
Conference
4–8 July, 2016.

Parallel processing in GPUs for intra-picture prediction in
HEVC

Vicente Galiano1, Héctor Migallón1, Victoria Herranz2, Pablo Piñol1,
Otoniel López-Granado1 and Manuel P. Malumbres1

1 Department of Physics and Computer Architecture, Miguel Hernández University

2 Center of Operations Research, Miguel Hernández University

emails: vgaliano@umh.es, hmigallon@umh.es, mavi.herranz@umh.es, pablop@umh.es,
otoniel@umh.es, mels@umh.es

Resumen

The HEVC video coding standard launched on 2013, is able to reduce to the half, on
average, the bit stream size produced by H.264/AVC encoder at the same video quality,
but it requires nearly 70 % more time than H.264/AVC to encode a video sequence.
GPUs can help to reduce this coding time considerably. In this paper, we propose the
use of GPUs to perform the intra-picture prediction, explaining which steps in the
coding process has been traslated to GPU and comparing the coding time with the one
obtained on a CPU.

Key words: Parallel algorithms, video coding, HEVC, GPUs, performance, prediction

1. Introduction

HEVC, the High Efficiency Video Coding standard [1] launched on January 2013 by the
Joint Collaborative Team on Video Coding (JCT-VC) is the newest video coding standard
of the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture
Experts Group (MPEG). The main video coding standard preceding HEVC is the current
H.264/AVC [2] standard, but an increasing diversity of services and the emergence of 4K
and 8K resolution are creating stronger needs for better coding efficiency. HEVC greatly
improved this coding efficiency over its predecessor (H.264/AVC) by a factor of almost
twice while maintaining an equivalent visual quality [3]. HEVC has been designed to cover
all services of H.264/AVC and to focus on two key issues: higher video resolutions and
increased use of parallel processing architectures. In terms of complexity, Bossen et al. [4]

c©CMMSE ISBN: 978-84-608-6082-2



Parallel processing in GPUs for intra-picture prediction in HEVC

studied the complexity of HEVC encoding and decoding software showing that the encoding
process is much more challenging than the decoding process.

Despite being a recent standard, we can find in the literature several works about com-
plexity analysis and parallelization strategies for the HEVC standard [4, 5, 6]. Most of the
parallelization proposals are focused in the decoding side, looking for the most appropriate
parallel optimizations at the decoder that provide real-time decoding of High-Definition
(HD) and Ultra-High-Definition (UHD) video contents. In [7] and [8] the authors present
a technique called Overlapped Wavefront (OWF) for the HEVC decoder which is a variant
of Wavefront Parallel Processing (WPP) in which the executions over consecutive pictures
are overlapped. In a multi-threaded approach of the HEVC decoder, a picture is decoded
by several threads at the same time, and each thread decodes different Coding Tree Unit
(CTU) rows. In these works, authors claim that a single thread may continue processing
the next picture when it finishes the current one, without waiting for the other threads.
These improvements allow a better parallel processing efficiency, reducing the overall deco-
ding time. Recently, in [9] the authors combine Tiles, WPP with SIMD (Single-Instruction
Multiple-Data instruction set extension to the x86 architecture) instructions to develop a
real-time HEVC decoder.

However, there are less works focused at the HEVC encoder. In [10] authors propose
a fine-grain parallel optimization in the motion estimation module of the HEVC encoder
allowing to perform the motion vector prediction in all Prediction Units (PUs) available at
the Coding Unit (CU) at the same time.

In [11], authors apply parallel processing techniques to HEVC encoder. Authors propo-
se several, synchronous and asynchronous, parallelization approaches working at a coarse
grain parallelization level, based on the Group Of Pictures (GOP), where several groups
of consecutive frames are encoded simultaneously using a multicore platform with shared
memory. The results show that near ideal efficiencies are obtained using up to 10 cores.

A proposal for parallelization for distributed memory systems is presented in [12]. In this
paper, authors present several parallelization approaches to the HEVC encoder for distribu-
ted memory platforms which work at a coarse grain level parallelization, being one group of
pictures (GOP) the basic structure. These approaches encode simultaneously several GOPs
and ideal parallel behavior is shown for a right GOP conformation and distribution.

