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Abstract. For a lossy encoder, it is important to be able to provide also lossless 
compression with little or no modification of the usual algorithm, so that an 
implementation of that algorithm can work in lossy or lossless mode, depend-
ing on the specific application, simply by varying the input parameters. In this 
paper, we evaluate the capability of the Lower Tree Wavelet (LTW) image en-
coder to work in lossless mode. LTW is a fast and multiresolution wavelet im-
age encoder, which uses trees as a fast mode to group coefficients. In addition, 
general details on how to implement efficiently (i.e., with only shift and addi-
tion/subtraction operations) a reversible integer-to-integer wavelet transform 
are also given, as a requirement to implement a wavelet-based lossless encoder. 
Numerical results show that despite being general purpose (i.e., both lossy and 
lossless) and lacking of complex techniques (such as high-order context and 
predictive coding), the LTW performs as well as JPEG 2000 in lossless mode, 
and only 5% below LOCO-I, a specific lossless algorithm. 

1   Introduction 

Most specific lossless image coders are based on entropy coding with various con-
texts and predictive techniques. Predictive coding schemes try to predict each sample 
from the samples that have been previously encoded, which are available to both 
encoder and decoder. In image compression, prediction is usually performed from 
nearby pixels. Once a prediction has been calculated, the residual pixel is encoded as 
the error committed by this prediction. This way, the better a prediction is, the lower 
it will be the entropy of the residual pixels. The CALIC scheme [1] follows this ap-
proach, becoming one of the most efficient lossless image coders in terms of com-
pression performance. A simplification of CALIC was adopted as the JPEG-LS stan-
dard, which replaced the lossless mode of the original JPEG standard. This simplified 
version of CALIC is called LOCO-I [2], and its performance is close to CALIC with 
lower complexity. Other lossless image encoders are PNG (proposed as a royalty-free 
alternative to GIF) and JBIG (intended to bi-level image coding and used in fax 
transmission). 



On the other hand, an interesting feature of general lossy image encoders is the 
ability to losslessly encode an image if no quantization is applied. This way, the 
emerging JPEG 2000 standard [3] was designed to be able to work in both lossy and 
lossless mode. SPIHT [4] and EZW [5] are tree-based lossy wavelet image encoders 
that also can store an image in lossless mode with SNR scalability.  

LTW [6] was proposed as a low-complexity multiresolution alternative to the pre-
vious encoders. Multiresolution is a very interesting feature in heterogeneous frame-
works (such as today’s Internet) in which multiple devices with different display 
capabilities (e.g., image size) are potential clients. For instant, if an image is encoded 
with spatial scalability, the same bitstream can be employed by a mobile phone (read-
ing only the base layer), a PDA (reading an additional layer to provide a slightly 
higher resolution) and a desktop computer (maybe needing all the image layers for 
full resolution).  

In this paper, we describe the details to implement the LTW encoder working in a 
lossless mode, implemented with integer data type. We tackle this problem within the 
two stages of a wavelet-based image coder, i.e., in the wavelet transform and in the 
coding stage. 

Many applications need to be able to work in lossless mode. Medical imaging is an 
example of this type of application in which lossless compression is required, since 
all the image details must be preserved so that medical analysis is not hindered. An-
other application of lossless coding is image editing. In this type of application, if 
lossy compression is employed, accumulative errors from successive editions may 
seriously damage the final image quality. 

Lossless compression requires reversibility, which is not guaranteed with regular 
floating-point operations due to the finite-precision of the operands. In this case, a 
reversible integer-to-integer implementation is needed. In addition, an integer imple-
mentation is not only interesting for lossless image coding to achieve a reversible 
transform, but also in hardware architectures that only support integer arithmetic, 
such as some DSPs and many FPGAs. In fact, doing floating-point on FPGAs is dif-
ficult due to large amount of hardware required.  

The rest of this paper is structured as follows. In Section 2, there is a detailed de-
scription of the wavelet transform implemented with the lifting scheme, focusing on a 
reversible implementation with integer data types. Section 3 describes the LTW algo-
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Fig. 1. General diagram for a wavelet decomposition using the lifting scheme. 
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rithm and the required details to work in lossless mode. In Section 4, some experi-
mental results are given, comparing the LTW encoder with JPEG 2000 working in 
lossless mode, and the specific lossless encoder LOCO-I. Finally, in Section 5 some 
conclusions are given. 

