


Abstract—This paper presents the architecture of a high

parallel integer motion estimation of the H.265/HEVC encoder.
The motion estimation, and in particular the search algorithm, is
one of the encoder critical blocks due to the overwhelming
complexity required to accurately remove video temporal
redundancy. The proposed architecture is based on both a novel
memory controller and an innovative structure of an adder tree.
As a result, our proposal reduces the overall video HEVC
encoding time significantly. The proposed system has been
designed in VHDL, synthesized and implemented by means of the
Xilinx FPGA, Virtex-7 XC7VX550T-3FFG1158. Our design
achieves encoding frame rates up to 30 fps at UHD-4K video
formats.

Index Terms—H.265/HEVC, FPGA, Motion estimation, SAD
architecture, Video coding.

I. INTRODUCCIÓN

HE new High Efficiency Video Coding (HEVC) standard
was introduced aiming to improve the compression

efficiency, achieving the same video quality than the
H.264/AVC (high profile) at approximately half the bit-rate.
However, the Motion Estimation (ME) module is by far the
most complex task of encoder, requiring more than 90% of the
encoding time. This is due to (a) a large set of Coding Tree
Unit (CTU) partitioning modes, and also (b) to the greater
CTU sizes respect to its predecessor, the H.264/AVC [1].

For these reasons, several hardware architectures have been
proposed to speed up the HEVC ME module, reducing the
overall encoder complexity as much as possible. The Integer-
pel Motion Estimation (IME) block is in charge of motion
estimation and it is composed of (a) an integer motion search
algorithm, and (b) a Rate/Distortion (R/D) optimization
procedure that optimally reduces the temporal redundancy
found at the video sequence. In most of the works found in the
literature, the proposed IME hardware architectures are only
focused on the motion search algorithm since it takes most of
the computational complexity of the IME block.

There are a lot of motion search algorithms that can be used
to find the motion in video sequences. The most popular in
hardware implementations is the Full Search (FS) algorithm. It
follows greedy behavior by searching for motion at all points
of the established search area of a reference frame, and, as a
consequence, it is able to provide an optimal result (i.e., a

motion vector that minimizes the residual error of the actual
CTU).

The architecture proposals in [1, 2, 3, 4, 5] present an IME
hardware block using FS strategy. In [1], a Sum of Absolute
Diferences (SAD) unit on a Field-Programmable Gate Array
(FPGA) is proposed being able to test all partition modes of a
CTU except the set of asymmetric partition modes. Authors
fixed a search area size lower than the one established by the
standard, being able to run as fast as 30 fps at 2k video
resolutions. The work presented in [2] proposes a SAD unit
that computes all CTU partitions, achieving the same frame
rates as previous work at 4k video formats. In their proposal,
the search area has the same size as the maximum CTU, being
implemented on an Application Specific Integrated Circuit
(ASIC). In [3], the maximum CTU size is reduced to 32x32
with a search area size of ±23 pixels. This architecture is
implemented on an FPGA device and achieves 30 fps at
1080p video resolutions. Different configurable search areas
are studied in [4], achieving a maximum frame rate of 57 fps
for a 720p video resolution. Several SAD units implemented
on FPGA are described in [5], with different levels of
parallelization, but no data about search area size, memory
management, or how they obtain the minimum SAD are
included.

In addition, similar hardware ME architectures have also
been studied for the previous H264/AVC standard in [6, 7, 8,
9], which are of interest for our work due to the high
similarity of the IME block architecture in both standards.

Therefore, our purpose is to design a new hardware
architecture that may perform IME computation in a fast and
accurate way in order to significantly reduce the computation
cost of the overall encoder.

Regarding the ME process, each video frame is subdivided
and partitioned into basic coding units called CUs. The coding
structure in HEVC consists of CUs with a maximum size of
64x64 pixels, as large as that of CTUs, which can be
recursively divided in picture squares until achieving a block
size of 8x8 pixels. Each coding unit (CU) consists of
prediction units (Intra or Inter) and its size can vary from the
maximum size of the CU to 4x4 pixels for Intra prediction, or
to 4x8 or 8x4 for Inter prediction, supporting 8 partitioning
modes. Prediction units of sizes 2Nx2N and NxN are called
square motion partitions (Square); 2NxN and Nx2N as
Symmetric Motion Partitions (SMP); and 2NxnU, 2NxnD,
nLx2N, and nRx2N as Asymmetric Motion Partitions (AMP).
The total number of different partitions for a 64x64 CTU is

An FPGA-based Integer Motion Estimator for
real time HEVC UHD video encoding

E. Alcocer, O. López-Granado, R. Gutiérrez, and M.P. Malumbres

T

more than 600, and for each of these partitions, the HEVC
encoder performs one ME process in order to determine the
best CTU partitioning in terms of bit rate and video quality.