In [13], authors combine a GPU-based motion estimation algorithm with two different
parallelization techniques: WPP and group of pictures (GOP). This approach allows a
multicore system to process multiple Coding Tree Units (CTUs) by splitting the frame in
rows or the sequence in GOPs, respectively. In either case, the motion estimation of these
regions is issued to the GPU device obtaining speed-ups of up to 3.93x for 4 processes.

In [14] authors propose a parallelization inside the intra prediction module that consist
on removing data dependencies among subblocks of a CU, obtaining interesting speed-up
results.

c©CMMSE ISBN: 978-84-608-6082-2



V. Galiano, P. Piñol, V. Herranz, O. López, H. Migallón, M. P. Malumbres

Figura 1: Avalaible blocks on decoder side for intra-prediction

Recently, in [15], authors present an hybrid approach combining WPP and intra pre-
diction on GPUs obtaining reductions on the total encoding time of up to 62 % with a lower
coding performance loss.

In this paper, we will focus on applying parallel processing in Graphic Processors Units
(GPUs) to the intra-picture prediction process of the HEVC encoder. The remainder of
this paper is organized as follows, in Section 2 an overview of intra-picture prediction in
HEVC and an introduction to the main algorithms used are presented. Section 3 present the
parallelization strategy proposed for using GPUs parallelism in the intra-picture prediction
process, while in Section 4 an evaluation of the proposed architecture and parallel strategies
is presented. Finally, in Section 5 some conclusions are drawn.

2. Intra-picture Prediction in HEVC

The basic source-coding algorithm is a hybrid of inter-picture prediction to exploit tem-
poral statistical dependences, intra-picture prediction to exploit spatial data dependences,
and transform coding of the prediction residual signals to further exploit spatial data de-
pendences. These three elements provide an improvement in compression efficiency when
compared to the previous video coding standard H.264/AVC. In particular, the intra-picture
prediction process consists on the prediction of a block of pixels of current frame, using the
information from neighbouring blocks pixels. It supports three different modes, the angular
mode with 33 different directions, the planar mode and the DC mode.

The values of the samples in a frame are often similar to their adjacent neighbour
samples’ values; this is called spatial redundancy or intra-frame correlation. This redundant
information in the spatial domain can be exploited to compress the image. Each frame is
partitioned in blocks of pixels and for each block the prediction of its pixels is done using
the pixels belonging to previously encoded adjacent blocks. So, at the decoder side, only the

c©CMMSE ISBN: 978-84-608-6082-2



Parallel processing in GPUs for intra-picture prediction in HEVC

pixels along the upper and/or left edges can be used to create the prediction block as shown
in Figure 1. Once the prediction has been generated, it is subtracted from the current block
to form a residual signal. The residual signal is transformed into the frequency domain and
binary arithmetic encoded, together with the selected prediction mode.

In HEVC, a frame is split into one or several slices and an intra slice contains a number
of consecutive CTUs, which are partitioned into CUs. The maximum CU size is 64x64 (the
size of one CTU), and the minimum size is 8x8. A CU is considered as a whole or partitioned
into 4 smaller CUs (forming a quadtree). Whether to further split the current CU depends
on its Rate-Distortion (RD) cost and the total RD cost of the 4 smaller CUs.

HEVC employs 35 different intra modes to predict a CU, compared to the 8 modes
available in H.264/AVC. The video encoder will choose the intra prediction mode that
provides de best RD performance. The prediction modes are organized into three categories:

Planar prediction: the value of each sample of the prediction CU is calculated assuming
an amplitude surface with a horizontal and vertical slope derived from the boundary
samples of the neighbouring blocks (mode 0) .

DC prediction: the value of each sample of the prediction CU is an average of the
boundary samples of the neighbouring blocks (mode 1).

Directional prediction with 33 different directional orientations: the value of each
sample of the prediction CU is calculated extrapolating the value from the boundary
samples of the neighbouring blocks as shown in Figure 2 (mode 2 . . . 34).

The residual block is obtained as the difference between the original CU and the pre-
diction CU, or:

residualAngularBlock = OriginalCU − PredictionAngCU

Finally the Sum of Absolute Differences (SAD) of the residual block is calculated as:

SADmodeAngular = sum(abs(residualAngularBlock))

In HEVC, the increase in the number of intra prediction modes provides substantial
coding performance gain over H.264/AVC, but it also makes the RD optimization process
more complex. The fast encoding algorithm of HEVC reference software includes two phases.