2   Reversible wavelet transform 

The wavelet transform was earlier defined and implemented using a regular filtering 
operation following a multiresolution analysis [7], but a more efficient algorithm to 
compute it was introduced by Sweldens in [8]. This algorithm is called the lifting 
scheme. The main advantage of this approach is the reduction in the number of opera-
tions needed to perform the wavelet transform. An additional advantage is that it 
allows in-place computation, and hence no extra memory is required to store the 
resulting coefficients as it happens with any regular filtering method. The third bene-
fit that the lifting scheme introduces is the feasibility of a reversible integer-to-integer 
wavelet transform with only a slight modification of the usual floating-point imple-
mentation. In this section, we will deal with this type of integer wavelet transform. 

We have mentioned that the lifting scheme implements an in-place DWT decom-
position as an alternative algorithm to the classical filtering algorithm. In the filtering 
algorithm, in-place processing is not possible because each input sample is required 
as incoming data for the computation of its neighbor coefficients. Therefore, an extra 
array is needed to store the resulting coefficients, doubling the memory requirements. 
In addition, the lifting-scheme reduces the number of operations needed to compute 
the DWT. 

In Figure 1, we present a diagram to illustrate the general lifting process. The 
whole process consists of a first lazy transform, one or several prediction and update 
steps, and coefficient normalization. In the lazy transform, the input samples are split 
into two data sets, one with the even samples and the other one with the odd ones. 
Thus, if we consider { }ix  the input samples, we define both coefficient sets as: 
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Then, in a prediction step (sometimes called dual lifting), each sample in { }0
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while in an update step (also known as primal lifting), each sample in the set { }0
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After m successive prediction and update steps, the final low frequency coeffi-

cients (scaling { }iφ ) and high frequency coefficients (wavelet { }iψ ) are achieved nor-
malization:  
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A nice feature of the lifting scheme is that it is formed by very simple steps, and 

each of these steps is easily invertible, which leads to an almost trivial inverse trans-
form. For the inverse transform, we only have to perform the inverse operations in the 
reverse order. Hence, from the subsets { }iφ  and { }iψ , we can get { }m

is  and { }m
id  simply 

by dividing these coefficients by the scaling factors: 
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Then, an inverse update operation can be done from these data sets as follows: 
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and at this moment, we can apply the inverse prediction step: 
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After m successive inverse update and prediction steps, we get the initial sets of 

even and odd samples, we can interleave these data sets to obtain the original set of 
samples { }ix . 

2.1   The integer-to-integer lifting scheme 

With the above scheme, floating-point arithmetic is needed despite having integer 
input samples (e.g., image pixels), if the weighting factors employed for the predic-
tion/update operations are floating-point and not integer or rational. Actually, even if 
rational filters are employed, the precision required to perform lossless operation with 
fixed-point arithmetic grows with each mathematical operation if we do not change 
the scheme described above.  

Fortunately, the lifting scheme can be slightly modified to achieve reversible inte-
ger-to-integer wavelet transform [9]. Since the lifting scheme is formed by several 
simple steps, the whole process can be reversible if we perform each single step in a 
reversible way.  

For the forward transform, we have seen that each prediction step has the form: 
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In a wavelet transform for integer implementation, the prediction operation 
{ }( )1−m

isP  involves rational weighting factors (e.g., division by two), and hence the 
resulting data are not integer.  If a rounding operation is added after the prediction 
operation, an integer variable can be used to store the result of that operation, and 
hence each m

id  can be computed from 1−m
id  and the { }1−m

is  set using integer values as 
follows: 
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In the inverse transform, the exact value of each 1−m

id  can be recovered from m
id  

and the { }1−m
is  set as follows: 
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Thereby, perfect reconstruction is guaranteed despite the rounding operation. The 

same analysis can be performed for an update operation with integer data type. 
Although we have used the floor operator for rounding in the above equations, any 

other rounding operation, such as ceil or rounding to the nearest integer, can be used 
as long as the same operator is employed in both the forward and inverse transforms. 

Finally, a reversible integer-to-integer transform can only be obtained if the nor-
malization factors K0 and K1 are integer values.  

A drawback of the use of rounding is that the new wavelet transform is no longer 
linear. Hence, for a 2D wavelet transform, the reverse column-row order of the for-
ward transform has to be used in the inverse transform to achieve perfect reconstruc-
tion.  

