
Received August 5, 2019, accepted August 22, 2019, date of publication September 12, 2019,
date of current version September 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2941086

Comparison of High Performance Parallel
Implementations of TLBO and Jaya
Optimization Methods on
Manycore GPU
H. RICO-GARCIA1, JOSE-LUIS SANCHEZ-ROMERO 1, A. JIMENO-MORENILLA 1,
H. MIGALLON-GOMIS2, H. MORA-MORA1, AND R. V. RAO 3
1Department of Computer Technology, University of Alicante, 03690 Alicante, Spain
2Department of Computer Engineering, Miguel Hernández University, 03202 Elche, Spain
3Sardar Vallabhbhai National Institute of Technology, Surat 395 007, India

Corresponding author: Jose-Luis Sanchez-Romero (sanchez@dtic.ua.es)

This work was supported in part by the Spanish Ministry of Economy and Competitiveness under Grant TIN2017-89266-R, in part by
FEDER funds (MINECO/FEDER/UE), and in part by the Spanish Ministry of Science, Innovation, and Universities co-financed by
FEDER funds under Grant RTI2018-098156-B-C54.

ABSTRACT The utilization of optimization algorithms within engineering problems has had a major
rise in recent years, which has led to the proliferation of a large number of new algorithms to solve
optimization problems. In addition, the emergence of new parallelization techniques applicable to these
algorithms to improve their convergence time has made it a subject of study by many authors. Recently,
two optimization algorithms have been developed: Teaching-Learning Based Optimization and Jaya. One
of the main advantages of both algorithms over other optimization methods is that the former do not need
to adjust specific parameters for the particular problem to which they are applied. In this paper, the parallel
implementations of Teaching-Learning Based Optimization and Jaya are compared. The parallelization of
both algorithms is performed using manycore GPU techniques. Different scenarios will be created involving
functions frequently applied to the evaluation of optimization algorithms. Results will make it possible to
compare both parallel algorithms with regard to the number of iterations and the time needed to perform them
so as to obtain a predefined error level. The GPU resources occupation in each case will also be analyzed.

INDEX TERMS CUDA, GPU, Jaya, TLBO, optimization, parallelism.

I. INTRODUCTION
The resolution of engineering problems using advanced com-
puter techniques is a field in continuous evolution, among
which stands out the problems of optimization in the search
for solutions. The characteristics of this type of problems are
the following: there are a series of objectives, a set of possible
solutions (with all the possible values generated by the design
parameters) and a series of processes for finding a solution to
the problem (optimization methods). The optimization meth-
ods look for the optimal solution within the set of feasible
solutions. Continuous research is underway in this field and
heuristic optimizationmethods inspired by nature are proving

The associate editor coordinating the review of this manuscript and
approving it for publication was Shaoyong Zheng.

to be better in many cases than deterministic methods and are
therefore becoming more frequently used.

There are many optimization algorithms inspired by nature
that use principles observed in different natural phenom-
ena. Each of these algorithms is based on a specific phe-
nomenon observed within nature. For example, Genetic
Algorithm (GA) uses the theory of evolution to improve
the population towards the solution of the problem; Particle
Swarm Optimization (PSO) emulates the behaviour of bird
swarms in search of food; the Artificial Bee Colony (ABC)
and the Ant Colony Optimization (ACO) algorithms are
inspired by the organizations of the colonies of both types
of insects. Due to the impressive advances in recent years
in the field of parallel architectures, while the cost of the
same has been greatly reduced, most of these optimization
algorithms have been parallelized so as to obtain an increase

133822 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-8766-2813
https://orcid.org/0000-0002-3789-6475
https://orcid.org/0000-0002-9957-1086


H. Rico-Garcia et al.: Comparison of High Performance Parallel Implementations of TLBO

in performance [1]–[10]. The application of these algorithms
to the solution of optimization problems within engineering
is proven in many works with satisfactory results.

One of the disadvantages of these algorithms generally is
the use of a large number of parameters and restrictions spe-
cific to each of the algorithms. These parameters and restric-
tions usually vary according to the problem to be addressed,
and also have a direct influence on the outcome of the appli-
cation of the algorithm and its effectiveness. In order to deal
with these problems, new optimization algorithms based on
population evolution have been proposed, but avoiding the
use of parameters and restrictions. Two recent optimization
algorithms follow this approach: Teaching-Learning Based
Optimization (TLBO) and Jaya. These two algorithms do
not use specific parameters or restrictions, but only use the
parameters intrinsic to these types of algorithms such as
the size of the population, the number of variables of each
individual depending on the problem to be optimized, and the
number of iterations. TLBO and Jaya have proven to be more
efficient than other optimization algorithms when applied
to the search for the optimal value of different functions of
diverse complexity [11], [12], [16]. For this reason, research
related to both algorithms has reached a considerable rise in
recent years, and they continue to be studied, improved and
applied in a wide variety of fields.

In this work, TLBO and Jaya have been selected so as to
analyze and compare the performance obtained when running
parallel implementations of both algorithms supported by a
manycore GPU (Graphics Processing Unit) architecture. The
manycore GPU platform used in this work is NVidia CUDA
(Computer Unified Device Architecture). The main aim of
the comparison developed is devoted to deduce which of the
two parallel algorithms is more efficient and whether the
complexity of the problems to be optimized (basically related
to the number of variables involved and the type of operations
carried out) influence the performance of each of them.

