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1. Introduction

In scientific and engineering applications, two obstacles hinder
the full use of heterogeneous networks of powerful workstations:
low-level sequential data access and data representation. Usually,
data representations make it difficult to distribute applications
across networks or to display output from programs running on
different system architectures.

The network Common Data Form (netCDF) [1,2] is a data
abstraction for storing and retrieving multidimensional data. Net-
CDF is distributed as a free software library that provides a con-
crete implementation of that abstraction. The library provides a
machine-independent format for representing large datasets that
are created and used by scientific applications. The netCDF soft-
ware includes C and Fortran interfaces for accessing netCDF data.
These libraries are available for many common computing plat-
forms. Many organizations, including much of the climate commu-
nity, rely on the netCDF data access standard for data storage (see,
e.g., http://www.unidata.ucar.edu/packages/netcdf/usage.html).

On the other hand, there are available netCDF interfaces for high
level languages that improve its ease of use from Matlab, Ruby, Java
and particularly, Python [3]. Python is a dynamic object-oriented
programming language that can be used for many kinds of software
development. It offers strong support for integration with other lan-
guages (C, Fortran, . . .) and comes with extensive standard libraries.
At the moment, there are several netCDF interfaces for Python but
the most popular is ScientificPython [4]. Also, the use of high level
environments is common place in science and engineering to en-
d. and Elsevier Ltd. All rights reser
able the development of custom applications, particularly during
the early stages of new product or system modelling, simulation,
and optimization. These very high level languages make it easy to
manipulate high level objects (e.g., matrices), hiding many of the
underlying low-level programming complexities from users. They
also support rapid code iteration and refinement by enabling an
interactive development and execution environment.

Today most scientific applications are programmed to run in
parallel environments because of the increasing requirements of
data amount and computational resources. It is highly desirable
to develop a set of parallel APIs for accessing netCDF files that em-
ploys appropriate parallel I/O techniques for reading/writing from
hard drive to computer memory. In this way, PnetCDF [5] provides
a high-performance and parallel interface for accessing netCDF
files from C using the MPI standard [6,7]. However, PnetCDF is only
available for programming in C or Fortran. Our goal has been to
provide an easy and powerful tool for accessing netCDF files from
Python in a parallel programming environment. That is, the result-
ing interface, PyPnetCDF, enables scientists and engineers to man-
age netCDF files in a parallel application in the Python high level
language, providing an easy-to-use parallel environment that hides
the challenges of parallel programming.

This paper is organized as follows. Section 2 describes the for-
mat of a netCDF file. Section 3 introduces the main tool for sequen-
tial access to netCDF files from Python; this tool will be taken like
reference point for the development of our parallel tool. Section 4
presents the PyPnetCDF module, that is, a Python distribution that
allows the parallel access from several processes to a same origin
of data in netCDF format. Section 5 gives experimental results
and Section 6 concludes the paper with conclusions and some
ideas for future research.
ved.
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2. NetCDF files

The purpose of the network Common Data Form (netCDF) inter-
face is to allow to create, access, and share array-oriented data in a
form that is self-describing and portable. ‘‘Self-describing” means
that a dataset includes information defining the data it contains.
‘‘Portable” means that the data in a dataset is represented in a form
that can be accessed by computers with different ways of storing
integers, characters, and floating-point numbers. NetCDF files can
provide a way to encapsulate structured scientific data for using
among multiple application programs, and thus, these files can
help to support high-level data access and shell-level application
programming.

NetCDF is an abstraction that supports a view of data that can
be accessed through a simple interface. Array values may be ac-
cessed directly, without knowing details of how the data are
stored. Auxiliary information about the data, such as what units
are used, may be stored with the data.

A netCDF dataset contains dimensions, variables, and attributes,
which all have both a name and an ID number by which they are
identified. These components can be used together to capture the
meaning of data and relations among data fields in an array-
oriented dataset. The netCDF library allows simultaneous access
to multiple netCDF datasets which are identified by dataset ID
numbers, in addition to ordinary file names.

