
From lossy to lossless wavelet image coding in a
 tree-based encoder with resolution scalability

Jose Oliver1, Manuel P. Malumbres2

1 Department of Computer Engineering (DISCA), Technical University of Valencia,
Camino de Vera 17, 46017 Valencia, Spain

joliver@disca.upv.es
2 Departamento de física y ATC, Miguel Hernández University,

Avda. Universidad s/n, 03203 Elche, Spain
mels@umh.es

Abstract. For a lossy encoder, it is important to be able to provide also lossless
compression with little or no modification of the usual algorithm, so that an
implementation of that algorithm can work in lossy or lossless mode, depend-
ing on the specific application, simply by varying the input parameters. In this
paper, we evaluate the capability of the Lower Tree Wavelet (LTW) image en-
coder to work in lossless mode. LTW is a fast and multiresolution wavelet im-
age encoder, which uses trees as a fast mode to group coefficients. In addition,
general details on how to implement efficiently (i.e., with only shift and addi-
tion/subtraction operations) a reversible integer-to-integer wavelet transform
are also given, as a requirement to implement a wavelet-based lossless encoder.
Numerical results show that despite being general purpose (i.e., both lossy and
lossless) and lacking of complex techniques (such as high-order context and
predictive coding), the LTW performs as well as JPEG 2000 in lossless mode,
and only 5% below LOCO-I, a specific lossless algorithm.

1 Introduction

Most specific lossless image coders are based on entropy coding with various con-
texts and predictive techniques. Predictive coding schemes try to predict each sample
from the samples that have been previously encoded, which are available to both
encoder and decoder. In image compression, prediction is usually performed from
nearby pixels. Once a prediction has been calculated, the residual pixel is encoded as
the error committed by this prediction. This way, the better a prediction is, the lower
it will be the entropy of the residual pixels. The CALIC scheme [1] follows this ap-
proach, becoming one of the most efficient lossless image coders in terms of com-
pression performance. A simplification of CALIC was adopted as the JPEG-LS stan-
dard, which replaced the lossless mode of the original JPEG standard. This simplified
version of CALIC is called LOCO-I [2], and its performance is close to CALIC with
lower complexity. Other lossless image encoders are PNG (proposed as a royalty-free
alternative to GIF) and JBIG (intended to bi-level image coding and used in fax
transmission).

On the other hand, an interesting feature of general lossy image encoders is the
ability to losslessly encode an image if no quantization is applied. This way, the
emerging JPEG 2000 standard [3] was designed to be able to work in both lossy and
lossless mode. SPIHT [4] and EZW [5] are tree-based lossy wavelet image encoders
that also can store an image in lossless mode with SNR scalability.

LTW [6] was proposed as a low-complexity multiresolution alternative to the pre-
vious encoders. Multiresolution is a very interesting feature in heterogeneous frame-
works (such as today’s Internet) in which multiple devices with different display
capabilities (e.g., image size) are potential clients. For instant, if an image is encoded
with spatial scalability, the same bitstream can be employed by a mobile phone (read-
ing only the base layer), a PDA (reading an additional layer to provide a slightly
higher resolution) and a desktop computer (maybe needing all the image layers for
full resolution).

In this paper, we describe the details to implement the LTW encoder working in a
lossless mode, implemented with integer data type. We tackle this problem within the
two stages of a wavelet-based image coder, i.e., in the wavelet transform and in the
coding stage.

Many applications need to be able to work in lossless mode. Medical imaging is an
example of this type of application in which lossless compression is required, since
all the image details must be preserved so that medical analysis is not hindered. An-
other application of lossless coding is image editing. In this type of application, if
lossy compression is employed, accumulative errors from successive editions may
seriously damage the final image quality.

Lossless compression requires reversibility, which is not guaranteed with regular
floating-point operations due to the finite-precision of the operands. In this case, a
reversible integer-to-integer implementation is needed. In addition, an integer imple-
mentation is not only interesting for lossless image coding to achieve a reversible
transform, but also in hardware architectures that only support integer arithmetic,
such as some DSPs and many FPGAs. In fact, doing floating-point on FPGAs is dif-
ficult due to large amount of hardware required.

The rest of this paper is structured as follows. In Section 2, there is a detailed de-
scription of the wavelet transform implemented with the lifting scheme, focusing on a
reversible implementation with integer data types. Section 3 describes the LTW algo-

{si
0}

Lazy Transform

P1(z)

{ }pn,φ

{xi}

{ }pn 1,φ +

{ }pn 1,ψ +

Fig. 1. General diagram for a wavelet decomposition using the lifting scheme.

