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Abstract—In the HEVC standard, motion estimation is one
of the most complex task of the video encoder, requiring a great
percentage of the encoding time mainly due to (a) a large set of
Coding Tree Unit partitioning modes, (b) the presence of multiple
reference frames, and (c) the varying size of Coding Units in
comparison with its predecessor H264/AVC. In addition, HEVC
adopts Variable Block Size Motion Estimation to obtain advanced
coding efficiency.

In this work, we evaluate a hardware IME design when
applied to an System-On-Chip platform. In this evaluation we
will measure the impact in the Rate/Distortion performance
of applying different CTU sizes and reference search areas.
Furthermore, we will evaluate the effect of the DMA transfers
required in the computational performance. This architecture
has been synthesized and implemented on the Xilinx SoC,
Zynq-7 Mini-ITX Motherboard XC7Z100 (xc7z100ffg900-2). Our
hardware IME architecture can be configured to work with
different CTU sizes and reference search ranges. The results
show there are negligible differences in Rate/Distortion between
different configurations, but there is a great impact in the encoder
complexity as both the CTU size and search range increase.

We have evaluated our hardware IME design using different
CTU size configurations, search area sizes and DMA burst sizes
in order to determine the maximum speed gain respect to the
HEVC reference software. Results show that the encoding time
could be reduced 588 times. Besides, this evaluation shows that
the DMA transfer is the bottleneck of the system.

I. I NTRODUCTION

The High Efficiency Video Coding (HEVC) standard [1]
has been launched on January 2013 by the Joint Collaborative
Team on Video Coding (JCT-VC). This new standard replaces
the current H.264/AVC [2] standard in order to deal with
nowadays and future multimedia market trends like 4K and
8K definition video content and high quality color depth at
10 bit. HEVC greatly improved the coding efficiency over its
predecessor (H.264/AVC) by a factor of almost twice while
maintaining an equivalent visual quality [3].

Regarding complexity, HEVC decoder does not appear
to be significantly different from the H.264/AVC one [4].
However, HEVC encoder is expected to be several times
more complex than H.264/AVC encoder [5] and will be a hot
research topic in years to come. e.g., encoding one second
of a 1080p60 HD (High Definition) video with the reference

software encoder can take longer than one hour running in an
off-the-shelf desktop computer.

As in previous video standards, Motion Estimation (ME)
is by far the most complex task of encoder, requiring more
than 90% of the encoding time [6]. For HEVC standard, the
complexity is even more critical due to several issues such
as (a) a large set of Coding Tree Unit (CTU) partitioning
modes, (b) the presence of multiple reference frames, and
(c) the varying size of Coding Units (CU) in comparison
with its predecessor H264/AVC. In addition, HEVC adopts
Variable Block Size Motion Estimation (VBSME) to obtain
advanced coding efficiency, which comes at the expense of a
huge increase of computational complexity.

Several hardware architectures to speed up the HEVC
ME module have been proposed with the aim to reduce the
overall encoder complexity as much as possible. The Integer-
pel Motion Estimation (IME) block is in charge of motion
estimation. In most of the state-of-the-art proposals, theIME
hardware architectures are only focused on the motion search
algorithm since it takes most of the computational time of
the IME block. Generally, the most popular motion search
algorithm in hardware implementations is the Full Search (FS)
algorithm. It follows greedy behavior by searching at all points
of the established search area of a reference frame, and, as a
consequence, it is able to provide an optimal result (i.e., a
motion vector that minimizes the residual error of the actual
CTU).

The architecture proposals in [6]–[10] present an IME
hardware block using FS strategy. In [6], a Sum of Absolute
Differences (SAD) unit on a Field-Programmable Gate Array
(FPGA) is proposed that is able to test all partition modes of
a CTU except the set of asymmetric partition modes. Authors
fixed a search area size lower than the one established by the
HEVC standard, being able to run as fast as 30 fps at 2k
video resolutions. In [8], the maximum CTU size is reduced to
32x32 with a search area size of±23 pixels. This architecture
is implemented on an FPGA device and achieves 30 fps at
1080p video resolutions. Different configurable search areas
are studied in [9], achieving a maximum frame rate of 57 fps
for a 720p video resolution.

In addition, in [11] and [12], different implementations of
suboptimal motion search strategies called fast ME algorithms,



such as new Diamond Search (DS) or new Three Step Search
(TSS), are shown. Similar hardware ME architectures have also
been studied for the previous H264/AVC standard in [13]–[17],
which are of interest for our work due to the high similarity
of the IME block architecture in both standards.