A netCDF dimension is a named integer used to specify the
shape of one or more of the variables and it may represent a real
physical dimension, such as time, latitude, longitude, or atmo-
spheric level. Dimensions may also be used to relate variables de-
fined on a common grid and provide a natural way to specify
coordinates. A netCDF dimension has both a name and a length.
A dimension length is an arbitrary positive integer, except that
one dimension in a netCDF dataset can have the length UNLIMITED.

Variables store the bulk of the data in a netCDF dataset and rep-
resent an array of values of the same type. A variable has a name, a
data type, and a shape described by a list of dimensions. The header
part describes each variable by its name, shape, named attributes,
data type, array size, and data offset, while the data part stores the
array values for one variable after another, in their defined order. A
variable may also have associated attributes, which may be added,
deleted or changed after the variable is created. NetCDF supports
the most commonly needed variable types for scientific data: scalars
and arrays of bytes, characters, integers, and floating-point numbers.
In order to support variable-size arrays, netCDF introduces record
variables and uses a special technique to store such data. All record
variables share the same unlimited dimension as their most signifi-
cant dimension and are expected to grow together along that dimen-
sion. The other, less significant dimensions all together define the
shape for one record of the variable. For fixed-size arrays, each array
is stored in a contiguous file space starting from a given offset. For
variable-size arrays, netCDF first defines a record of an array as a sub-
array comprising all fixed dimensions; the records of all these arrays
are stored interleaved in the arrays defined order. Fig. 1 illustrates
the storage layouts for fixed and variable-size arrays in a netCDF file.

NetCDF attributes are used to store data about the dataset. Most
attributes provide information about a specific variable and they
are called variable attributes. Some attributes provide information
about the dataset as a whole and they are called global attributes.

The netCDF API was designed for serial codes. In the netCDF li-
brary, a typical sequence of operations to write a new netCDF data-
set is to create the dataset; define the dimensions, variables, and
attributes; write variable data; and close the dataset. Reading an
existing netCDF dataset involves first opening the dataset; inquir-
ing about dimensions, variables, and attributes; reading variable
data; and closing the dataset.
3. Accessing netCDF from high level languages

There are multiple references to software packages that may
be used for manipulating or displaying netCDF data. The Unidata
site [8] provides information about both freely-available and li-
censed (commercial) software that can be used with netCDF
data. NetCDF files can be managed from Python by using, as
we have mentioned, the corresponding package integrated with
ScientificPython from Konrad Hinsen [4]. In this package, the
structure of a netCDF file can be managed using object oriented
programming. In this way, ScientificPython defines the NetCDF-
File class with two standard attributes: ‘‘dimensions” and ‘‘vari-
ables”. The values of both are dictionaries, mapping dimension
names to their associated lengths, and variable names to vari-
ables, respectively. A variable in a NetCDFFile object is created
using a new class NetCDFVariable which allows setting (assign-
Value(. . .)) or getting (getValue(. . .)) values to or from netCDF
files. Also, a NetCDFFile class has methods to initialize a file, close
it or create dimensions and variables (createDimension(. . .) and
createVariable(. . .), respectively). Example 3.1 shows how we
can access to netCDF files from Python. Lines 1 and 2 import
the Python modules needed in this example. From line 3 to line
15, a netCDF file is created and defined. Lines 6 and 7 define two
limited dimensions, while line 8 defines an unlimited one. Line 9
creates a variable and its values are assigned in lines 11–14. Fi-
nally, the file is closed in line 15. From line 16 to line 23, the
same file is opened and the variables and their values are
printed.