2.2   An implementation using the bi-orthogonal 5/3 transform 

The 5/3 wavelet transform is a typical wavelet for integer-to-integer transform, be-
ing part of the JPEG2000 standard for lossless compression. In order to compute it in 
terms of the lifting scheme, after the lazy transform, the dual lifting is calculated as: 
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while the primal lifting is (notice the different rounding): 
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These operations can be easily performed with integer data types and integer 
arithmetic. For example, in C language, the two above equations can be efficiently 
computed as: 

 
d1[i]=d0[i]-((s0[i]+s0[i+1])>>1); 
s1[i]=s0[i]+((d1[i]+d1[i-1]+2)>>2); 
 
Where d0, d1, s0 and s1 are arrays of integers, and >> is the right shift operator in 

C ( ba >>  is equivalent to the division of a by b2  with floor rounding).  
For a lossless transform, the normalization factors K0 and K1 are equal to 1, achiev-

ing (1,2) normalization in this case. Thus, the set { }1
id  is directly the final wavelet 

coefficient set, and the set { }1
is  is the scaling one.  

The inverse transform to recover losslessly the original samples is given by: 
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Other reversible integer-to-integer wavelet transforms are given in [10], including 

an integer version of the popular bi-orthogonal 9/7 transform [11].  

 

Fig. 2. Definition of wavelet coefficient trees. In (a), it is shown that coefficients of the 
same type of subband (HL, LH or HH) representing the same image area through different 
levels can be logically arranged as a quadtree, in which each node is a wavelet coefficient. 

The parent/children relation between each a pair of nodes in the quadtree is presented in (b).  
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3   Tree-based coding of wavelet coefficients with multiresolution 

3.1   Multiresolution in wavelet image coding 

One of the features that have turned the wavelet transform so popular is the ability to 
perform a multiresolution analysis. In order to achieve this type of scalability, the 
order in which the coefficients are received by the decoder has to follow a decreasing 
order of the subband level. This way, the first subband that the decoder attains is the 
LLN, which is a low-resolution scaled version of the original image. Then, the de-
coder progressively receives the remaining subbands, from lower frequency subbands 
to higher ones, which are used as a complement to the low-resolution image to recur-
sively double its size, which is know as Mallat decomposition [7]. 

In tree-based wavelet image coding, neither EZW [5] nor SPIHT [4] possess mul-
tiresolution scalability due to the successive scans that they perform, focusing on a 
different bit plane in each scan. The Lower Tree Wavelet (LTW) image encoder [6] 
was one of the first tree-based wavelet encoders to introduce multiresolution, at the 
expense of losing SNR scalability. In the next subsection, we describe the LTW en-
coder. 

3.2   Lower-tree wavelet coding 

In the LTW encoder [6], the quantization process is performed by two strategies: 
one coarser and another finer. The finer one consists in applying a scalar uniform 
quantization, Q, to wavelet coefficients. On the other hand, the coarser one is based 
on removing least significant bit planes. We define rplanes as the number of least 
significant bit planes that have been removed from the wavelet coefficients.  

In this encoder, a tree structure (like the one shown in Figure 2) is used, not only to 
reduce data redundancy among subbands, but also as a simple and fast way of group-
ing coefficients. As a consequence, the total number of symbols needed to encode the 
image is reduced, decreasing the overall execution time (because the arithmetic en-
coder stores less symbols). This structure is called lower tree, and it is a coefficient 
tree in which all its coefficients are lower than rplanes2 .  

Our algorithm consists of two stages: (a) the construction of the significant map 
and (b) coefficient coding based on the symbols that have been computed in the first 
stage. In the first stage, the significance map is built after quantizing the wavelet 
coefficients (by means of using both Q and rplanes parameters). For the arithmetic 
encoder, the symbol set employed in our proposal is the following one:  

(1) A LOWER symbol represents a coefficient that is the root of a lower-tree. 
The rest of coefficients in a lower-tree are labeled as 
LOWER_COMPONENT, but they are never encoded because they are al-
ready represented by the root coefficient.  



(2) If a coefficient is insignificant (i.e., lower than rplanes2 ), but it does not be-
long to a lower-tree because it has at least one significant descendant, it is 
labeled as an ISOLATED_LOWER symbol.  

(3) For a significant coefficient (i.e., higher or equal to rplanes2 ), we use a sym-
bol indicating the number of bits needed to represent it. Finally, there is a 
special type of significant coefficient in which all its descendants are insig-
nificant.  This type of symbol is able to represent efficiently some special 
lower-trees, where only the root coefficient is significant, and the descen-
dants are insignificant. 

Let us describe now the whole coding algorithm.  
In the first stage (symbol computation), all wavelet subbands are scanned in 2×2 

blocks of coefficients, from the first decomposition level to the Nth (to be able to 
build the lower-trees from leaves to root). In the first level subband, if the four coeffi-
cients in each 2×2 block are insignificant (i.e., lower than 2rplanes), they are considered 
to be part of the same lower-tree, and thereby the are labeled as 
LOWER_COMPONENT. Then, when scanning upper level subbands, if a 2×2 block 
has four insignificant coefficients, and all their direct descendants are 
LOWER_COMPONENT, the coefficients in that block can be labeled as 
LOWER_COMPONENT as well, increasing the lower-tree size.  