This paper is structured as follows: in Section II, the fea-
tures of TLBO and Jaya will be shown; in Section III, the par-
allel approaches of both algorithms based on the manycore
GPU CUDA architecture are explained; Section IV shows
the features and result of the experiments performed; finally,
in Section V, conclusions of the research are summarized and
future works are proposed.

II. TLBO AND JAYA FEATURES
As mentioned before, TLBO and Jaya optimizations algo-
rithms have the advantage of not needing specific parameter
tuning [11]–[25]. They only require general parameters such
as number of iterations and population dimension. Although
they are very similar, TLBO uses two stages each one of
iterations (Teacher and Learning stages), whereas Jaya only
performs one stage each one of the iterations. The Jaya
algorithm has generated a growing interest in many scientific
and engineering areas due to its simplicity and efficiency.
The TLBO algorithm usually converges to the solution faster
than Jaya, but TLBO is more complex than Jaya, not only

for having two stages, but also due to the operations needed
in each stage which are more time-consuming than the ones
of Jaya. In this research work, the original version of the
Jaya and TLBO algorithms will be used, although some new
versions can be found in the literature [26], [27].

A. THE TLBO ALGORITHM
TLBO is an efficient optimization method which has been
used for engineering problems among others [13], [28]–[30].
This method looks for a teacher (best individual) that will
probably cause an influence on the learners (the rest of
individuals) to improve their features. As a population-based
method, it uses a population of individuals (candidate solu-
tions) to infer to the global solution. The TLBO algorithm is
divided into two phases: the first phase is the Teacher Phase
and the second one is the Learner Phase. In the Teacher
Phase, the individuals learn from the teacher (the best solu-
tion of the whole population), and in the Learner Phase the
individuals try to learn by means of the interaction from other
individuals in the population.

The behaviour of the TLBO algorithm is as follows. The
population is created and the initialization of the individuals
(values of the design variables) is made with random data.
After creating the first generation of individuals, the algo-
rithm will iterate updating the population. At the start of each
one of the iterations, the population Teacher (best solution)
is determined and the mean of each design variable is cal-
culated. These data is used in the two main stages of the
algorithm: the Teacher Stage and the Learner Stage. In the
Teacher Stage, the obtained Teacher (Xbest) of the current
generation is used to create a new version of each individual
(Xnew) using the following equation:

Xnew (i, j)=X (i, j)+rand (0, 1) (Xbest (j)−TFactor · Xm (j))

(1)

In (1), X (i, j) corresponds to the design variable j of the
individual i, and it is modified by using the value of the
Teacher Xbest (j), the variable mean Xm(j), and the TFactor.
TFactor can adopt the integer value 1 or 2 and is calculated
using the following expression:

TFactor = round(1+ rand (0, 1)) (2)

After generating a new individual, it is submitted for evalu-
ation. If the evaluation result is better than that of the original
individual, this old individual is replaced by the new one.

In the Learner Stage, each individual is assigned a random
contestant in the population. Both individuals are submitted
for evaluation. The individual with a better evaluation is
labelled as thePartial Teacher, and the other one is labelled as
the Learner, so that they are used to generate a new individual
using the following expression:

Xnew (i, j) = X (i, j)+ rand (0, 1)

· (PartialTeacher (j)− Learner (j)) (3)

When every Xnew(i, j) is generated, the new individual is
evaluated and compared with the original individual. If the

VOLUME 7, 2019 133823



H. Rico-Garcia et al.: Comparison of High Performance Parallel Implementations of TLBO

evaluation of the new individual improves that of the old one,
the new individual replaces the original one.

B. THE JAYA ALGORITHM
The Jaya algorithm is a populated-based optimization
method so as to calculate optimal solutions for con-
strained and unconstrained optimization problems. Unlike
other population-based heuristic algorithms, Jaya has no
algorithm-specific controlling parameter or tuning param-
eters. As in TLBO, only population size and generations
(number of iterations) should be configured. This algorithm
is based on the fact that the optimal solution for a given
problem can be obtained shifting towards the best partial
solution and, at the same time, evading the worst solution.
Compared with other optimization methods, Jaya obtained
better results in terms of best, mean, and worst values of
different unconstrained benchmark functions [16]. Similarly
to TLBO, Jaya has been recently applied to optimizing a wide
variety of engineering problems [31]–[38].

The description of the Jaya algorithm is as follows. Let f (x)
be the objective function to be minimized (or maximized).
At any iteration i, assume that there are n design variables
(i.e. j = 1, 2, . . . , n) and p candidate solutions (i.e. population
size, k = 1, 2, . . . , p). The best candidate obtains the best
value of f (x) (i.e. f (x)best ) in the whole candidate solutions,
and the worst candidate obtains the worst value of f (x)
(i.e. f (x)worst ) in the whole candidate solutions. If Xj,k,i is
the value of the jth variable for the kth candidate during
the ith iteration, then this value is modified by means of the
following equation:

X ′j,k,i = Xj,k,i + r1.j,i
(
Xj,best,i −

∣∣Xj,k,i∣∣)
− r2,j,i(Xj,worst,i −

∣∣Xj,k,i∣∣) (4)

where Xj,best,i is the value of the variable j for the best
candidate, and Xj,worst,i is the value of the variablej for the
worst candidate.