Example 3.1 (NetCDF files management with ScientificPython.).
1. from Numeric import �
2. from Scientific.IO.NetCDF import NetCDFFile

3. file = NetCDFFile(test.nc, w)
4. file.title = Just some useless junk

5. file.version = 42
6. file.createDimension(xyz, 3)
7. file.createDimension(n, 20)
8. file.createDimension(t, None)
9. foo = file.createVariable(foo, Float, (n, xyz))

10. foo.units = arbitrary
11. foo[:,:] = 1.
12. foo[0:3,:] = [42., 42., 42.]
13. foo[:,1] = 4.
14. foo[0,0] = 27.
15. file.close()
16. file2 = NetCDFFile(test.nc, r)
17. for varname in file2.variables.keys():

18. var1 = file2.variables[varname]

19. print varname,:,var1.shape,;,var1.units

20. foo = file2.variables[foo]

21. data1 = var1.getValue()

22. print Data:,data1

23. file2.close()
As it has been shown in this example, accessing netCDF files
from Python is very simple and intuitive. This tool expands the
set of users that can use netCDF files and will be taken as reference
point for the development of our parallel tool.
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4. The PyPnetCDF interface

With PnetCDF, the scientific community has a scalable tool for
the parallel access to netCDF files. However, this tool is only avail-
able for programming in C or Fortran. Our goal is to create an easy
and powerful tool for Python, that we have called PyPnetCDF,
which would be able to manage netCDF properties in a similar
way to the serial version from ScientificPython, but hiding parallel-
ism to the user. For this purpose, a first step to build PyPnetCDF is
to make an internal wrapper to the PnetCDF routines. The func-
tionality of these internal wrappers remains unchanged, and they
will be used internally to achieve a good interaction between the
native routines of PnetCDF and the external wrappers (these are,
strictly speaking, the high level user interfaces). These external
wrappers were constructed such that parallel environment and
data distribution are internally managed by PyPnetCDF. Moreover,
since Python users are accustomed to use ScientificPython for
managing netCDF files, the layout of the external wrappers follows
that of the serial version from ScientificPython. For this reason we
have created two PyPnetCDF classes very similar to their serial ver-
sions: PNetCDFFile and PNetCDFVariable. These objects are defined
in the module PnetCDF.py, showed in Fig. 2, which presents the
PyPnetCDF structure. This module acts as an intermediate layer
between Python users and the shared objects library pypnetcdf.so,
which is itself composed by the PnetCDF library and the Python
internal wrappers. Following this structure, a Python script using
PyPnetCDF is very similar to its serial version and users can easily
convert their serial scripts and applications into parallel codes.

Writing Python internal wrappers for C routines can be a very
tedious task, especially if a routine takes a lot of arguments but
only few of them are relevant for the problems that they solve.
For this reason, these internal wrappers have been built with the
help of the SWIG wrapper generator [9]. SWIG is a software devel-
opment tool that connects programs written in C and C++ with a
variety of high-level programming languages, in particular Python.
There are other tools with similar purpose like F2PY [10], but in
this case, this tool is devoted for building scripting language inter-
faces to Fortran programs. We note that while the shared objects
library pypnetcdf.so allows Python to access low level routines, con-
text, validation and automation are provided at a higher level in
the PnetCDF.py module.

We want to point out the relationship between PyPnetCDF and
PyACTS. PyACTS [11,12] is a collection of carefully designed and
written software wrappers to the ACTS tools [13], it also includes
other routines written in Python to provide high level users inter-
faces. These wrappers also provide us with the ability to transpar-
ently convert data types between PyACTS modules to support
interoperability. Concretely, PyACTS provides some routines for
reading and writing netCDF files using PyPnetCDF; the data distri-
bution (or data recollection) is internally performed such that it
follows the distribution schemes supported by PyACTS, currently,
the two-dimensional block-cyclic distribution of PBLAS and ScaLA-
PACK [14]. These two libraries are a set of routines for performing
basic vector and matrix operations, and solving some linear algebra
problems for distributed memory message-passing computers.
Hence, PyPnetCDF can also be used in a parallel Python framework
in which these kinds of problems appear. Some numerical experi-
ments showing the performance of PyPnetCDF inside PyACTS are
presented in Section 5.