In the first phase, called Rough Mode Decision (RMD), the N most promising candidate
modes are selected. In this process, all candidates (35 modes) are evaluated with respect to
the following Rate/Distortion cost function:

C = DHad + λ ·Rmode

where the DHad represents the absolute sum of Hadamard transformed residual signal for a
CU, λ is the Lagrange multiplier that determines the trade-off between rate and distortion,

c©CMMSE ISBN: 978-84-608-6082-2



V. Galiano, P. Piñol, V. Herranz, O. López, H. Migallón, M. P. Malumbres

Figura 2: HEVC angular intra prediction modes

and Rmode represents the estimaded number of bits of the block when it is encoded with
CABAC. Then, up to three modes with the lowest costs are added to a subset of candidates
(SC ).

In the second phase, the full RD optimization process is performed on all the candidates
in set SC, and the intra prediction mode with the minimum RD cost is selected. The total
complexity of this step depends on the number of modes in set SC.

3. Moving Hadamard transformed to GPUs

The release of NVIDIA CUDA API [16, 17, 18] to the developers has led to an spec-
tacular increase of interest in using the GPU capabilities towards faster and more efficient
parallel algorithms. The GPU serves as a coprocessor to the CPU through the CUDA API
and exploits the massive data parallelism on the Single Instruction Multiple Data (SIMD)
architecture of the GPU. Independently operating threads executing CUDA kernels whi-
le efficiently sharing high speed memory can be implemented with a set of threads being
organized into blocks. It should be noted that to obtain higher bandwidth and overall
performance gains, memory sharing between threads must be optimized with very careful
programming to ensure very low latency between reads/writes.

At the moment, we have introduced the algorithm used in the intra-picture prediction
which is based in a Single Instruction Single Data (SISD) architecture. SAD computing is
implemented to work with blocks of size up to 8 x 8. So we need to perform 8 x 8 transforms

c©CMMSE ISBN: 978-84-608-6082-2



Parallel processing in GPUs for intra-picture prediction in HEVC

Figura 3: Algorithm for calculate DHad for each mode

of the prediction residuals resulting from each intra-prediction mode, in a CTU of 64 x 64
pixels. In this section, we explain how Hadamard transformed is implemented in the HM
16.3 reference software, and how we have moved this massive computing to GPUs in order
to accelerate the prediction algorithm using the data parallelism.

In Figure 3, a representation of the algorithm used to compute the SAD of each mode
is illustrated. First, we have the original block on the left and the best candidate block must
be searched for modes 0 to 34 (loop A). For the candidate block corresponding to the intra-
prediction mode n, the difference with the original block is Hadamard transformed in blocks
of 8× 8 pixels, so we must get the transformed to 64 subblocks of size 8× 8 (loop B). In the
HM 16.3 reference software, the function xCalcHAD8x8 is called for each original subblock
(i, j) and each candidate subblock (i, j) with size 8 × 8. This function has two steps: (1)
the difference between predicition and original pixels is calculated, and (2) the Hadamard
transformed from the resulting difference matrix is obtained. Inside this function, a new
iteration (loop C) is done to calculate the difference for each matrix element (k, l) and its
Hadamard transformed. As we can note, there are not data dependency between adjacent
subblocks and all SAD values for each CTU could be calculated simultaneously. But in each
subblock there are dependencies on the Hadamard transformed computing, and there are

c©CMMSE ISBN: 978-84-608-6082-2



V. Galiano, P. Piñol, V. Herranz, O. López, H. Migallón, M. P. Malumbres

Figura 4: Concurrent SAD computation in GPU

dependencies in the necessary reduction processes to compute the sublock differences.