In (4), X ′j,k,i is the updated value of Xj,k,i, and r1,j,i and r2,j,i
are two random numbers in the range [0, 1], for the jth vari-
able computed in the ith iteration. The term r1,j,i (Xj,best,i −∣∣Xj,k,i∣∣) indicates the tendency of the algorithm tomove closer
to the best solution, whereas the term −r2,j,i(Xj,worst,i −∣∣Xj,k,i

∣∣) indicates the tendency of the algorithm to avoid the
worst solution. The new candidate (X ′j,k,i) is accepted only if
it gives a better function evaluation. All the accepted function
values at the end of each one of the iterations are kept, so these
values become the input to the next iteration.

III. PARALLEL IMPLEMENTATION
For the parallel implementation of the algorithms on the
CUDA platform, a solution based on a single kernel has been
used, unlike other solutions from previous works that divide
the different phases and operations of TLBO into several
kernels [39]. The decision to use a single kernel has been
made with the aim of trying to minimize memory transfers
from the CPU to the GPU and their subsequent transfer by

FIGURE 1. Parallel computing scheme and configuration of each block.

the different levels of memory from the GPU to the thread.
The solution proposed in this work for the implementation is
based on the specific CUDA architecture and an attempt has
been made to establish a relationship between the different
levels of organization of the algorithm data and the CUDA
architecture as shown in Fig. 1.

When approaching the implementation of an algorithm
through the use of parallelization techniques on GPUs, and in
this case on the CUDA architecture, there are several factors
that must be taken into account for a correct implementation.
These types of architectures are not general-purpose, so if the
algorithm to be implemented does not meet the requirements
and restrictions (some of them at the programming language
level) of these architectures, there may be some cases in
which the algorithm cannot be implemented correctly or,
if implemented, even worsen the parallel execution of the
algorithm instead of improving performance. Another critical
factor to take into account is memory, both in data transfer
from the CPU to the GPU and its organization to improve
memory access times. With regard to the organization of
the memory carried out in this work, an approach has been
made to enhance memory accesses by the different threads as
one of the key points for improving the efficiency of CUDA
implementation.

For the parallel implementation of TLBO and Jaya, the full
set of GPU cores was divided into blocks. Each block is
independent from the others and performs an independent
run of the algorithm. At the same time, cores into a block
were configured in a 2D array, so that each thread is executed
on a single core. Threads within the same block share data
through a shared memory bank, so each row within a block
corresponds to an individual (candidate solution), whereas
each column within a row corresponds to a design variable.
In this way, each thread performs a partial evaluation of the
individual, so a reduction operation is required for obtaining
the overall evaluation (usually the addition of the partial
evaluations from each thread), which is carried out by the first
thread within an individual’s row.

133824 VOLUME 7, 2019



H. Rico-Garcia et al.: Comparison of High Performance Parallel Implementations of TLBO

Algorithm 1 Skeleton of the Parallel TLBO GPU
Implementation
1:for Run = 1 to Runs in parallel do //GPU block B
2: for all threads(i,j)∈(Pop,VARS) in parallel do
3: CreatePopulation(i,j) //Create new Population
4: EvaluatePopulation(i,j) //Evaluate function F
5: SyncThreads
6: for iter = 1 to Iterations do
7: teacher = GetBest(Pop) //Get best solution
8: SyncThreads()
9: CalculateMean(j) //Compute mean of

each j ∈ VARS
10: SyncThreads()
11: TeacherStage(i,j,teacher)
12: SyncThreads()
13: LearnerStage(i,j)
14: SyncThreads()
15: end for
16: Store(GetBest(Pop))
17: end for
19:end for //Sequential host code:
20:Obtain Best Solution and Statistical Data

Algorithm 2 Teacher Stage Function for Thread(I, J) Using
Teacher
1: TeacherStage(i,j,teacher) ∈ (Pop,VARS,Pop)
2: { 3: r = ObtainRandomNumber()
4: t_factor = ObtainTFactor()
5: varnew (i,j)=

GenerateNewIndividual(r,t_factor,
teacher)
6: Fnew(i) = EvaluateNewIndividual
(varnew)
7: SyncThreads
8: if Fnew(i)<F(i) then var(i,j) = varnew(i,j)
9: }

Algorithm 3 Learner Stage Function for Thread(i,j)
1: LearnerStage(i,j) ∈ (Pop,VARS)
2: {
3: learner = ObtainRandomLearnerFromPopulation()
4: (r1,r2) = ObtainRandomNumbers()
5: (best,worst) = CompareLearnerWithIndividual()
6: varnew(i,j) =

GenerateNewIndividual(best,r1,worst,r2)
7: Fnew(i) = EvaluateNewIndividual(varnew)
8: SyncThreads
9: if Fnew(i)<F(i) then var(i,j) = varnew(i,j)
10:}

The parallel implementation of TLBO and the different
phases which are carried out in each of the iteration are
explained in Algorithm 1, Algorithm 2 (Teacher stage) and
Algorithm 3 (Learner stage). The parallel implementation of
Jaya is shown in Algorithm 4. As it can be observed, Jaya is
much simpler than TLBO.

