Evaluating HEVC Video Delivery in VANET
Scenarios

P. Pifiol*, A. Torres!, O. Lépez*, M. Martinez* and M.P. Malumbres*
*Departamento de Fisica y Arquitectura de Computadores
Universidad Miguel Herndndez de Elche
Email: {pablop, otoniel, mmrach, mels} @umbh.es
fDepartment of Computer Engineering
Universidad Politécnica de Valencia
Email: atcortes@batousay.com

Abstract—Video delivery over VANET: is a difficult task. On
the one hand, video streaming is a demanding application, where
big deals of data need to be processed and transmitted. On the
other hand, VANETSs are error prone networks due to the high
mobility of the nodes and the wireless channel. The sum of these
two factors makes video transmission a hard to manage task. In
this paper we evaluate the new emerging video coding standard
HEVC and how it behaves under packet losses conditions in a
VANET.

Keywords—HEVC, VANET, packet loss, error concealment.

I. INTRODUCTION

Video transmission over all kinds of networks is a field that
has kept growing in the last years. Nowadays the improvements
in network properties (increasing bandwidth in ADSL, 4G
cellular networks, etc.) together with a larger efficiency of
video codecs and an increase in processing ability and storing
capacity of all kinds of devices (desktop computers, smart-
phones, tablet computers, ...) help making video streaming
feasible. Lots of applications use video streaming, being video-
sharing, advertising and video-conferencing three of the most
widely spread.

Digital uncompressed videos contain large amounts of data.
This is the reason why video codecs play an important role,
as they are able to compress video sequences with large frame
sizes and frame rates into relatively small bitstreams while
keeping the quality of perception acceptable. The continuous
improvements in the efficiency of video codecs are bound to an
increase in their computational complexity. This complexity is
partly alleviated by the growing computation ability of devices
and by other techniques like parallel computing.

Communication networks is an area where data packet
losses are encountered to a greater or a lesser extent. These
losses are more pronounced in wireless networks and specifi-
cally even more considerable in VANETSs (Vehicular Ad-Hoc
Networks). VANETSs are inhospitable environments for data
transmission, even for basic data used for the management of
the network itself. Wireless transmission and a high relative
speed of nodes produce consequences like attenuation of signal
caused by obstacles, Doppler Effect caused by relative speed,
rapidly varying network topology caused by vehicles taking
different routes, etc. So, video transmission over VANETS
is a hard to manage task due to the combination of the

high requirements of digital video and the hard conditions of
the network. Nevertheless, video streaming can have multiple
applications in VANETS, like context advertising, emergency
video calls, tourist information, road conditions, control of
traffic jams, ...

The mechanisms that reduce the number of lost packets
at network level are useful and necessary. They are usually
based on the introduction of certain levels of redundancy in the
information which allows to retrieve some of the lost packets
(or even all of them). But, in spite of these mechanisms,
there are always some inevitable losses. In video streaming,
data losses are not only produced by lost packets. Also,
packets that arrive too late to be useful are discarded. So,
techniques like traffic classification and priorization can also
play an important role in data protection. In addition to the
protection of packets at network level, data can be protected at
application level. A simple example of this type of protection is
buffering. Buffering allows enjoying watching a video without
(excessive) interruptions in networks with an appreciable jitter.

In video streaming, as well as general techniques like
buffering, we can use ad-hoc protection. When decoding a
video stream which has some missing parts, not all the pieces
of information have the same importance for the reconstruction
of the video. The loss of certain packets will affect more than
the loss of others in the final quality of the reconstructed video.
For example, the loss of a frame used as a reference for other
frames will bring a greater degradation of the reconstructed
video than the loss of a frame which is not used as a
reference by any other frame. This means that we can assign
an “intelligent” protection to the packets in such a way that
the more important a packet is, the larger the effort is made
to protect it. Also, at encoding time, decisions can be made
in order to make the coded sequence more or less resilient to
errors and their propagation along the video sequence.

The aim of this work is to study how the new and
emerging standard on video coding HEVC (High Efficiency
Video Coding) [1] behaves when dealing with packet losses in
VANET scenarios. It pretends to be useful for designing and
implementing mechanisms of error resilience and concealment
for this standard which will allow to palliate the damage that
packet losses cause on the final quality of reconstructed video.