U1(z) Pn(z) Un(z)

× K1

× K0

{di
0}

{si
1} {si

m}

{di
1} {di

m}

rithm and the required details to work in lossless mode. In Section 4, some experi-
mental results are given, comparing the LTW encoder with JPEG 2000 working in
lossless mode, and the specific lossless encoder LOCO-I. Finally, in Section 5 some
conclusions are given.

2 Reversible wavelet transform

The wavelet transform was earlier defined and implemented using a regular filtering
operation following a multiresolution analysis [7], but a more efficient algorithm to
compute it was introduced by Sweldens in [8]. This algorithm is called the lifting
scheme. The main advantage of this approach is the reduction in the number of opera-
tions needed to perform the wavelet transform. An additional advantage is that it
allows in-place computation, and hence no extra memory is required to store the
resulting coefficients as it happens with any regular filtering method. The third bene-
fit that the lifting scheme introduces is the feasibility of a reversible integer-to-integer
wavelet transform with only a slight modification of the usual floating-point imple-
mentation. In this section, we will deal with this type of integer wavelet transform.

We have mentioned that the lifting scheme implements an in-place DWT decom-
position as an alternative algorithm to the classical filtering algorithm. In the filtering
algorithm, in-place processing is not possible because each input sample is required
as incoming data for the computation of its neighbor coefficients. Therefore, an extra
array is needed to store the resulting coefficients, doubling the memory requirements.
In addition, the lifting-scheme reduces the number of operations needed to compute
the DWT.

In Figure 1, we present a diagram to illustrate the general lifting process. The
whole process consists of a first lazy transform, one or several prediction and update
steps, and coefficient normalization. In the lazy transform, the input samples are split
into two data sets, one with the even samples and the other one with the odd ones.
Thus, if we consider { }ix the input samples, we define both coefficient sets as:

{ } { }ii xs 2

0 = { } { }12
0

+= ii xd

Then, in a prediction step (sometimes called dual lifting), each sample in { }0

id is
replaced by the error committed in the prediction of that sample from the samples in
{ }0

is :

{ }()001
iii sPdd −=

while in an update step (also known as primal lifting), each sample in the set { }0

is is
updated by { }1

id as:

{ }()101
iii dUss +=

After m successive prediction and update steps, the final low frequency coeffi-

cients (scaling { }iφ) and high frequency coefficients (wavelet { }iψ) are achieved nor-
malization:

{ } { }m

ii sK ×= 0φ { } { }m
ii dK ×= 1ψ

A nice feature of the lifting scheme is that it is formed by very simple steps, and

each of these steps is easily invertible, which leads to an almost trivial inverse trans-
form. For the inverse transform, we only have to perform the inverse operations in the
reverse order. Hence, from the subsets { }iφ and { }iψ , we can get { }m

is and { }m
id simply

by dividing these coefficients by the scaling factors:

{ } { } 0φ Ks i

m
i = { } { } 1ψ Kd i

m
i =

Then, an inverse update operation can be done from these data sets as follows:

{ }()m
i

m
i

m
i dUss −=−1

and at this moment, we can apply the inverse prediction step:

{ }()11 −− += m
i

m
i

m
i sPdd

After m successive inverse update and prediction steps, we get the initial sets of

even and odd samples, we can interleave these data sets to obtain the original set of
samples { }ix .

2.1 The integer-to-integer lifting scheme

With the above scheme, floating-point arithmetic is needed despite having integer
input samples (e.g., image pixels), if the weighting factors employed for the predic-
tion/update operations are floating-point and not integer or rational. Actually, even if
rational filters are employed, the precision required to perform lossless operation with
fixed-point arithmetic grows with each mathematical operation if we do not change
the scheme described above.

Fortunately, the lifting scheme can be slightly modified to achieve reversible inte-
ger-to-integer wavelet transform [9]. Since the lifting scheme is formed by several
simple steps, the whole process can be reversible if we perform each single step in a
reversible way.