One of the problems to be solved in the implementation
has been the memory restriction that CUDA has within the
different levels of granularity (shared memory at block level
and registers at thread level), which has led to an organiza-
tion of the variables used at different levels to ensure that
the complete execution of the algorithm does not need to
perform memory transfers from the GPU to host or between
the different levels of memory within the GPU. Another
noteworthy point that has been taken into account in the

Algorithm 4 Skeleton of the Parallel Jaya GPU
Implementation
1:for Run = 1 to Runs in parallel do //GPU block B
2: for all threads(i,j)∈(Pop,VARS) in parallel do
3: CreatePopulation(i,j) //Create new Population
4: EvaluatePopulation(i,j) //Evaluate function F
5: SyncThreads
6: for iter = 1 to Iterations do
7: best = GetBest(Pop) //Gets best solution
8: worst = GetWorst(Pop) //Gets worst solution
9: SyncThreads()
10: (r1,r2) = ObtainRandomNumbers()
11: varnew(i,j) =

GenerateNewIndividual(i,best,r1,worst,r2)
12: SyncThreads()
13: Fnew(i) = EvaluateNewIndividual(varnew)
14: SyncThreads()
15: if Fnew(i)<F(i) then var(i,j) = varnew(i,j)
16: end for
17: Store(GetBest(Pop))
18: end for
19:end for
20://Sequential host code:
21:Obtain Best Solution and Statistical Data

implementation of the algorithm has been the blocking of the
threads to perform operations (by using the specific function
‘‘syncthreads’’). In the current literature, it is common to find
references to this fact as a critical issue in CUDA implemen-
tations [40], [41], as it stops the parallel execution of threads,
forcing a stop in the threads until all the threads complete
the execution to that extent. In the parallel implementations,
this instruction is used for all those situations where individ-
uals must be compared or reduction calculations or function
evaluation must be performed. These stops of the threads
make the efficiency of the GPU to be hampered, so its use
should be avoided as much as possible. Due to the nature of
the algorithm that is being implemented, the synchronization
ordermust be used in different points for a correct functioning
of the parallel implementation; in addition, if the stops are not
done correctly, this can lead to the use of incorrect data in the
calculations to be performed. In Fig. 2 and Fig. 3, diagrams
representing the implementation of each algorithm in CUDA
are shown. In these diagrams, it can be observed the use of the
blockages at thread level and the parallel reduction methods
mentioned above.

As it can be seen in Fig. 2 and Fig. 3, the complexity
of TLBO is much greater than that of Jaya, with a greater
number of blockages, reductions and calculations necessary
for its different phases. The extra computational complexity
of TLBO achieves on the one hand the power to converge in a
smaller number of iterations towards a valid solution; on the
other hand, the use of the Teacher and Learner phases tries
to avoid one of the big problems that this type of algorithms
have: to converge on a local minimum. The use of the Learner
phase aims to try to avoid this problem, using not only the
reference of the best for the mutation of individuals (Teacher)
but also to use other individuals among the population so
as to generate mutations and evaluate them. With all this,
the different nature of the functions to be minimized and

VOLUME 7, 2019 133825



H. Rico-Garcia et al.: Comparison of High Performance Parallel Implementations of TLBO

FIGURE 2. Representation of the Parallel TLBO CUDA implementation blocks and the two stages of the algorithm.

FIGURE 3. Representation of the Parallel Jaya CUDA implementation blocks and the syncthreads() needed.

the complexity of their calculation will take on an important
weight when it comes to influencing the execution times of
both algorithms. In some cases, optimization with Jaya may
be favored, and although Jaya may need more iterations to be
able to converge to the solution, it is possible that it will do
so in a shorter time than TLBO.

IV. EXPERIMENTATION
The comparison of the CUDA parallel implementations of
TLBO and Jaya was carried out using five unconstrained
functions which are part of a well-known benchmark in sev-
eral works about optimization [15]. The formal definition of
each one of these functions is shown in Table 1. For each func-
tion, there are several parameters to tune within the different
scenarios, as shown in Table 2. Some of these parameters
are set following other works [6], whereas others are set
after analysing the experimentation results and deducing the

way in which those parameters affect the main characteristics
needed for this study, like the number of iterations to find a
valid solution and the execution time spent to find it.

For performing the experimentation, each function has
been assigned the number of variables recommended in dif-
ferent research papers, and the population size has been
modified for a better comparison of the algorithms. In this
experiment, an admissible error level has been defined for
each function so as to consider a result as a feasible solution
and, therefore, to finish the execution. As seen before, Jaya is
simpler than TLBO. This fact implies that Jaya parallelization
is also simpler to implement in CUDA than TLBO. The main
aim of the experiments consists in determining if the higher
simplicity of Jaya is enough for it to achieve a greater speed
when obtaining an admissible solution or, on the contrary,
there are other features of both algorithms that have a greater
influence on this performance index.

133826 VOLUME 7, 2019



H. Rico-Garcia et al.: Comparison of High Performance Parallel Implementations of TLBO

TABLE 1. Definition of the evaluated functions.

TABLE 2. Characteristics of the evaluated functions.

The hardware used for the experimentation integrates an
Intel i7 CPU at 3.4 GHz with 16GB of RAM. The GPU used
for the parallel execution integrates an NVidia GeForce GTX
1060Ti with 4GB of RAM. This GPU has a Pascal archi-
tecture and the host runs the 9.1 CUDA version. The only
parameter required was the population size, that is, the num-
ber of individuals, which took the values 8, 16, and 32. Each
algorithmwas run 32 times with the different population sizes
so as to obtain average performance results. The execution
of the algorithms was aimed at optimizing each of the six
functions, that is, at obtaining an accurate approximation of
each function’s minimal.