In this work we propose the concurrent calculation of SAD values (including the Ha-
damard transformed) for all subblocks belonging to the CTU. In Figure 4, the concurrent
algorithm to calculate the SAD in GPU is showed. The sum of SAD values is obtained in
two steps. In a first step, we define a kernel grid of 8× 8 blocks of 8× 8 threads. Each block
of threads must calculate the SAD value of each subblock. Inside each block of threads,
we organize them in a 8 x 8 mesh, so thread (i,j) should compute (a) the difference of the
pixels (i,j) of the original and the candidate subblocks, and (b) its corresponding Hadamar
transformed value. At the end of this first step, we get a vector of 64 elements with the
SAD value for each subblock. Due to each value has been computed by a block of threads,
to sum these values, a new kernel in the GPU is called performing an optimized reduction
process based on the use of shared memory. The result is the SADSum associated with the
mode n. We must note that before the first computation step, both CTUs (original and
candidate) of size 64 × 64 must be transfered from host memory to the global memory of
the device using asyncrhonous transfers. Transfer times can be overlapped with computing
times for previous CTUs. Thereby, communication times between global memory and devi-
ce memory should not represent a significant penalty. On the other hand, the computation
of sum values in the first and second steps is implemented using the shared memory. This
shared memory is allocated per thread block, so all threads in the block have access to the
same shared memory, which latency is roughly 100x lower than uncached global memory
latency.

c©CMMSE ISBN: 978-84-608-6082-2



Parallel processing in GPUs for intra-picture prediction in HEVC

4. Performance Evaluation

In this section we present the performance evaluation of our GPU-based SAD computing
algorithm. Two different platforms have been used in this work. The first one is a Nvidia
Tesla M2050 which contains 448 CUDA cores with 3 GB of dedicated video memory. The
second one is a laptop GPU Geforce GT540M with 96 CUDA cores and 2 GB of video
memory. The sequential algorithm of the HEVC reference software has been also executed
in two platforms: first, a node with two processors Intel Xeon X5660 and 48 GB of RAM
memory and second a labtop with an Intel i7-2670QM at 2.2GHz and 8GB of RAM memory.

In Figure 5, we present the computational times required for computing SADs in both
GPU platforms (Tesla M2050 and Gforce GT540M, respectively) and for five different vi-
deo sequences: Monaco (352 × 288), BQSquare (416 × 240) , BasketballDrill (832 × 480),
ChinaSpeed (1024×768) and Johnny (1280×720). In all video sequences, we have encoded
50 frames. In both figures, CPU means the sequential computational time required to com-
pute the SAD values and GPU indicates the time for the proposed GPU based algorithm.
As we can observe, we obtain remarkables time reductions, above 70 % for the M2050 and
above 60 % for the GT540M. Note that the timer reduction does not depend on the resolu-
tion image. Obviously, due to M2050 is more powerful than the GT540M, we obtain better
computational results using the first one. On the other hand, note tha both the Hadamard
transformed and the SAD compunting include reduction operations. These reduction ope-
rations decrease substantially the inherent parallelism. To be exploited, we execute these
operations on the GPUs managing efficiently the shared memory abd mapping suitably the
kernel grid.

5. Conclusions and Future Work

In this paper we have proposed the use of GPUs for computing the SAD values used in
intra-picture prediction in HEVC. The search of the best prediction block implies a gready
search of candidates among 35 modes for each block. On the other hand, this prediction
algorithm is massively used in all CTUs that belongs to a frame. Besides, we have detailed
how the algorithm is implemented in the 16.3 HM reference software and how concurrency
can be highly exploited when computing the sum of CTU’s SAD, spliting it in blocks and
threads. Considering that the time reduction are up to 73 %, we value these result as the first
step to substantially improve the intra-picture prediction algorithm using GPUs. For future
work, we plan to increase the concurrent task in GPUs computing all modes at the same
time. Even further work will lead us to make a prediction of the entire frame concurrently.

c©CMMSE ISBN: 978-84-608-6082-2



V. Galiano, P. Piñol, V. Herranz, O. López, H. Migallón, M. P. Malumbres

(a) Nvidia Tesla M2050

(b) Nvidia GForce GT540M

Figura 5: Computational times for GPU-based Hadamard transformed for intra-picture
prediction in HEVC

Acknowledgments

This research was supported by the Spanish Ministry of Economy and Competitiveness
under Grant TIN2015-66972-C5-4-R co-financed by FEDER funds.

Referencias

[1] B. Bross, W. Han, J. Ohm, G. Sullivan, Y.-K. Wang, and T. Wiegand, “High efficiency
video coding (HEVC) text specification draft 10,” Document JCTVC-L1003 of JCT-
VC, Geneva, January 2013.

c©CMMSE ISBN: 978-84-608-6082-2



Parallel processing in GPUs for intra-picture prediction in HEVC

[2] ITU-T and ISO/IEC JTC 1, “Advanced video coding for generic audiovisual services,”
ITU-T Rec. H.264 and ISO/IEC 14496-10 (AVC) version 16, 2012, 2012.