For the forward transform, we have seen that each prediction step has the form:

{ }()11 −− −= m
i

m
i

m
i sPdd

In a wavelet transform for integer implementation, the prediction operation
{ }()1−m

isP involves rational weighting factors (e.g., division by two), and hence the
resulting data are not integer. If a rounding operation is added after the prediction
operation, an integer variable can be used to store the result of that operation, and
hence each m

id can be computed from 1−m
id and the { }1−m

is set using integer values as
follows:

{ }()⎣ ⎦11 −− −= m

i
m

i
m

i sPdd

In the inverse transform, the exact value of each 1−m

id can be recovered from m
id

and the { }1−m
is set as follows:

{ }()⎣ ⎦11 −− += m

i
m

i
m

i sPdd

Thereby, perfect reconstruction is guaranteed despite the rounding operation. The

same analysis can be performed for an update operation with integer data type.
Although we have used the floor operator for rounding in the above equations, any

other rounding operation, such as ceil or rounding to the nearest integer, can be used
as long as the same operator is employed in both the forward and inverse transforms.

Finally, a reversible integer-to-integer transform can only be obtained if the nor-
malization factors K0 and K1 are integer values.

A drawback of the use of rounding is that the new wavelet transform is no longer
linear. Hence, for a 2D wavelet transform, the reverse column-row order of the for-
ward transform has to be used in the inverse transform to achieve perfect reconstruc-
tion.

2.2 An implementation using the bi-orthogonal 5/3 transform

The 5/3 wavelet transform is a typical wavelet for integer-to-integer transform, be-
ing part of the JPEG2000 standard for lossless compression. In order to compute it in
terms of the lifting scheme, after the lazy transform, the dual lifting is calculated as:

()⎥⎦
⎥

⎢⎣
⎢ +−= +

0
1

001

2
1

iiii ssdd

while the primal lifting is (notice the different rounding):

() ⎥⎦
⎥

⎢⎣
⎢ +++= − 2

1
4
1 1

1
101

iiii ddss

These operations can be easily performed with integer data types and integer
arithmetic. For example, in C language, the two above equations can be efficiently
computed as:

d1[i]=d0[i]-((s0[i]+s0[i+1])>>1);
s1[i]=s0[i]+((d1[i]+d1[i-1]+2)>>2);

Where d0, d1, s0 and s1 are arrays of integers, and >> is the right shift operator in

C (ba >> is equivalent to the division of a by b2 with floor rounding).
For a lossless transform, the normalization factors K0 and K1 are equal to 1, achiev-

ing (1,2) normalization in this case. Thus, the set { }1
id is directly the final wavelet

coefficient set, and the set { }1
is is the scaling one.

The inverse transform to recover losslessly the original samples is given by:

() ⎥⎦
⎥

⎢⎣
⎢ ++−= − 2

1
4
1 1

1
110

iiii ddss

()⎥⎦
⎥

⎢⎣
⎢ +−= +

0
1

010

2
1

iiii ssdd

Other reversible integer-to-integer wavelet transforms are given in [10], including

an integer version of the popular bi-orthogonal 9/7 transform [11].

Fig. 2. Definition of wavelet coefficient trees. In (a), it is shown that coefficients of the
same type of subband (HL, LH or HH) representing the same image area through different
levels can be logically arranged as a quadtree, in which each node is a wavelet coefficient.

The parent/children relation between each a pair of nodes in the quadtree is presented in (b).

LH1 HH1

HL1 LH2 HH2

HL2

(a)

(b)

HL3

HL2

HL1

3 Tree-based coding of wavelet coefficients with multiresolution

3.1 Multiresolution in wavelet image coding

One of the features that have turned the wavelet transform so popular is the ability to
perform a multiresolution analysis. In order to achieve this type of scalability, the
order in which the coefficients are received by the decoder has to follow a decreasing
order of the subband level. This way, the first subband that the decoder attains is the
LLN, which is a low-resolution scaled version of the original image. Then, the de-
coder progressively receives the remaining subbands, from lower frequency subbands
to higher ones, which are used as a complement to the low-resolution image to recur-
sively double its size, which is know as Mallat decomposition [7].

In tree-based wavelet image coding, neither EZW [5] nor SPIHT [4] possess mul-
tiresolution scalability due to the successive scans that they perform, focusing on a
different bit plane in each scan. The Lower Tree Wavelet (LTW) image encoder [6]
was one of the first tree-based wavelet encoders to introduce multiresolution, at the
expense of losing SNR scalability. In the next subsection, we describe the LTW en-
coder.