There are many kinds of algorithms for block-based IME.
The most accurate strategy is the FS algorithm which
exhaustively searches motion for all prediction unit blocks at
every single point of the established search area. Due to
computational regularity and excellent video quality, FS
motion estimation is commonly employed in hardware
implementations [10]. Therefore, we will focus our work
towards the design and hardware implementation of an FS
algorithm that is able to significantly speed up the motion
estimation process of the HEVC encoder without losing R/D
performance.

Our proposed architecture is presented for several FS
algorithms with different configuration sizes of both CTU and
search area, in order to study the impact, in terms of speedup,
of using our IME FPGA-based accelerator.

The rest of the paper is organized as follows. Section 2
presents the HEVC time profiling. Section 3 describes the
architecture design of the proposed ME system while in
Section 4, implementation results are provided. Finally, in
Section 5 some conclusions are drawn.

II. HEVC TIME PROFILING

ME is a task integrated in the HEVC Inter Prediction. For
this reason, we have considered the Low Delay (LD) coding
structure as configuration mode. In LD, the first picture is
encoded as an intra-picture. Other pictures are encoded as
generalized pictures (inter). This coding structure is the most
popular for video conferencing and streaming, designed for
interactive real-time communication.

Given the previous configuration, we have performed
several time profiling experiments of the HEVC IME in order
to observe how both parameters, the CTU size and search area
size impact on the R/D performance of the HEVC encoder.
We have choosen CTU sizes of 64x64 and 32x32, and their
corresponding search area sizes 128x128 and 64x64, and
64x64 and 32x32, respectively. In addition, two video
sequences from the HEVC common conditions video set were
selected: RaceHorses at 832x480 resolution (30 fps) and
BasketballDrive at 1920x1080 (50 fps).

To perform these tests, we have used the HEVC HM 14
reference model [11]. The HEVC reference software was
compiled with Visual Studio 2010 and run over a PC platform
with an Intel Core i7-3770 CPU 3.40GHz with 16GB RAM.

Firstly, we have measured the time of the IME software
module using a full search algorithm when a video sequence is
encoded. The percentage of IME time spent by encoder,
without the R/D optimization procedure, vary depending on
the video sequence, the search area size, and the CTU size, as
shown in Fig. 1 and Fig. 2.

In both Fig. 1 and Fig. 2 the percentage of IME time in the
total video encoding with CTU sizes of 32x32 and 64x64
respectively, is shown. As can be seen, the encoder generally

spends more time in the IME module when both the CTU size
and Search Range (SR) are higher. In addition, in the case of
the BasketballDrive video sequence with a greater resolution,
this percentage of IME time is increased for every
configuration size, as expected.

Fig 1. Percentage of IME time of the total video sequences encoding with a
CTU size of 32x32

Fig 2. Percentage of IME time of the total video sequences encoding with a
CTU size of 64x64

Therefore, a hardware design performing the IME

computation in a fast and accurate way makes sense in order
to reduce the IME complexity and as a consequence the
overall encoder time as much as possible. For instance, for a
video sequence like BasketballDrive and setting the CTU size
to 64x64, the search range to 64 (default values in the HEVC
reference software), and a full search algorithm, the total
encoding time of 10 frames is 17 hours of which 16,32 are due
to the IME process.

On the other hand, in order to reduce the complexity,
allowing faster versions with reduced consumption, the CTU
size and the search area should be reduced as much as
possible. To evaluate this aspect, we have analyzed the impact
of these parameters on the R/D (rate/distortion) performance
by the Bjontegaard metric calculation (BD-rate).
Bjontegaard's metric allows computing the average per cent
saving in bitrate between two rate-distortion curves. The rate-
distortion curves have been obtained for the compression

levels (QP values): 22, 27, 32, and 37, taking into account a
reference curve with typical configuration given by the HEVC
software model, HM-14, with a CTU size of 64x64 and a
search range of 64 (128x128 search area size).