It is worthwhile mentioning that in [15] it is demon-
strated that the parallel, CUDA-based implementation of
Jaya achieves higher performance than the sequential imple-
mentation. Therefore, comparing both implementations again
would be redundant, so just the parallel implementations of
Jaya and TLBO have been submitted for comparison.

To make the comparison of the manycore GPU imple-
mentations of the algorithms, the following results will be

taken into account (all of them calculating the average values
of 32 runs for each algorithm):
• Iter: Average number of iterations needed to find a valid
solution of the function

• Time: Average execution time of the algorithm
(seconds).

• Eval: Total number of evaluations of the function when
executing the algorithm.

• Iter time: Average execution time by iteration of the
algorithm.

FIGURE 4. Iterations performed by Jaya and TLBO so as to achieve the
required precision. Logarithmic scale.

FIGURE 5. Speedup obtained by TLBO with regard to Jaya for the
different functions optimized.

Results are shown in Table 3 and graphically depicted
in Fig. 4 and Fig. 5. In Table 3, the shortest running time
(seconds) for each of the functions and for each algorithm
is shown in boldface. Moreover, Fig. 4 shows the number of
iterations performed by both Jaya and TLBO to achieve the
required precision for each function evaluated with different
population sizes (8, 16 or 32 individuals). In this graph,
a logarithmic scale is used for the Y axis (number of iter-
ations), while the X axis indicates the functions evaluated
with different population sizes (Fi-s, where Fi is the function

VOLUME 7, 2019 133827



H. Rico-Garcia et al.: Comparison of High Performance Parallel Implementations of TLBO

TABLE 3. Performance indexes for parallel jaya and TLBO.

identifier as shown in Table 1 and Table 2, and s is the
population size). On the other hand, the speedup obtained
by TLBO with regard to Jaya, in terms of total execution
time for each function evaluated with different population
size, is shown in Fig. 5; a value in this index greater than 1
in the Y axis indicates that TLBO outperforms Jaya; in the
X axis, the same identifiers (Fi-s) are used for the function
evaluated and the population size as in Fig. 4. It can be
observed that, in general, TLBO performs better than Jaya
since the former needs a smaller number of iterations. This is
a rather unexpected fact, because Jaya was a priori expected
to have a better performance than TLBO due to the fact
that the latter has two stages (Teacher and Learner phases)
instead of one and, moreover, it includes some extra opera-
tions each iteration, such as the calculation of the mean value
for each design variable. This fact is reflected in the iteration
time, since Jaya iterations are most times faster than TLBO
iterations. However, the higher complexity of TLBO seems
to help achieving a faster convergence rate. On the other

hand, it is worthwhile mentioning that Jaya performance
is similar to the one of TLBO when dealing with a small
number of variables (function F4 Matyas and F5 Easom).
Indeed, Jaya performs better in case of function F4 for the
different population sizes tested. In general, the higher TLBO
speedup is obtained when optimizing functions using large
populations. Another relevant result comes from analyzing
the relation between time and population: although it could be
expected to achieve faster convergence with a larger number
of individuals, the results contradict this assumption, since
both algorithms generally achieve the required precision in a
faster way with populations of 8 or 16 individuals.

In the development environment provided by NVidia for
CUDA, a tool is included to help programmers extract infor-
mation about program running, running traces, and the sta-
tus of GPU resources. This tool is NVidia Visual Profiler.
With NVidia Visual Profiler, GPU programmers can access
valuable information about the status of the GPU and its
resources while running parallel programs, which helps guide

133828 VOLUME 7, 2019



H. Rico-Garcia et al.: Comparison of High Performance Parallel Implementations of TLBO

FIGURE 6. Analysis of CUDA performance obtained by TLBO (upper) and Jaya (lower).

them through potential problems or bottlenecks (especially in
memory usage, blockages, and GPU occupancy). The CUDA
analysis of the performance of parallel Jaya and TLBO using
NVidia Visual Profiler is shown in Fig. 6, with regard to
the efficiency of the warps (a warps is a set of 32 threads
which run synchronously) and the distribution of stalls within
the execution of each thread. With regard to the efficiency,
the values of both algorithms are similar, exceeding 84% in
both cases. With regard to the stall distribution, it can be
observed that TLBO has a much greater dependency on the
execution itself than Jaya (33.27% versus 19.25%), while
Jaya spends a higher percentage of time on the synchroniza-
tion of threads than that of TLBO (41.84% versus 35.61%).
Moreover, it can be observed that the memory dependencies
percentage is similar for both algorithms (about 11.5%).

V. CONCLUSION
In this work, a comparison of Jaya and TLBO, two recent
optimization algorithms, is carried out. Both algorithms are
implemented in a manycore implementation using CUDA on

a GPU platform. For comparing the implementations five
unconstrained functions, which are part of a well-known
benchmark, are used. The only parameters which need to
be set for both algorithms are population size, number of
iterations, and number of runs. The indices calculated so as
to compare the implementations of Jaya and TLBO were the
iterations needed to find a valid solution and the time spent
for performing such number of iterations.