3.2 Lower-tree wavelet coding

In the LTW encoder [6], the quantization process is performed by two strategies:
one coarser and another finer. The finer one consists in applying a scalar uniform
quantization, Q, to wavelet coefficients. On the other hand, the coarser one is based
on removing least significant bit planes. We define rplanes as the number of least
significant bit planes that have been removed from the wavelet coefficients.

In this encoder, a tree structure (like the one shown in Figure 2) is used, not only to
reduce data redundancy among subbands, but also as a simple and fast way of group-
ing coefficients. As a consequence, the total number of symbols needed to encode the
image is reduced, decreasing the overall execution time (because the arithmetic en-
coder stores less symbols). This structure is called lower tree, and it is a coefficient
tree in which all its coefficients are lower than rplanes2 .

Our algorithm consists of two stages: (a) the construction of the significant map
and (b) coefficient coding based on the symbols that have been computed in the first
stage. In the first stage, the significance map is built after quantizing the wavelet
coefficients (by means of using both Q and rplanes parameters). For the arithmetic
encoder, the symbol set employed in our proposal is the following one:

(1) A LOWER symbol represents a coefficient that is the root of a lower-tree.
The rest of coefficients in a lower-tree are labeled as
LOWER_COMPONENT, but they are never encoded because they are al-
ready represented by the root coefficient.

(2) If a coefficient is insignificant (i.e., lower than rplanes2), but it does not be-
long to a lower-tree because it has at least one significant descendant, it is
labeled as an ISOLATED_LOWER symbol.

(3) For a significant coefficient (i.e., higher or equal to rplanes2), we use a sym-
bol indicating the number of bits needed to represent it. Finally, there is a
special type of significant coefficient in which all its descendants are insig-
nificant. This type of symbol is able to represent efficiently some special
lower-trees, where only the root coefficient is significant, and the descen-
dants are insignificant.

Let us describe now the whole coding algorithm.
In the first stage (symbol computation), all wavelet subbands are scanned in 2×2

blocks of coefficients, from the first decomposition level to the Nth (to be able to
build the lower-trees from leaves to root). In the first level subband, if the four coeffi-
cients in each 2×2 block are insignificant (i.e., lower than 2rplanes), they are considered
to be part of the same lower-tree, and thereby the are labeled as
LOWER_COMPONENT. Then, when scanning upper level subbands, if a 2×2 block
has four insignificant coefficients, and all their direct descendants are
LOWER_COMPONENT, the coefficients in that block can be labeled as
LOWER_COMPONENT as well, increasing the lower-tree size.

However, when at least one coefficient in the block is significant, the lower-tree
cannot continue growing. In that case, a symbol for each coefficient is computed one
by one. Each insignificant coefficient in the block is assigned a LOWER symbol if all
its descendants are LOWER_COMPONENT, otherwise it is assigned an
ISOLATED_LOWER symbol. On the other hand, for each significant coefficient, a
symbol indicating the number of bits needed to represent that coefficient is employed,
but this symbol is marked as a special symbol if its direct descendants are
LOWER_COMPONENT to be able to identify this type of tree.

Finally, in the second stage, the subbands are encoded from the LLN subband to
the first-level wavelet subbands. Observe that this is the order in which the decoder
needs to know the symbols, so that lower-tree roots are decoded before its leaves. In
addition, this order provides resolution scalability.

In each subband, for each 2×2 block of coefficients, the symbols that were com-
puted in the first stage are entropy coded by means of an arithmetic encoder with two
simple contexts based on the significance of the upper coefficient and the coefficient
previously encoded (on the left). Recall that no LOWER_COMPONENT is encoded.
In addition, for the significant coefficients, the significant bits and its sign are also
needed, and therefore they are binary encoded.

3.3 Lossless mode

As we mentioned in the introduction, it is important for an encoder to be able to
provide lossless compression with little or no modification of the usual algorithm, so
that an implementation of that algorithm can work in lossy or lossless mode, depend-
ing on the specific application, simply by varying the input parameters. The Lower
Tree Wavelet encoder possesses this feature if no quantization is applied and an inte-

ger-to-integer wavelet transform, such as the one presented in the previous section, is
used. In order to skip the quantization process, the quantization parameters presented
in the description of the algorithm can be set as rplanes=0, Q=1, although it is faster
if we simply omit all the operations related to the scalar quantization. For the wavelet
transform, we will use the reversible bi-orthogonal 5/3 filter bank for integer imple-
mentation, which is fully described in Section 2.