Example 4.1 shows how we can get a parallel access to a netCDF
file using PyPnetCDF. As we can notice, the source code is very sim-
ilar to the serial code presented in Example 3.1, and it is also di-
vided into two parts. In the first one, we define and write in a
netCDF file and in the second one, we read from that file. In this
way, any serial script can be converted to a parallel code by chang-
ing a few lines. Concretely, in line 2 the parallel module instead of
the serial one is imported and line 3 imports PyACTS; line 4 creates
the file in writing mode by calling the constructor PNetCDFFile. The
netCDF attributes, dimensions and variable creation follow the
same structure that the serial example. In line 12, we finish header
definition; the method of this line causes a synchronization be-
tween processes and assumes that no more header definition will
be made in the netCDF file. Notice that the header has been made
in collective mode because all processes have executed lines 4–12.
From line 13 to line 16, we set some variable values and, in line 17,
a hard drive writing is forced in all processes. Finally, the creation
of the netCDF file is ended by calling the close method.

In the second part of the example, we create a new PNetCDFFile
called file2 in reading mode. From line 23 to line 26, all processes
print, for each variable, its dimensions, its attributes and the data.
The PyACTS package is used in line 20 to print two values: iam is an
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integer which uniquely identifies each process, and nprocs which
indicates the number of processes in the parallel execution. Both
values are useful and let us to identify how the data distribution
is performed.

Example 4.1 (Example of accessing netCDF files from Python using
PyPnetCDF.).
1. from Numeric import �

tion and each process stores an array of dimension 5 � 3. In this
way, we can see in line 14 that only rows 0–2 (row 3 is not in-
cluded in range) of the global array are changed to 42. Notice that
2. from PyPnetCDF.PNetCDF import �
3. import PyACTS

4. file = PNetCDFFile(test.nc, w)

5. file.title =Just some useless junk

6. file.version = 42

7. file.createDimension(xyz, 3)
8. file.createDimension(n, 20)
9. file.createDimension(t, None)

10. foo = file.createVariable(foo, Float, (n, xyz))

11. foo.units =arbitrary

12. file.enddef()
13. foo[:,:] = 1.

14. foo[0:3,:] = [42., 42., 42.]

15. foo[:,1] = 4.

16. foo.data[0,0] = PyACTS.iam

17. foo.setValue()
18. file.close()
19. file2 = PNetCDFFile(test.nc, r)

20. print ��,Process,PyACTS.iam,/,PyACTS.nprocs,��
21. print file2.variables.keys(),;,

file2.dimensions.keys()

22. for varname in file2.variables.keys():

23. var1=file2.variables[varname]

24. print varname,:,var1.shape,;,var1.units

25. data1=var1.getValue()

26. print Data:,data1

27. file2.close()

only those processes which store elements which have been refer-
enced will modify the array elements; in this case, only process 0/4
modifies the array elements to 42. On the other hand, we can also
reference the data by indicating local coordinates: in line 16, the
process identifier iam is assigned to the element (0,0) of the local
data. In summary, this is a simple and transparent way of distrib-
uted data management in which the programmer does not have to
worry about data allocation.

Example 4.2 (Output of executing Example 4.1 with four
processors.).
In order to show the parallelism, we center how the data distri-
bution is managed by PyPnetCDF. We will illustrate it by executing
this code with four processors. The obtained output is shown in
Example 4.2. We must notice that pyMPI [15] is a functional Py-
thon interpreter that includes a large subset of MPI functions. PyM-
PI has extensive support for running parallel Python scripts and has
been tested on a number of clusters and other scientific machines.
The netCDF variable foo is of dimension 20 � 3 because it is defined
using dimensions (n,xyz). However, when a variable is created or
read, it is distributed among processes in partitions along first
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dimension (in this case, dimension n), which is the default option.
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File or a PNetCDFVariable is created. Fig. 3 shows the 3D array dis-
tributions along each one of the three dimensions. If we want to
specify another dimension for the data distribution (e.g., dimen-
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5. Numerical experiments
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respectively, the reading and writing times of a netCDF file using
both the serial version (indicated as ‘‘ScyPy.”) and the parallel ver-
sion from PyPnetCDF (indicated as ‘‘PyPn.”) for different number of
processors and array sizes. Basically, the test code reads or writes a
ition

Z

Y

X

(c) Z Partition

tions on eight processors.



0.00

2.00

4.00

6.00

8.00

10.00

12.00

Array size (NxNxN)

Ti
m

e
(s

ec
.)