As expected, results show that the iteration time of TLBO
if higher than that of Jaya. This fact is due to the higher
complexity of TLBO, since each iteration of the algorithm
implies two stages whereas Jaya only performs one stage;
moreover, TLBO has more time-consuming operations such
as computing the mean of each variable design. However,
with regard to the average time needed to find a valid solution,
TLBO is generally faster than Jaya. That is, TLBO requires
fewer iterations than Jaya to converge in an admissible solu-
tion. Therefore, although Jaya iterations are faster than the
ones of TLBO, the higher complexity of the latter seems to be
a major factor to help achieving an optimal solution by using

VOLUME 7, 2019 133829



H. Rico-Garcia et al.: Comparison of High Performance Parallel Implementations of TLBO

much fewer iteration, so the overall time required is usually
higher in case of Jaya. On the other hand, it is worthwhile
mentioning that the specific features of the function to be
optimized (mainly the number of design variables) have a
strong influence in the speed of the algorithm with regard to
achieving a required precision: functions with a high number
of variables are more suitable to be optimized by TLBO,
while functions with a small number of variables are more
suitable to be optimized with Jaya. Finally, a conclusion that
can be applied to both algorithms comes from observing
the results related to the different population sizes tested: in
general, larger populations (32 individuals) do not lead to a
faster convergence, but most of the time a population of 16 or
even 8 individuals is enough to achieve the required precision.

As a future work, new benchmark functions used in other
works should be added to follow with a deeper comparison of
Jaya and TLBO. Furthermore, there are new versions of the
Jaya and TLBO algorithms improving their results. There-
fore, it will be very interesting to create a CUDA parallel
version of these improvements of both algorithms and to com-
pare them with the older versions. Finally, another interesting
work could be to perform parallel implementations of Jaya
and TLBO addressed to other parallelism techniques or plat-
forms and to compare them with the CUDA implementations
of Jaya and TLBO proposed in this work.

REFERENCES
[1] A. J. Umbarkar, M. S. Joshi, and P. D. Sheth, ‘‘OpenMP dual population

genetic algorithm for solving constrained optimization problems,’’ Int. J.
Inf. Eng. Electron. Bus., vol. 7, no. 1, pp. 59–65, 2015.

[2] R. Baños, J. Ortega, and C. Gil, ‘‘Comparing multicore implementations of
evolutionary meta-heuristics for transportation problems,’’ Ann. Multicore
GPU Program., vol. 1, no. 1, pp. 9–17, 2014.

[3] R. Baños, J. Ortega, and C. Gil, ‘‘Hybrid MPI/OpenMP parallel evolution-
ary algorithms for vehicle routing problems,’’ in Proc. Eur. Conf. Appl.
Evol. Comput., Granada, Spain, 2014, pp. 653–664.

[4] P. Delisle, M. Krajecki, M. Gravel, and C. Gagné, ‘‘Parallel implemen-
tation of an ant colony optimization metaheuristic with OPENMP,’’ in
Proc. 3rd Eur. Workshop OpenMP (EWOMP), Barcelona, Spain, 2001,
pp. 8–12.

[5] Y. Tan and K. Ding, ‘‘A survey on GPU-based implementation of
swarm intelligence algorithms,’’ IEEE Trans. Cybern., vol. 46, no. 9,
pp. 2028–2041, Sep. 2016.

[6] G.-H. Luo, S.-K. Huang, Y.-S. Chang, and S.-M. Yuan, ‘‘A parallel Bees
Algorithm implementation on GPU,’’ J. Syst. Archit., vol. 60, pp. 271–279,
Mar. 2014.

[7] A. Delévacq, P. Delisle, M. Gravel, and M. Krajecki, ‘‘Parallel ant colony
optimization on graphics processing units,’’ J. Parallel Distrib. Comput.,
vol. 73, pp. 52–61, Jan. 2013.

[8] L.Mussi, F. Daolio, and S. Cagnoni, ‘‘Evaluation of parallel particle swarm
optimization algorithms within the CUDA architecture,’’ Inf. Sci., vol. 181,
pp. 4642–4657, Oct. 2011.

[9] L. de P. Veronese and R. A. Krohling, ‘‘Differential evolution algorithm on
the GPU with C-CUDA,’’ in Proc. IEEE Congr. Evol. Comput., Jul. 2010,
pp. 1–7.

[10] Y. Zhou and Y. Tan, ‘‘GPU-based parallel particle swarm optimization,’’ in
Proc. IEEE Congr. Evol. Comput., May 2009, pp. 1493–1500.

[11] R. V. Rao and V. Patel, ‘‘An elitist teaching-learning-based optimization
algorithm for solving complex constrained optimization problems,’’ Int.
J. Ind. Eng. Comput., vol. 3, no. 4, pp. 535–560, Jul. 2012.

[12] R. V. Rao and V. Patel, ‘‘Comparative performance of an elitist teaching-
learning-based optimization algorithm for solving unconstrained opti-
mization problems,’’ Int. J. Ind. Eng. Comput., vol. 4, no. 1, pp. 29–50,
2013.

[13] R. V. Rao, V. J. Savsani, and D. P. Vakharia, ‘‘Teaching-learning-based
optimization: A novel method for constrained mechanical design opti-
mization problems,’’ Comput.-Aided Des., vol. 43, no. 3, pp. 303–315,
Mar. 2011.

[14] R. V. Rao and V. Patel, ‘‘An improved teaching-learning-based optimiza-
tion algorithm for solving unconstrained optimization problems,’’ Scientia
Iranica, vol. 20, no. 3, pp. 710–720, 2013.