In Fig. 3 and Fig. 4 it can be observed the percentage of
BD-rate obtained with different CTU and SR sizes for the
video sequences RaceHorses and BasketballDrive,
respectively.

As can be seen, there are slight differences between the SR
size for a given CTU size, being greater the difference as both
the CTU size decreases and the video sequence resolution
increases. Anyway, differences between parameters are
negligible, being the maximum around 10% of the bitrate
increased for a given PSNR. Although BD-rate differences
may depend on the video content, similar results were
obtained with other video sequences.

Fig 3. Bjontegaard metric calculation of RaceHorses video sequence with
different CTU and search range sizes for the reference rate-distortion curve
with a CTU size and a search range of 64

Fig 4. Bjontegaard metric calculation of BasketballDrive video sequence with
different CTU and search range sizes for the reference rate-distortion curve
with a CTU size and a search range of 64

III. HARDWARE ARCHITECTURE

Our system consists of (a) memory areas to allocate pixels
of the current coding unit and the pixels belonging to the
search area in the reference frame, (b) 64 processing units

(PU), (c) 4096 processing elements (PE), (d) a Sum of
Absolute Difference (SAD) adder tree block, and (e) a
comparison block that saves the minimum SAD values and its
corresponding motion vectors (MVs) for all CTU partitions.
Each PE computes the distortion of both current and reference
pixel. One PU consists of 64 PEs, which calculates the
distortion values of a column of 64 pixels. In each cycle,
current and reference pixels columns are delivered to 64 PUs,
being able to compute the pixel distortion values of a 64x64
block (maximum CTU size) just in one clock cycle. The SAD
Adder Tree Block (SATB) calculates the SADs for all the CU
partitions using the results obtained from a block of 64x64
pixel distortions. Fig. 5 shows the structure of the proposed
architecture.

Fig 5. Figure 2. General structure of architecture proposed

The system is designed as a pipeline process. The memory

reading process and shift registers propagation require only
one clock cycle. The PUs use one cycle, the SATB requires
eleven additional clock cycles and the comparison block needs
one additional clock cycle. Finally, the proposed architecture
uses the 14 clock cycles above mentioned plus 64 clock cycles
corresponding to the initial preload of the shift registers and as
many clock cycles as pixels the search area have, in order to
process the integer motion estimation (IME) of all CUs from
64x64 to 8x4 and/or 4x8 and all its partitions.

A. Memory read controller

The search area is the region of the reference frame where
full search motion estimation will run, evaluating the
distortion found at every single point of this area. The search
area is just centered on the location of current CU (see Fig. 6).
For instance, a ±64 pixels search range represents a 128x128
pixels search window or search area.

In order to provide a high data reuse, a snake scan order
and a reconfigurable data path with 64 propagation registers
are adopted. At first step, ‘D’, a shift register fetches a row of

64 pixels from the BRAM at each clock cycle, setting the
propagation of shift registers as downward. After loading 64
rows in the registers (a 64x64 CU), a 64-pixel column is
delivered to each PU from both shift registers and current
CTU memory bank, to compute the corresponding first SAD.
After that, a new 64-pixel row is loaded in the shift registers
discarding the first row, so we can proceed to compute the
new CU just displaced one pixel in downward direction. From
this moment, at each clock cycle we obtain the SAD
corresponding to each positioned CU at each search area
position. When computing the last CU in the downward
scanning direction which corresponds to the last 64 rows of
the search area, the next CU will be the one resulting from
shifting one pixel/column to the right, step ’R’. Just after
computing this CU, the memory controller will proceed to
compute CUs in the upward direction, step ’U’, following the
same criteria as in step ‘D’. This procedure will iterate until
all searching CU positions in the search area have been
processed, getting all the SADs for each CU at every clock
cycle.