SciPy. 1.26 2.50 4.20 6.54
PyPn.1p 2.63 4.53 7.76 11.05
PyPn.2p 1.25 2.28 3.74 5.82
PyPn.4p 1.45 1.48 2.29 3.38
PyPn.8p 0.73 1.01 1.71 2.53
PyPn.16p 0.63 0.94 1.45 2.14

200 250 300 350

(a) Reading times

0
1
2
3
4
5
6
7
8
9

10

Array size (NxNxN)

Ti
m

e
(s

ec
.)

SciPy. 0.73 1.45 2.48 9.34
PyPn.1p 1.31 2.12 3.83 7.29
PyPn.2p 0.89 1.57 2.71 4.58
PyPn.4p 1.03 1.37 2.41 4.37
PyPn.8p 0.53 0.95 1.88 3.40
PyPn.16p 0.49 1.00 1.55 2.20

200 250 300 350

(b) Writing times

Fig. 4. Reading and writing times with ScientificPython and PyPnetCDF for different number of processors and array sizes.

96 V. Galiano et al. / Advances in Engineering Software 41 (2010) 92–98
three-dimensional array field (X,Y,Z) from or into a single netCDF
file, where X is the most significant dimension and Z is the least
significant dimension. In the parallel case, the test code partitions
the three-dimensional array with the default distribution, that is,
the data are distributed among processes along first dimension X,
as it is illustrated in Fig. 3a.

These tests were run in a distributed memory computer, named
Seaborg, with 380 computing nodes with 16 processors per node.
Each processor has a peak performance of 1.5 GFlops. The disk stor-
age system is a distributed, parallel I/O system called GPFS. Addi-
tional nodes serve exclusively as GPFS servers.

Generally, the PyPnetCDF performance scales with the number
of processors. In Fig. 4a, reading times with ScientificPython are
superior to parallel reading times except when we execute the
PyPnetCDF with only one process. This overhead involved in one
process is due to additional callings to MPI functions. As expected,
PyPnetCDF outperforms the serial netCDF as the number of proces-
sors increases. In writing times, PyPnetCDF also scales well with
the number of processors but, in this case, the reduction of the par-
allel time is less than in reading times. The reason of this resides in
the fact that, when a parallel writing is performed, all processes
must synchronize the access to a unique resource. We would like
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to point out that the use of the serial version from ScientificPython
implies that the data are locally stored, that is to say, there is no
distribution of data. Consequently, if need be, an explicit data dis-
tribution (with its associated time) must be performed. In other
words, the sequential and parallel times of Fig. 4 are not compara-
ble at all because in the first case the data is not distributed among
processors. The scalability of PyPnetCDF is also shown in Fig. 5.
This figure shows the performance results, in the Seaborg multi-
processor, for reading and writing different datasets (arrays of size
N � N � N) in terms of MB/s (I/O bandwidth) for different number
of processors. We can see that the performance increases as the
number of processors does.

On the other hand it is interesting to mention that the use of a
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on a single process from a file and it distributes the data to the rest
of processes. If the global array size is bigger than the memory re-
sources of the node, it will not be possible to run the application.
With PyPnetCDF, we are not restricted to the memory size of the
nodes, and if we want to solve bigger problems, we may add
new nodes in order to achieve the needed resources. In this sense,
we have integrated PyPnetCDF with PyACTS in such a way that
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netCDF files can be read or written from a PyACTS application
(using PnetCDF2PyACTS and PyACTS2PnetCDF, respectively); this
integration follows the distribution scheme currently supported
by PyACTS (the two-dimensional block-cyclic distribution of ScaL-
APACK), and it is performed in a user-transparent fashion, hiding
details of the data distribution to the user. The other scalable op-
tion for reading or writing text files from PyACTS consists in a cou-
ple of routines that read or write a matrix stored as a text file
following the communication pattern of the pdlaread and pdlawrite
ScaLAPACK routines, respectively. These routines are called
Txt2PyACTS and PyACTS2Txt, respectively. In order to compare these
two scalable options of PyACTS, a distribution and collection test
was programmed using both a text file and a netCDF file, for differ-
ent square matrix sizes and processes grid configurations. Fig. 6
presents the results in the Seaborg multiprocessor. In this figure,
‘‘text-read/write” refers to the Txt2PyACTS/PyACTS2Txt execution
and ‘‘netCDF-read/write” corresponds to the PnetCDF2PyACTS/
PyACTS2PnetCDF test. Obviously, the conclusion is that the netCDF
option is more efficient because with PyPnetCDF we get a parallel
access to the file, while with the ‘‘text-read/write” option an expli-
cit message passing between processes is needed. Note that in
Fig. 6 the global matrix exists only as a collection of submatrices
in the grid, in other words, no process in the grid ever has the
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whole global matrix as defined in the file, therefore the scalability
is guaranteed.