Table 1. Lossless coding comparison of various image encoders with six greyscale 8 bpp im-
ages. Results are given in bits per pixel (bpp) needed to losslessly encode the original image.

codec \ image LOCO-I JPEG 2000 LTW
Lena (512×512) 4.24 4.31 4.26
Barbara (512×512) 4.86 4.78 4.83
Goldhill (512×512) 4.71 4.84 4.78
Woman (2560×2048) 4.45 4.51 4.50
Café (2560×2048) 5.09 5.35 5.36
Bike (2560×2048) 4.36 4.53 4.56

4 Numerical results

In Table 1, we compare the results of losslessly encode six images (grayscale 8 bpp)
with our encoder, JPEG 2000 and the LOCO-I algorithm (in which the JPEG-LS
standard is based). In JPEG 2000, the same bi-orthogonal 5/3 transform is used. In
this table, results are expressed as the number of bits per pixel needed for the com-
pressed image, and in general it is reduced from 8 bpp (in the original image) to 4-5
bpp after lossless coding. LTW and JPEG 2000 are general purpose encoders and, if
we compare them, they perform almost the same in all the images, with no more than
0.05 bpp difference between them (about 1% in performance). This is a good result
for our encoder, if we take into account that lossless coding is mainly based on pre-
dictive techniques and context modeling (which are heavily developed in JPEG
2000). LTW, contrary to JPEG 2000, only handles two contexts. As we said in the
introduction, LOCO-I [2] is a specific prediction-based lossless technique in which
the lossless standard JPEG-LS is based. However, it is not much more efficient than
the other two encoders under evaluation, requiring about 0.1-0.2 bpp less than JPEG
2000 and LTW. In particular, LOCO-I’s coding efficiency is not higher than 5%
compared with JPEG 2000 and LTW.

5 Conclusions

In this paper, we have presented the LTW encoder in a lossless framework, showing
that it is also competitive with this type of application. In fact, the coding efficiency is
only 5% under the specific lossless algorithm LOCO-I.

In addition, we have presented a detailed description on how to implement the
wavelet transform using the lifting scheme. To this end, we have provided the exact
instructions in C language to implement this transform with only shift and addi-
tion/subtraction operations. This implementation can be used for any wavelet-based
encoder, and even to implement the wavelet transform with hardware architectures
that only support integer arithmetic.

Acknowledgment

This work was supported by the Spanish Ministry of Education and Science under
grant TIC2004-0052.

References

1. X. Wu, N.D. Memon, CALIC- A Context Based Adaptive Lossless Image Coding Scheme,
IEEE Transactions on Communications, Vol. 45, 437-444, May 1996.

2. M. Weinberger, G. Seroussi, G. Sapiro, The LOCO-I Lossless Image Compression Algo-
rithm: Principles and Standardization into JPEG-LS, IEEE Transactions on Image Process-
ing, Vol. 9, 1309-1324, August 2000.

3. ISO/IEC 15444-1: JPEG2000 image coding system, 2000.
4. A. Said, A. Pearlman, A new, fast, and efficient image codec based on set partitioning in

hierarchical trees, IEEE Transactions on circuits and systems for video technology, Vol. 6,
no3, June 1996.

5. J.M. Shapiro, Embedded image coding using zerotrees of wavelet coefficients, IEEE Trans-
actions on Signal Processing, Vol. 41, n12, December 1993.

6. J. Oliver, M. P. Malumbres, Fast and Efficient Spatial Scalable Image Compression Using
Wavelet Lower Trees, in Proc. IEEE Data Compression Conference, Snowbird, UT, March
2003

7. S. Mallat, A Theory for Multiresolution Signal Decomposition, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 11, pp. 674-693, July 1989.

8. W. Sweldens, The lifting scheme: a custom-design construction of biorthogonal wavelets,
Journal of Applied Computational and Harmonic Analysis, vol. 3, pp. 186-200, 1996.

9. R. C. Calderbank, I. Daubechies, W. Sweldens, B. L. Yeo, Wavelet transforms that map
integers to integer, Journal of Applied Computational and Harmonic Analysis, vol. 5, pp.
332-369, 1998.

10. M. Adams, F. Kossentini, Reversible Integer-to-Integer Wavelet Transforms for Image
Compression: Performance Evaluation and Analysis, IEEE Transactions on Image Process-
ing, vol. 9, pp. 1010-1024, June 2000.

11. M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, Imagen Coding Using Wavelet Trans-
form, IEEE Transactions on Image Processing, vol. 1, no2, April 1992.