[15] A. Jimeno-Morenilla, J. L. Sánchez-Romero, H. Migallón, and
H. Mora-Mora, ‘‘Jaya optimization algorithm with GPU acceleration,’’
J. Supercomput., vol. 75, pp. 1094–1106, Mar. 2019.

[16] R. V. Rao, ‘‘Jaya: A simple and new optimization algorithm for solving
constrained and unconstrained optimization problems,’’ Int. J. Ind. Eng.
Comput., vol. 7, no. 1, pp. 19–34, 2016.

[17] M. Ebraheem and T. R. Jyothsna, ‘‘Comparative performance evaluation
of teaching learning based optimization against genetic algorithm on
benchmark functions,’’ in Proc. IEEE Power, Commun. Inf. Technol. Conf.
(PCITC), Oct. 2015, pp. 327–331.

[18] S. R. Shah and S. B. Takmare, ‘‘A review of methodologies of TLBO
algorithm to test the performance of benchmark functions,’’ Program.
Device Circuits Syst., vol. 9, no. 7, pp. 141–145, 2017.

[19] R. Azizipanah-Abarghooee, M. Malekpour, M. Zare, and V. Terzija,
‘‘A new inertia emulator and fuzzy-based LFC to support inertial and
governor responses using Jaya algorithm,’’ in Proc. IEEE Power and
Energy Soc. Gen. Meeting (PESGM), Jul. 2016, pp. 1–5.

[20] K. Abhishek, V. R. Kumar, S. Datta, and S. S. Mahapatra, ‘‘Application of
JAYA algorithm for the optimization of machining performance character-
istics during the turning of CFRP (epoxy) composites: Comparison with
TLBO, GA, and ICA,’’ Eng. Comput., vol. 33, pp. 457–475, Jul. 2017.

[21] M. Bhoye,M. H. Pandya, S. Valvi, I. N. Trivedi, P. Jangir, and S. A. Parmar,
‘‘An emission constraint economic load dispatch problem solution with
microgrid using JAYA algorithm,’’ in Proc. Int. Conf. Energy Efficient
Technol. Sustainability (ICEETS), Apr. 2016, pp. 497–502.

[22] I. N. Trivedi, S. N. Purohit, P. Jangir, and M. T. Bhoye, ‘‘Environment
dispatch of distributed energy resources in a microgrid using JAYA algo-
rithm,’’ in Proc. 2nd Int. Conf. Adv. Elect. Electron. Inf. Commun. Bio-
Inform. (AEEICB), Feb. 2016, pp. 224–228.

[23] S. Mishra and P. K. Ray, ‘‘Power quality improvement using photovoltaic
fed DSTATCOM based on JAYA optimization,’’ IEEE Trans. Sustain.
Energy, vol. 7, no. 4, pp. 1672–1680, Oct. 2016.

[24] A. J. Umbarkar, N.M. Rothe, andA. S. Sathe, ‘‘OpenMP teaching-learning
based optimization algorithm over multi-core system,’’ Int. J. Intell. Syst.
Appl., vol. 7, no. 7, pp. 57–65, 2015.

[25] R. V. Rao and G. G.Waghmare, ‘‘A new optimization algorithm for solving
complex constrained design optimization problems,’’ Eng. Optim., vol. 49,
no. 1, pp. 60–83, 2016.

[26] X. He, J. Huang, Y. Rao, and L. Gao, ‘‘Chaotic teaching-learning-based
optimization with Lévy flight for global numerical optimization,’’Comput.
Intell. Neurosci., vol. 2016, p. 43, Jan. 2016, Art. no. 8341275.

[27] J. Yu, C. H. Kim, A. Wadood, T. Khurshiad, and S.-B. Rhee, ‘‘A novel
multi-population based chaotic JAYA algorithmwith application in solving
economic load dispatch problems,’’ Energies, vol. 11, no. 8, p. 1946, 2018.

[28] K. V. Rao, ‘‘Power consumption optimization strategy in micro ball-
end milling of D2 steel via TLBO coupled with 3D FEM simulation,’’
Measurement, vol. 132, pp. 68–78, Jan. 2019.

[29] Z. Nadeem, N. Javaid, A. W. Malik, and S. Iqbal, ‘‘Scheduling appliances
with GA, TLBO, FA, OSR and their hybrids using chance constrained
optimization for smart homes,’’ Energies, vol. 11, no. 4, p. 888. 2018.

[30] A. Mishra and D. Shrivastava, ‘‘A TLBO and a Jaya heuristics for permu-
tation flow shop scheduling to minimize the sum of inventory holding and
batch delay costs,’’ Comput. Ind. Eng., vol. 124, pp. 509–522, Oct. 2018.

[31] R. V. Rao, H. S. Keesari, P. Oclon, and J. Taler, ‘‘An adaptive multi-team
perturbation-guiding Jaya algorithm for optimization and its applications,’’
Eng. Comput., pp. 1–29, 2019. doi: 10.1007/s00366-019-00706-3.

[32] S. Xu, Y. Wang, and Z. Wang, ‘‘Parameter estimation of proton exchange
membrane fuel cells using eagle strategy based on JAYA algorithm and
Nelder-Mead simplex method,’’ Energy, vol. 173, pp. 457–467, Apr. 2019.

[33] R. V. Rao and H. S. Keesari, ‘‘Multi-team perturbation guiding Jaya algo-
rithm for optimization of wind farm layout,’’ Appl. Soft Comput., vol. 71,
pp. 800–815, Oct. 2018.

