get similar performance.

Figure 2 analyzes the influence of the number of processors, on the two multicore
platforms above mentioned. As it can be seen, the best efficiencies are obtained using
2 or 3 processors in SULLI, or a maximum of 5 processors in Bi-Quad.

Figure 3 compares the use of mpipython and Numeric with the use of pyMPI and
numpy in the behavior of PyPANCG.PySParNLCG. As it can be seen, Numeric offers
better performance than numpy, specially when the option For or Py=’Python full’ is
used. Therefore, a calling to a module with a single processor always uses Numeric.

In order to analyze the PyPANCG.PySParNLPCG module we consider, in our ex-
periments, the outer splitting A = P − Q determined by P = diag(A11, . . . , App). Let
us further consider an incomplete LU factorization of each matrix Ajj, j = 1, 2, . . . , p,
that is Ajj = LjUj −Rj, and at each lth step perform, for each j, q(j) inner iterations
of the iterative procedure defined by this splitting. Let us denote by ILU(S) the in-
complete LU factorization associated with the zero pattern subset S of Sn = {(i, j) :
i �= j, 1 ≤ i, j ≤ n}. In particular, when S = {(i, j) : aij = 0}, the incomplete
factorization with zero fill-in, known as ILU(0), is obtained. To improve the quality

@CMMSE Page 655 of 1328 ISBN 13: 978-84-613-5510-5

Héctor Migallón, Violeta Migallón, José Penadés

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Number of processors

T
im

e
(s

.)

Fortran_full - pyMPI 20.85 12.13 13.90 16.01

Fortran_full - mpipython 19.48 11.16 12.27 13.45

Fortran - pyMPI 27.05 15.79 16.35 19.18

Fortran - mpipython 27.04 14.76 14.83 17.34

Python - pyMPI 24.42 15.37 15.84 18.10

Python - mpipython 25.85 15.05 14.75 16.55

Python_full - pyMPI 897.59 455.50 293.39 229.87

Python_full - mpipython 276.85 143.93 104.37 86.54

1 Proc. 2 Proc. 3 Proc. 4 Proc.

Figure 3: PySParNLCG: mpipython versus pyMPI, n = 125000, SULLI.

of the factorization, many strategies for altering the pattern have been proposed. In
the experiments reported here, we have used the “level of fill-in” factorizations [5],
ILU(κ), κ ≥ 0. Figure 4 illustrates the behavior of PySParNLPCG depending on the
different options of For or Py. Similar performances to those for PySParNLCG module
are obtained. That is, the best results are obtained setting For or Py=’Fortran full’
and the worst results using For or Py=’Python full’. The other two options present
similar performance.

9 Conclusion

In this paper we have presented PyPANCG, a Python library-interface that imple-
ments both the conjugate gradient method and the preconditioned conjugate gradient
method for solving nonlinear systems. We have described the use of the library and
its advantages in order to get fast development. The aim of this library is to develop
high performance scientific codes for high-end computers hiding many of the underly-
ing low-level programming complexities from users with the use of a high-level Python
interface. The library has been designed for adapting to different stages of the de-
sign process, depending on whether the purpose is computational performance or fast
development.

@CMMSE Page 656 of 1328 ISBN 13: 978-84-613-5510-5

PyPANCG: A Parallel Python Interface-Library

0.00

5.00

10.00

15.00

20.00

25.00

Programming model

T
im

e
(s

.)

n=373248 22.79 24.71 24.81 1511.52

Fortran_full Fortran Python Python_full

(a) n = 373248

0.00

10.00

20.00

30.00

40.00

50.00

Programming model

T
im

e
(s

.)

n=592704 39.36 43.23 45.69 2666.11

Fortran_full Fortran Python Python_full

(b) n = 592704

Figure 4: PySParNLPCG using 2 processors, κ = 1, mpipython, SULLI.

Acknowledgements

This research was supported by the Spanish Ministry of Science and Innovation under
grant number TIN2008-06570-C04-04.

References

[1] L. Adams, M-step preconditioned conjugate gradient methods, SIAM Journal on
Scientific and Statistical Computing 6 (1985) 452–462.

[2] B.M. Averick, R.G. Carter, J. J. More and G. Xue, The MINPACK-
2 Test Problem Collection, Technical Report MCS-P153-0692, Mathematics and
Computer Science Division, Argonne, 1992.

[3] R. Fletcher and C. Reeves, Function Minimization by Conjugate Gradients,
The Computer Journal 7 (1964) 149–154.

[4] K. Hinsen, Scientific Python User’s Guide, Centre de Biophysique Moleculaire
CNRS, Grenoble, France, 2002.

[5] H.P. Langtangen, Conjugate gradient methods and ILU preconditioning of non-
symmetric matrix systems with arbitrary sparsity patterns, International Journal
for Numerical Methods in Fluids 9 (1089) 213–233.

[6] V. Migallón and J. Penadés, Convergence of two-stage iterative methods for
hermitian positive definite matrices, Applied Mathematics Letters 10(3) (1997)
79–83.

@CMMSE Page 657 of 1328 ISBN 13: 978-84-613-5510-5