However, when at least one coefficient in the block is significant, the lower-tree 
cannot continue growing. In that case, a symbol for each coefficient is computed one 
by one. Each insignificant coefficient in the block is assigned a LOWER symbol if all 
its descendants are LOWER_COMPONENT, otherwise it is assigned an 
ISOLATED_LOWER symbol. On the other hand, for each significant coefficient, a 
symbol indicating the number of bits needed to represent that coefficient is employed, 
but this symbol is marked as a special symbol if its direct descendants are 
LOWER_COMPONENT to be able to identify this type of tree. 

Finally, in the second stage, the subbands are encoded from the LLN subband to 
the first-level wavelet subbands. Observe that this is the order in which the decoder 
needs to know the symbols, so that lower-tree roots are decoded before its leaves. In 
addition, this order provides resolution scalability. 

In each subband, for each 2×2 block of coefficients, the symbols that were com-
puted in the first stage are entropy coded by means of an arithmetic encoder with two 
simple contexts based on the significance of the upper coefficient and the coefficient 
previously encoded (on the left). Recall that no LOWER_COMPONENT is encoded. 
In addition, for the significant coefficients, the significant bits and its sign are also 
needed, and therefore they are binary encoded. 

3.3   Lossless mode 

As we mentioned in the introduction, it is important for an encoder to be able to 
provide lossless compression with little or no modification of the usual algorithm, so 
that an implementation of that algorithm can work in lossy or lossless mode, depend-
ing on the specific application, simply by varying the input parameters. The Lower 
Tree Wavelet encoder possesses this feature if no quantization is applied and an inte-



ger-to-integer wavelet transform, such as the one presented in the previous section, is 
used. In order to skip the quantization process, the quantization parameters presented 
in the description of the algorithm can be set as rplanes=0, Q=1, although it is faster 
if we simply omit all the operations related to the scalar quantization. For the wavelet 
transform, we will use the reversible bi-orthogonal 5/3 filter bank for integer imple-
mentation, which is fully described in Section 2. 

Table 1. Lossless coding comparison of various image encoders with six greyscale 8 bpp im-
ages. Results are given in bits per pixel (bpp) needed to losslessly encode the original image. 

codec \ image LOCO-I JPEG 2000 LTW 
Lena (512×512) 4.24 4.31 4.26 
Barbara (512×512) 4.86 4.78 4.83 
Goldhill (512×512) 4.71 4.84 4.78 
Woman (2560×2048) 4.45 4.51 4.50 
Café (2560×2048) 5.09 5.35 5.36 
Bike (2560×2048) 4.36 4.53 4.56 

4   Numerical results 

In Table 1, we compare the results of losslessly encode six images (grayscale 8 bpp) 
with our encoder, JPEG 2000 and the LOCO-I algorithm (in which the JPEG-LS 
standard is based). In JPEG 2000, the same bi-orthogonal 5/3 transform is used. In 
this table, results are expressed as the number of bits per pixel needed for the com-
pressed image, and in general it is reduced from 8 bpp (in the original image) to 4-5 
bpp after lossless coding. LTW and JPEG 2000 are general purpose encoders and, if 
we compare them, they perform almost the same in all the images, with no more than 
0.05 bpp difference between them (about 1% in performance). This is a good result 
for our encoder, if we take into account that lossless coding is mainly based on pre-
dictive techniques and context modeling (which are heavily developed in JPEG 
2000). LTW, contrary to JPEG 2000, only handles two contexts. As we said in the 
introduction, LOCO-I [2] is a specific prediction-based lossless technique in which 
the lossless standard JPEG-LS is based. However, it is not much more efficient than 
the other two encoders under evaluation, requiring about 0.1-0.2 bpp less than JPEG 
2000 and LTW. In particular, LOCO-I’s coding efficiency is not higher than 5% 
compared with JPEG 2000 and LTW. 

5   Conclusions 

In this paper, we have presented the LTW encoder in a lossless framework, showing 
that it is also competitive with this type of application. In fact, the coding efficiency is 
only 5% under the specific lossless algorithm LOCO-I. 



In addition, we have presented a detailed description on how to implement the 
wavelet transform using the lifting scheme. To this end, we have provided the exact 
instructions in C language to implement this transform with only shift and addi-
tion/subtraction operations. This implementation can be used for any wavelet-based 
encoder, and even to implement the wavelet transform with hardware architectures 
that only support integer arithmetic. 
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