[34] R. V. Rao and A. Saroj, ‘‘A self-adaptive multi-population based Jaya
algorithm for engineering optimization,’’ Swarm Evol. Comput., vol. 37,
pp. 1–26, Dec. 2017.

133830 VOLUME 7, 2019

http://dx.doi.org/10.1007/s00366-019-00706-3


H. Rico-Garcia et al.: Comparison of High Performance Parallel Implementations of TLBO

[35] M. Gambhi and and S. Gupta, ‘‘Advanced optimization algorithms for grat-
ing based sensors: A comparative analysis,’’ Optik, vol. 164, pp. 567–574,
Jul. 2018.

[36] S. Ghavidel, A. Azizivahed, and L. Li, ‘‘A hybrid Jaya algorithm for
reliability-redundancy allocation problems,’’ Eng. Optim., vol. 50, no. 4,
pp. 698–715, 2018.

[37] R. V. Rao, A. Saroj, and S. Bhattacharyya, ‘‘Design optimization of heat
pipes using elitism-based self-adaptive multipopulation Jaya algorithm,’’
J. Thermophys. Heat Transf., vol. 32, no. 3, pp. 702–712, 2018.

[38] L. Wang, C. Huang, and L. Huang, ‘‘Parameter estimation of the soil water
retention curve model with Jaya algorithm,’’ Comput. Electron. Agricult.,
vol. 151, pp. 349–353, Aug. 2018.

[39] S. S. Ramanlal and S. S. Krishna, ‘‘GPU implementation of TLBO algo-
rithm to test constrained and unconstrained benchmark functions,’’ inProc.
Int. Conf. Comput. Anal. Secur. Trends (CAST), Dec. 2016, pp. 544–549,

[40] S. Xiao andW.-C. Feng, ‘‘Inter-block GPU communication via fast barrier
synchronization,’’ in Proc. IEEE Int. Symp. Parallel Distrib. Process.
(IPDPS), Apr. 2010, pp. 1–12.

[41] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and
W.-M. W. Hwu, ‘‘Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA,’’ in Proc. 13th SIGPLAN
Symp. Princ. Pract. Parallel Program., 2008, pp. 73–82.

H. RICO-GARCIA was born in Alicante, Spain,
in 1982. He received the degree in computer
systems engineering and the master’s degree in
information technology from the University of
Alicante, Spain, where he is currently pursuing
the Ph.D. degree. His research interests include
high-performance computer architecture, embed-
ded systems, the Internet of Things, and cloud
computing paradigm.

JOSE-LUIS SANCHEZ-ROMERO was born in
Elche, Spain, in 1970. He received the Ph.D.
degree from the University of Alicante, Spain,
in 2009, where he is currently a tenured Associate
Professor with Computer Technology Department.
He also has relevant experience in the research
of computer science teaching improvement. His
research interests include high-performance com-
puter architecture, computer arithmetic, and
CAD/CAM systems.

A. JIMENO-MORENILLA was born in Spain,
in 1970. He received the Ph.D. degree from the
University of Alicante, Spain, in 2003, where
he is currently a Full Professor with Computer
Technology Department. He also has consider-
able experience in the investigation of professional
skills of computer engineers. His research interests
include computational geometry for design and
manufacturing, rapid and virtual prototyping, and
high-performance computer architectures.

H. MIGALLON-GOMIS received the degree in
physics and the Electronic Engineering degree
from the University of Valencia, and the Ph.D.
degree, in 2005. He is currently an Associate
Professor with the Computer Engineering Depart-
ment, Miguel Hernández University, Elche, Spain.
He is amember of the ‘‘Architecture and Computer
Technology’’ Research Group, Miguel Hernández
University, and the ‘‘High Performance Comput-
ing and Parallelism’’ Research Group, University

of Alicante. His main research interests include parallel algorithms for
solving linear and nonlinear systems, parallel algorithms for image and video
processing, parallel heuristic optimization algorithms, and parallel high-level
interfaces for heterogeneous platforms.

H. MORA-MORA received the Ph.D. degree in
computer science from the University of Alicante,
Spain, in 2003, where he is currently an Associate
Professor with Computer Technology Department.
His research interests include computer modeling,
computer architectures, high-performance com-
puting, embedded systems, the Internet of Things,
and cloud computing paradigm.

R. V. RAO is currently a Professor of mechanical
engineering and the Dean (Faculty Welfare) of the
Sardar Vallabhbhai National Institute of Technol-
ogy, Surat, India. He has about 28 years of teaching
and research experience. He has authored more
than 350 research articles published in various
international journals and conference proceedings.
His research interests include advanced engineer-
ing optimization techniques and their applications
to the problems of design, thermal, and manufac-

turing engineering. He is also on the editorial boards of various international
journals.

VOLUME 7, 2019 133831


	INTRODUCTION
	TLBO AND JAYA FEATURES
	THE TLBO ALGORITHM
	THE JAYA ALGORITHM

	PARALLEL IMPLEMENTATION
	EXPERIMENTATION
	CONCLUSION
	REFERENCES
	Biographies
	H. RICO-GARCIA
	JOSE-LUIS SANCHEZ-ROMERO
	A. JIMENO-MORENILLA
	H. MIGALLON-GOMIS
	H. MORA-MORA
	R. V. RAO