Fig 6. Memory scan order

B. SAD adder tree block (SATB)

The SATB block obtains the CTU SAD values for each

CTU partition from 64x64 (maximum CTU size) to 4x8/8x4
as determined by HEVC standard, including both the
Asymmetric Mode Partitions (AMP) and Symmetric Mode
Partitions (SMP). After receiving from PUs the 64x64 SADs
associated to the current search area position, a succession of
aggregation stages are performed to compute the
corresponding SAD values for all the CTU partitions (a total
number of 677), as shown in Fig. 7. At each stage, all pairs of
consecutive columns/rows are added, reducing to half the
width/height of the resulting partition. This SAD aggregation
process is followed until the last partition size is reached
(1x1), ie. the SAD corresponding to the 64x64 partition. At
intermediate stages, the SADs of the rest of partitions are
stored, as shown at Fig. 7. The SATB is also designed as a
pipeline, so with an eleven clock cycles delay, 677 SADs
corresponding to each CU block are delivered to the next
comparison block every single clock cycle.

C. Comparison Block

Finally, the comparison block should keep the minimum
SAD values for each CTU partition with their corresponding
motion vectors (search area locations). So, it will compare all
incoming SADs from the adder tree block with the minimum
SADs previously found. After comparing the SADs from the
last search area location, the minimum SADs for each
partition and the associated motion vectors are obtained.

Fig 7. Structure of SAD Adder Tree Block

IV. IMPLEMENTATION RESULTS

Our architecture has been modeled in VHDL, and it has
been synthesized, simulated, and implemented on the Xilinx
FPGA, Virtex-7 XC7VX550T-3FFG1158. The correctness of
our design was tested and verified with the HEVC HM 14
reference model.

To evaluate the performance and efficiency of our design,
we have parametrized our IME architecture to allow different
configurations, such as (a) the maximum CTU size with
values of 64x64 and 32x32, and (b) the size of the search
range of the reference frame with values defined as the 50%,
80%, and 100% of the CTU size.

TABLE I

FRAME RATE FOR DIFFERENT CONFIGURATIONS
CTU size 32 64
SR size 16 26 32 32 52 64
Clock
(MHz)

318 247

Fps at 2K 141 55 37 116 45 30
Fps at 4K 37 15 10 30 12 8

In Table 1, we show the resulting operating frequency, and the
system throughput in terms of the maximum frame rate under
different video formats (2K, and 4K), for different
configurations of CTU and SR sizes. Our design can operate
at the frequency of 247 MHz and 318 MHz for a 64x64 CTU
and a 32x32 CTU, respectively. It enables the encoder to carry
out the IME process with a 64x64 CTU size and a search area
of 128x128 pixels (SR of size 64), as the HM14 reference

model establishes, obtaining a throughput of 30 fps at 2K
video formats (2K@30fps).

Our proposal is able to process video sequences in real time
for 2K resolutions in all tested configurations, and also with
4K video formats if the search area size is the same as the
CTU size (SR is 50% of CTU), as can be seen in Table 1.

In Table 2, the resources used to implement our proposal
for CTU sizes of 64x64 and 32x32, respectively, are shown.
As can be seen, the slice area required by slice registers,
LUTs, and BRAMs increases four times linearly with the
increase of the maximum CTU size, as expected.

TABLE II

IMPLEMENTATION RESULTS OF THE PROPOSED ARCHITECTURE
CTU size 32 64
No. of slice registers 36864 (5.32%) 144302 (20.83%)
No. of slice LUTs 48531 (14.01%) 188664 (54.46%)
BRAMs 17 (1.35%) 33 (2.71%)
Available SAD partitions 4x8 up to 32x32 4x8 up to 64x64
CTUs/s when SR=100%CTU 77k CTUs 15k CTUs
CTUs/s when SR=80%CTU 116k CTUs 23k CTUs
CTUs/s when SR=50%CTU 298k CTUs 59k CTUs

In addition, we have compared our architecture with

previous state-of-the art architectures.
Regarding a CTU size of 64, Medhat et al. [1] present a

parallel SAD block for the HEVC integer-pel full search
architecture without supporting AMP modes with a search
area of 104x104 pixels. Their design can operate at the
frequency of 458.7 MHz. The operating frequency of our
proposal with the same technology and configurations is
almost two times lower. However, our architecture including
AMP modes is capable of processing 45 fps at 2K video
formats instead of 30 fps as obtained by the proposed design
in [1]. On the other hand, D'huys [4] proposes a
reconfigurable design for HEVC motion estimation which can
operate at the frequency of 150 MHz, whereas the operation
frequency of our proposal is 159 MHz. His architecture is
compared with our proposal, setting a common search area
size to 64x64 pixels and the same technology. The
architecture presented in [4] is able to process a video
resolution of 720p at 57 fps, whereas our architecture is
capable of processing 173 fps at the same video resolution.