Different studies can be found about HEVC efficiency,
usually comparing it with the previous standard H.264/AVC

(Advanced Video Coding), like [2] and [3]. One of the first
works that studies HEVC under packet losses conditions is
[4] where the authors developed a framework for evaluating
HEVC encoded content under a range of packet loss, band-
width restriction and network delay scenarios. On the other
hand, several solutions have been proposed for improving
video streaming over VANETSs. Most of these works evaluate
video quality taking only into consideration the percentage of
lost packets [5]. In [6] and [7] the authors propose network
solutions for the delivery of video over VANETSs (by measuring
video quality in an analytical way). Our work evaluates HEVC
video transmission over VANETs in a more realistic way.
First, VANET simulators are used to implement scenarios
with real world maps. Then, real HEVC encoded video is
streamed through these scenarios. At last, reconstructed videos
are obtained and video quality with respect to the zero-loss
video sequence is measured.

The rest of the paper is structured as follows. In Section IT
a brief description of HEVC is presented, highlighting the new
features which are different from its predecesors. In Section III
it is described the environment where the tests have been
done. Section IV explains the results obtained for the different
configurations that we have tested. At last, in Section V, several
conclusions are drawn.

II. HEVC

In 2004 and 2007 ITU-T VCEG (Video Coding Experts
Group) and ISO/IEC MPEG (Moving Pictures Experts Group),
respectively, began the research on new techniques to improve
the previous video coding standard, H.264/AVC. By 2010 the
two organisms joined their forces, formed the JCT-VC (Joint
Collaborative Team on Video Coding) and issued a Call for
Proposals for the development of a new standard. The aim of
the project was doubling the coding efficiency of H.264/AVC,
this is, achieving a 50% reduction in bit rate at the same level
of quality. On January 25, 2013 the new standard, HEVC, was
agreed. Some works discuss if the real improvement of the
new standard over the previous one has reached the proposed
goal or not. What seems clear is that HEVC outperforms
H.264/AVC and more noticeably at very high resolutions.

HEVC is very similar to H.264/AVC. They follow the
same hybrid compression scheme. First, a frame is divided
into small blocks and some estimation and compensation is
done. Estimation searchs for similar pixels around the block
in the same frame (intrapicture) or for a similar block in
other (previously coded and decoded) frames (interpicture)
and produces a “block prediction”. Compensation substracts
that “prediction” from the present block. Then the residuum is
transformed into the frequency space. The coefficients obtained
by this operation are then quantized in order to reduce the
number of bits needed to represent them. The quantized
coefficients are, finally, entropically coded to further compress
the bitstream. The coded frame is then decoded and kept in
a buffer so it can be taken as a reference for other frames. A
good overview of the new emerging standard is provided by
some of the members of JCT-VC in [8].

Although HEVC and H.264/AVC share the same compres-
sion scheme, there are some differences between them which
allow HEVC outperforming H.264/AVC. In H.264/AVC the

small units in which a frame is divided have a fixed size
of 16x16 luma data samples (and its correspondant chroma
samples) and are called MacroBlocks (MB). In HEVC these
units are called Coding Tree Units (CTU) and can have a
size of 16x16, 32x32 or 64x64 luma samples. When coding
large homogeneous regions in a frame, large blocks behave
much better than small blocks. The number of intrapicture
prediction modes has been increased from 10 (H.264/AVC) to
25 (HEVC). These new modes allow to get a better prediction
of the current coding unit and therefore residual samples are
smaller and provide higher compression rates. A deblocking
filter is used both in H.264/AVC and HEVC. After deblocking,
and before using the reconstructed frame as a reference for
motion estimation, a new process is introduced in HEVC:
Sample Adaptive Offset (SAO) allows a better reconstruction
of samples by classifying groups of them and applying a differ-
ent offset for each group. This method increases the quality of
the reconstructed frames. The entropy encoder for H.264/AVC,
CABAC (Context Adaptive Binary Arithmetic Coder), has
been upgraded and made more efficient in HEVC. Two new
structures have been defined in HEVC that did not exist in
H.264/AVC: tiles and WPP (Wavefront Parallel Processing).
Both of them allow the introduction of parallel processing in
coding and decoding frames. Tiles are rectangular regions of
a picture that can be indepently decoded. WPP is a technique
that divides a frame into rows of CTUs. Every row of CTUs
can be indepently encoded (or decoded) after some pieces of
information are gathered which are needed for prediction and
adaptation of the entropy encoder (or decoder). There are more
differences between both codecs. For further information about
HEVC the reader can consult [8].