[3] G. Sullivan, J. Ohm, W. Han, and T. Wiegand, “Overview of the high efficiency video
coding (HEVC) standard,” Circuits and systems for Video Technology, IEEE Transac-
tions on, vol. 22, no. 12, pp. 1648 –1667, December 2012.

[4] F. Bossen, B. Bross, K. Suhring, and D. Flynn, “HEVC complexity and implementation
analysis,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 22,
no. 12, pp. 1685–1696, 2012.

[5] M. Alvarez-Mesa, C. Chi, B. Juurlink, V. George, and T. Schierl, “Parallel video de-
coding in the emerging HEVC standard,” in International Conference on Acoustics,
Speech, and Signal Processing, Kyoto, March 2012, pp. 1–17.

[6] E. Ayele and S.B.Dhok, “Review of proposed high efficiency video coding (HEVC)
standard,” International Journal of Computer Applications, vol. 59, no. 15, pp. 1–9,
2012.

[7] C. C. Chi, M. Alvarez-Mesa, B. Juurlink, G. Clare, F. Henry, S. Pateux, , and T. Schierl,
“Parallel scalability and efficiency of HEVC parallelization approaches,” IEEE Transac-
tions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1827 –1838,
2012.

[8] C. C. Chi, M. Alvarez-Mesa, J. Lucas, B. Juurlink, and T. Schierl, “Parallel HEVC
decoding on multi- and many-core architectures,” Journal of Signal Processing Systems,
vol. 71, no. 3, pp. 247 –260, 2013.

[9] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, Y.-K. Wang, and T. Wiegand, “High
Efficiency Video Coding (HEVC) text specification draft 10,” Joint Collaborative Team
on Video Coding (JCT-VC), Geneva (Switzerland), Tech. Rep. JCTVC-L1003, January
2013.

[10] Q. Yu, L. Zhao, and S. Ma, “Parallel AMVP candidate list construction for HEVC,”
in VCIP’12, 2012, pp. 1–6.

[11] H. Migallón, J. Hernández-Losada, G. Cebrián-Márquez, P. Piñol, J. Mart́ınez,
O. López-Granado, and M. Malumbres, “Synchronous and asynchro-
nous {HEVC} parallel encoder versions based on a {GOP} ap-
proach,” Advances in Engineering Software, pp.–, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S096599781630028X

c©CMMSE ISBN: 978-84-608-6082-2



V. Galiano, P. Piñol, V. Herranz, O. López, H. Migallón, M. P. Malumbres

[12] H. Migallón, V. Galiano, P. Piñol, O. López-Granado, and M. P. Malumbres,
“Distributed memory parallel approaches for hevc encoder,” The Journal of
Supercomputing, pp. 1–12, 2016. [Online]. Available: http://dx.doi.org/10.1007/s11227-
016-1666-2

[13] G. Cebrián-Márquez, J. L. Hernández-Losada, J. L. Mart́ınez, P. Cuenca, M. Tang,
and J. Wen, “Accelerating HEVC using heterogeneous platforms,” Journal of Super-
computing, vol. 71, no. 2, pp. 613 –628, February 2015.

[14] J. Jiang, B. Guo, W. Mo, and K. Fan, “Block-based parallel intra prediction scheme
for HEVC,” Journal of Multimedia, vol. 7, no. 4, pp. 289 –294, August 2012.

[15] S. Radicke, J. U. Hahn, Q. Wang, and C. Grecos, “A parallel hevc intra prediction
algorithm for heterogeneous cpu+gpu platforms,” IEEE Transactions on Broadcasting,
vol. 62, no. 1, pp. 103–119, March 2016.

[16] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel programming with
cuda,” in Queue, vol. 6, no. 2, 2008, pp. 40–53.

[17] N. Corporation, “Nvidia cuda c programming guide. version 3.2.”

[18] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla: A unified grap-
hics and computing architecture,” in IEEE Micro, vol. 28, no. 2, 2008, pp. 39–55.

c©CMMSE ISBN: 978-84-608-6082-2