Regarding a CTU size of 32, Yuan et al. [3] present a IME
full search architecture with a search area size of 48x48
pixels. With the same configuration and technology, our
proposal can provide a higher operation frequency, achieving
throughput of 43 fps at 1080p video resolution, whereas the
architecture presented in [3] is able to achieve 30 fps at 1080p
video formats.

Considering the presented results, our architecture
overcomes the performance of previous state-of-the-art
architectures.

V. CONCLUSION

In this work we present a configurable hardware fast integer
motion estimation block for the HEVC which supports AMP

mode, implemented over a Virtex-7 FPGA. Our system is able
to encode 2K video formats at 116 fps and 4K at 30 fps for a
64x64 CTU, which represents a huge complexity reduction of
the HEVC video encoding process, achieving real-time
encoding for high definition video contents and beyond.

ACKNOWLEDGMENT

This research was supported by the Spanish Ministry of
Economy and Competitiveness under grant TIN2015-66972-
C5-4-R.

REFERENCES
[1] Medhat A., Shalaby A., Sayed M.S., Elsabrouty M. (2014) A Highly

Parallel SAD Architecture for Motion Estimation in HEVC Encoder.
IEEE Asia Pacic Conf. Circuits Syst. (APCCAS). Ishigaki, nov, pp. 280-
283

[2] Byun J., Jung Y., Kim J. (2013) Design of integer motion estimator of
HEVC for asymmetric motion-partitioning mode and 4K-UHD.
Electronics Letters. Vol:49, No:18, pp. 1142-1143

[3] Yuan X., Jinsong L., Liwei G., Zhi Z., Teng R.K.F. (2013) A High
Performance VLSI Architecture for Integer Motion Estimation in
HEVC. IEEE 10th Int. Conf. ASIC (ASICON). Shenzhen, oct, pp. 1-4

[4] D'huys T. (2014) Reconfigurable data flow engine for HEVC motion
estimation. IEEE Int. Conf. Image Processing (ICIP). Paris, oct, pp.
1223-1227

[5] Nalluri P., Alves L.N., Navarro A. (2014) High Speed SAD
Architectures for Variable Block Size Motion Estimation in HEVC
Video Coding. IEEE Int. Conf. Image Processing (ICIP). Paris, oct, pp.
1233-1237

[6] Elhamzi W., Dubois J., Miteran J. (2014) An eficient low-cost FPGA
implementation of a configurable motion estimation for H.264 video
coding. Springer Journal of Real-Time Processing. Vol:9, No:1, pp. 19-
30

[7] Moorthy T., Ye A. (2008) A scalable architecture for variable block size
motion estimation on field-programmable gate arrays. IEEE Canadian
Conf. Electrical and Computer Engineering (CCECE). Niagara Falls,
may, pp. 1303-1308

[8] Kthiri M., Kadionik P., Levi H., Loukil H., Atitallah B., Masmoudi N.
(2010) An FPGA Implementation of Motion Estimation Algorithm for
H.264/AVC. IEEE 5th Int. Symp. I/V Communications and Mobile
Network (ISVC). Rabat, sep, pp. 1-4

[9] Pastuszak G., Jakubowski M. (2013) Adaptive Computationally Scalable
Motion Estimation for the Hardware H.264/AVC Encoder. IEEE Trans.
Circuits Syst. Video Technol. Vol:23, No:5, pp. 802-812

[10] Lin Y.L.S., Kao C.Y., Kuo H.C., Hen J.W. (2010) VLSI Design for
Video Coding - H.264/AVC Encoding from Standard Specification to
Chip. Springer, New York

[11] 17. HEVC software repository HM-14.0 reference model. Available:
https://hevc.hhi.fraunhofer.de/trac/hevc/browser/tags//HM-14.0
(2014). Accessed 2 May 2014