In a previous work [?], authors presented a new hardware
architecture that performs IME computation using FPGA tech-
nology. they presented two innovative techniques: (a) a new
SAD adder tree structure, and (b) a new memory scan order;
achieving encoding frame rates up to 116 fps and 30 fps at
2K and 4K video formats, respectively. The SAD adder tree
structure performs the additions at the first level of the tree,
starting from the maximum size of the CTU, and halving the
amount of additions at the next tree levels. This approach is
different from the rest of state-of-the-art works, which divide
a CTU into smaller blocks for consecutive accumulations,
keeping the same additions in each step and thus requiring
a higher number of steps to acquire all SADs. With that
proposal, authors took advantage of the resources provided
by the FPGA, obtaining the minimum possible latency when
calculating SADs of all levels and partitions for a CTU.
In this way, SADs corresponding to asymmetric partitions
are obtained in a fast and efficient way. Regarding the new
memory scan order, a series of reconfigurable shift registers
and processing elements are responsible for storing the nec-
essary pixels of both reference and current frames, keeping
them always available for calculating the SADs and Motion
Vectors (MVs) of a CTU, avoiding external memory accesses
since available data are highly reused by reconfiguring the
displacement in a more efficient way.

In this work, we evaluate the IME design presented in [?]
when applied to an evaluation board. In that evaluation we will
measure the impact in the Rate/Distortion (R/D) performance
of applying different CTU sizes and search areas. Furthermore,
we will evaluate the effect of the DMA transfers required in
the computational performance.

The rest of the paper is organized as follows. Section II
presents a brief overview of the architecture design while
in Section III, numerical software and hardware experiments
analyzing the results of our hardware design over an evaluation
board are presented. Finally, in Section IV some conclusions
and future work are drawn.

II. H ARDWARE ARCHITECTUREDESCRIPTION

In this section, we present a brief overview of a complete
IME design in a System-On-Chip (SoC) platform using the
SAD HEVC module proposed in [?]. SoC consist of two
well-defined parts, a Processing System (PS) based on an
ARM processor and several hard peripherals like Ethernet,
USB, etc., and a Programmable Logic (PL) been made up
of a FPGA. Our architecture has been modeled in VHDL, and
it has been synthesized, simulated, implemented, and tested
on the Xilinx SoC, Zynq-7 Mini-ITX Motherboard XC7Z100
(xc7z100ffg900-2). The correctness of our design was tested
and verified with the HEVC HM 14 reference model [18].

In the proposed architecture, ARM processor manages the
transfer between the IME SAD module and a Double Data
Rate (DDR) memory which stores both reference and current
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frames, by a Direct Memory Access (DMA) module. The
system is shown in Figure 1.

ARM processor works at 666.66 MHz, and the DDR
at 533.33 MHz, whereas the clock frequency of the PL is
restricted by the maximum frequency of the SAD HEVC
module which is the responsible for the IME calculation.

Regarding the IME process, each video frame is subdivided
and partitioned into basic coding units called CUs. The coding
structure in HEVC consists of CUs with a maximum size
of 64x64 pixels, as large as that of CTUs (Coding Tree
Units), which can be recursively divided in picture squares
until achieving a block size of 8x8 pixels. Each coding unit
(CU) consists of Prediction Units (PUs) whose size can vary
from the maximum size of the CU to 4x8 or 8x4 for Inter
prediction, supporting 8 partitioning modes. In our proposal,
the SAD HEVC module responsible for IME calculation can
be configured to work with CTU sizes of 64x64 and 32x32.
In the case of 64x64 CTU size, the PL can work at 220 MHz
whereas with a 32x32 CTU size the PL clock frequency is
fixed as maximum in the evaluation board used, 250 MHz.
However, the module could work at a maximum frequency of
333 MHz. Therefore the maximum frequency is limited by
the maximum PL clock frequency, which for the evaluation
platform used is 250MHz.

Our SAD HEVC module consists of (a) internal memory
areas to allocate pixels of the CU of current frame and the
pixels belonging to the search area in the reference frame, (b)
a distortion block where pixels belonging to both frames are
subtracted, (c) a Sum of Absolute Difference (SAD) adder tree
block, and (e) an accumulative comparator block that saves
the minimum SAD values and its corresponding MVs for all
CU partitions, as shown in Figure 2. For more details of this
module, see authors’ previous work [?].