The results shown in Fig. 4 were obtained with the default dis-
tribution, that is, data were distributed among processes along the
first dimension X. Partitioning in the X dimension generally per-
forms better than in the Z dimension, since the continuity of stored
data in memory is a significant parameter. As Fig. 3a shows, in the
X partition each process only needs to access one time to the net-
CDF file; however, for the other partitions (Fig. 3b and c), each pro-
cess needs multiple access to the netCDF file. Fig. 7 shows the
performance results for reading and writing different datasets,
with different data distribution axis. These tests are executed with
16 processors and we also show the serial times as reference. In
Fig. 7a, the times are very similar for first and second data distribu-
tion axis, but when the size increases the X distribution gets lower
times than the other distributions. In the writing tests shown in
Fig. 7b, X and Y distributions are also similar but X distribution
times are lightly lower. In these tests, differences between distri-
butions are not very significant because the disk storage system
has a parallel I/O architecture. Other similar tests were performed
in a Linux cluster with 6 2.0 GHz Intel processors and 512MB mem-
ory per processor and connected through a 1 Gigabit network
switch where the parallel disk storage system is located in one
node that shares the hard drive with NFS (Network File System).
In this architecture, collecting all I/O data on a single process can
easily cause an I/O performance bottleneck and may overwhelm
its memory capacity. Fig. 8 shows results on this cluster. Con-
cretely, this figure presents the needed time for reading and writ-
ing an array with 200 � 200 �200 elements for different number of
processors and using different data distribution axis (X, Y or Z); it
also compares the times using PyPnetCDF from a Python script
(‘‘Py-”) and using PnetCDF library from a C application (‘‘C-”). Tak-
ing as reference of comparison the data distribution axis, it is ob-
served that, in the reading times, the X distribution is better that
the other distributions, as in the above platform. However, this
conclusion changes when writing times are considered; in this
case, the needed synchronization of each process waiting for all
processes to finish their writing, causes an increase of time.

On the other hand, as we have mentioned, Fig. 8 also compares
the times obtained from PyPnetCDF and PnetCDF. The obtained
times with Python and C are very similar. In fact, in some cases
the PyPnetCDF execution time is lower than that of PnetCDF, the
reason being there that the differences between two consecutive
executions are comparable to the overhead introduced by
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PyPnetCDF. Therefore, the results in this figure demonstrate that
the overhead introduced by the Python infrastructure is negligible.

6. Conclusions and future research

In this work we have presented a new Python package which
provides a parallel access to netCDF files in a simple and intuitive
mode. Python examples have demonstrated that PyPnetCDF can be
used in a similar form to that given by ScientificPython. With a par-
allel file system architecture, PyPnetCDF can manage huge netCDF
files without worrying about data distribution.

Performance tests prove that PyPnetCDF scales with the num-
ber of processors and the Python interface does not involve a pen-
alty in performance. As summary, PyPnetCDF is an intuitive, handy,
parallel and powerful tool to manage netCDF files from Python in a
parallel architecture. PyPnetCDF is available at http://www.pyact-
s.org/pypnetcdf and it has been listed in the Unidata Software Page
[8] as a useful software for manipulating netCDF data. Future work
involves completing the production-quality parallel PyPnetCDF
package and providing new functionalities.
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