In Table I, we show the resources used to implement
our SAD HEVC module for maximum CTU sizes of 64x64
and 32x32, respectively, on a Zynq-7 Mini-ITX Motherboard
XC7Z100 FPGA. As shown, our SAD HEVC module requires
a 63% and 16% of the total used area for 64x64 and 32x32
CTU size, respectively.
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TABLE I. U TILIZATION RESOURCES ONM INI -ITX

Resources CTU 64x64 CTU 32x32

LUTs 166383 40911

Flip-flops 190159 50028

Block-RAMs 32 16

III. N UMERICAL EXPERIMENTS

ME is a task integrated in the HEVC Inter Prediction.
For this reason, we have considered the Low Delay B (LB)
coding structure as configuration mode. In LB, the first picture
is encoded as an intra-picture. Other pictures are encoded as
generalized bidirectional pictures (inter). This coding structure
is the most popular for video conferencing and streaming,
designed for interactive real-time communication.

Given the previous configuration, we have performed sev-
eral experiments of the HEVC IME in order to observe how
both parameters, the CTU size and search area size impact on
the R/D performance and coding complexity of the HEVC
encoder. We have chosen CTU sizes of 64x64 and 32x32,
and their corresponding Search Range (SR) sizes as 100%
of CTU, 80% of CTU, and 50% of CTU. In addition, two
video sequences from the HEVC common conditions video
set were selected: ParkScene at 1920x1080 resolution (24 fps)
and Traffic 2560x1600 (30 fps). To perform these tests, we
have used the HEVC HM 14 reference model [18]. The HEVC
reference software was compiled with Visual Studio 2010 and
run over a PC platform with an Intel Core i7-3770 CPU
3.40GHz with 8GB RAM.

We have measured the time of the IME software module
using a FS algorithm when a video sequence is encoded. We
have focused our work towards the design and hardware imple-
mentation of an FS algorithm that is able to significantly speed
up the motion estimation process of the HEVC encoder without
losing R/D performance, since the most accurate strategy isthe
FS algorithm which exhaustively searches motion for all PUs
at every single point of the established search area. Therefore,
due to computational regularity and excellent video quality,
FS motion estimation is commonly employed in hardware
implementations [19].
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Fig. 3. Percentage of SW reference encoding time required forSAD module
with a Full-Search strategy.

In Figure 3, we show the percentage of IME software
time spent by encoder using a FS algorithm, without the R/D
optimization procedure. This percentage of time is similarfor
all video sequences tested. As can be seen, this time depends
on the CTU size, and the SR size, as shown in Figure 3.
Generally, the encoder spends more time in the IME module
when both the CTU size and SR are higher, as expected.
The time spent by HEVC encoder to perform the ME ranges
between 63% to 95% of the time required to encode the whole
video sequence. Therefore, a hardware design performing the
IME computation in a fast and accurate way makes sense
in order to reduce both the IME complexity and the overall
encoder time as much as possible.

In addition, we have analyzed the impact of the previous
parameters on the R/D performance using the Bjontegaard
metric calculation (BD-rate). Bjontegaard’s metric allows com-
puting the average per cent saving in bitrate between two rate-
distortion curves. The R/D curves have been obtained for the
compression levels (QP values): 22, 27, 32, and 37, taking into
account a reference curve with typical configuration given by
the HEVC software model, HM-14, with a CTU size of 64x64
and a search range of 64 (128x128 search area size).

In Figure 4, we can observe the percentage of BD-rate
obtained with different CTU and SR sizes for 1920x1080
and 2560x1600 video resolutions. As can be seen, there are
slight differences between the SR sizes for a given CTU
size, specially for a CTU size of 64x64 where the difference
is around 0.1% as a maximum (see Figure 4(b)). Anyway,
differences between all configurations set are negligible,being
the maximum around 2.7% of the bitrate increased for a given
PSNR, when the CTU size is 32x32 (see Figure 4(a)). Al-
though BD-rate differences may depend on the video content,
similar results were obtained with other video sequences.

Therefore, in order to reduce the complexity, allowing
faster versions with reduced consumption, the CTU size and
the SR could be reduced as much as possible, due to the slight
impact of those parameters in the previous BD-rate result.

Regarding the hardware IME proposal, we have measured
the CUs per second which are able to be processed depending
on CTU size, SR, and the DMA burst size. In our complete
IME design described in Section II, the DMA data width is
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defined as 32 bits and the burst size can be configured from
16 to 256. For example, in the case of a CTU size of 32x32
pixels where the operation frequency is 250 MHz and with a
DMA burst size of 256, the proposed system can transfer with
a rate of 2Mbps.

In Figure 5 we show the number of CUs per second
processed for each DMA burst size. Figures 5(a) and 5(b)
show how the SR size impact in the CUs per second when
the CTU size is 32x32 and 64x64, respectively. As can be
seen, the number of CUs per second processed increases as
the DMA burst size does, being 10626 and 2356 the maximum
number of processed CUs per second for CTU sizes of 32x32
and 64x64, respectively. That increment is exponential because
the time required for the DMA initialization is constant and
independent on the DMA burst size. Therefore, the maximum
burst size of 256 and the CTU size of 32x32 and a SR size of
16 is the most accurate configuration in order to achieve the
maximum CUs per second using our hardware system.

However, the number of CUs per second achieved previ-
ously depend on the processing time of our entire hardware
system, which consist of the DMA transfers and the SAD
HEVC module. So, in Figure 6 we show DMA time, SAD
HEVC module time, and total time to process a CU for each
DMA burst size when using a configuration set of 32x32 CTU
size and a SR of 50% CTU (±16). As expected, the maximum
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Fig. 5. CUs per second processed for each DMA burst size with our proposed
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DMA burst size provides the best results, requiring the least
time to process a CU. Furthermore, depending on the DMA
burst size chosen, the differences between DMA transfers and
SAD HEVC module processing time varies, being the SAD
HEVC module 21x faster for a burst size of 256 and 146x for
a burst size of 16.

Therefore, the bottleneck of total hardware time is the
DMA transfer, as can be also seen in Figure 7. Having chosen
a burst size of 256, the DMA transfer represents the 95% of
the entire processing time of a CU, whereas the SAD HEVC
module only requires the 5% of time. This bottleneck can
be overcome in future works, for instance, transferring only
the parts of the reference frames which differ from the ones
already stored in internal BRAMS. In this way, the DMA
transfers will be reduced and consequently, the total time
required.

After performing the whole analysis, it can be determined
that the HW configuration which better adapts to the appli-
cation requirements (low power consumption, encoding time,
compressed video quality) is the one that established a CTU
size of 32x32, a SR of 16, and a DMA burst size of 256.

Although the Full Search algorithm is the most widely
used in hardware ME implementations, the HEVC reference
software uses by default the Diamond Search algorithm. So,
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in Figure 8 we show the gain achieved using our IME HW
proposal with the previous configuration set in relation to the
IME SW using both FS and DS strategies. So, looking at
the information provided in Figure 8, for a 2560x1600 video
resolution, the inclusion of our IME hardware module will
speed up the IME computation 55 times and 588 times for
diamond-like search algorithm and full-like search algorithm,
respectively.

IV. CONCLUSION

In this work, we have presented a full hardware IME
architecture which also includes the DMA. We have analyzed
how the CTU size and the search range area in the IME module
impact on the HEVC performance in terms of Rate/Distortion
and processing time. As shown, differences in R/D are neg-
ligible for all configurations, being 2.7% the maximum BD-
rate increment for a CTU size of 32x32 and 0.1% for a CTU
size of 64x64. Regarding complexity, both the CTU size and
the SR impact over the total encoding time, being the faster
configuration a CTU size of 32x32 and a SR of 50% of the
CTU size. Remark, that the ME module requires between 63%
to 95% of the total encoding time.

Respect to the evaluation of the hardware IME proposal,
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Fig. 8. HW gain (x times) facing SW Full Search and SW Diamond Search
strategies

we have measured the maximum CUs per second that can be
processed as a function of the search range, the CTU size and
the DMA burst size. The results show that the number of CUs
processed increases as the burst size does, being 10626 the
maximum number of CUs per second processed for a CTU
size of 32x32, a SR of 50% of the CTU size and a DMA
burst size of 256. Looking at the results, we can assess, thatthe
bottleneck of the system resides in the DMA transfer, requiring
DMA transfer the 95% of the total processing time.

So, taking into account both the R/D and the encoding
complexity, the best configuration parameters set for our
hardware IME architecture is the one conformed by a CTU
size of 32x32, a SR of 50% of the CTU size (±16) and a
DMA burst size of 256. To sum up, with the inclusion of our
hardware IME proposal, we can speed-up the encoding time
558 times.

As a future work, we intend to reduce the DMA transfer
time, reusing part of the reference frame of the search area for
the IME calculation in contiguous CUs, only transferring the
new reference pixels required at every moment. Furthermore,
as we only use a 16% of the total board resources, we could
add more SAD HEVC modules to our architecture so as to
speed-up even more the ME computation.
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