For our experiments we have used version HM-9.0 of the
HEVC reference software [9]. When HEVC reference software
encodes a video sequence, it produces a bitstream with a
format that is appropriate to be stored in a file. We have
modified reference software (encoder and decoder) to produce
a bitstream which is separated into RTP (Real-time Transport
Protocol) packets in order to transmit them through VANETS
and then reconstruct the decoded video sequence. HEVC
reference software decoder crashes when it tries to decode
a bitstream with missing parts. So we have also modified the
decoder to make it robust against packet losses. This robustness
implies that missing packets will not make the decoder fail
and it will continue decoding the rest of the received RTP
packets. With these modified versions of the encoder and the
decoder we can build the reconstructed version of the video
and measure its quality.

III. FRAMEWORK
A. Simulators

For the tests we have used two main blocks. On the
one hand, an open-source vehicular traffic simulator: SUMO
(Simulation of Urban MObility) [10]. This simulator models
the behaviour of vehicles in urban scenarios, taking into
consideration the interaction of vehicles with other vehicles,
junctions, traffic lights, multilane roads, etc. On the other hand,
we have used OMNeT++ [11] for simulating communications.
OMNeT++ can be considered a framework for building spe-
cific network simulators. So we have used two of the projects
developed for OMNeT++ named MiXiM (Mixed Simulator)

[12] and Veins (Vehicles in Network Simulations) [13]. MiXiM
is a simulator that models fixed and mobile wireless networks.
Veins adds specific IEEE protocols approved for their use in
VANETs (IEEE 802.11p and IEEE 1609 WAVE) to MiXiM.
One of the useful features of Veins is the modeling of the
Control Channel (CCH) and the Service Channels (SCH)
defined by IEEE 1609.4 - Multi-Channel Operation [14].
Another important feature is modeling obstacles which will
attenuate wireless signals in a realistic way. The two blocks:
SUMO and OMNeT++/MiXiM/Veins are connected by TraCI
(TRAffic Control Interface). TraCI creates a TCP connec-
tion between SUMO (TraCl-Server) and OMNeT++ (TraCl-
Client). OMNeT++ can send commands to SUMO to change
the behaviour of vehicles (for example, turning the speed of
a vehicle into 0 in order to simulate an accident). OMNeT++
reads periodically from SUMO the position of every vehicle in
the simulation. The visualization of the experiments is carried
out by OMNeT++ GUI (Graphical User Interface).

B. Add-ons

For the simulations we have developed a module that
allows us to define servers (video transmitters) and clients
(video receivers). A server announces a video service through
the Control Channel periodically at 1 second intervals. These
messages include information with the number of the Service
Channel in which the transmission is taking place. The nodes
of the network listen periodically to the CCH (this is one of the
features of IEEE 1609.4) in order to get beacons from other
vehicles, emergency messages and announcements of services.
After the reception of an announcement of a video service,
a node marked as a client, switches to the specified SCH,
an begins capturing video packets. Client nodes save packet
information and also create files with basic statistics, like the
percentage of lost packets. From the file of received packets
we will obtain the reconstruction of the decoded video in order
to evaluate its quality. We have also introduced another kind
of node: the background traffic source. This node inserts CBR
(constant bit rate) traffic into the network, by injecting packets
of a specified size at an indicated rate (packets per second).

C. Scenario and configurations

Some parameters are common for all the experiments and
some others are changed in order to check the impact of them
in the experiments.

1) Fixed parameters: The scenario in which vehicles move
is an area of 2000m x 2000m located in the city of Kiev, the
capital of Ukraine, obtained from the free geographic data base
OpenStreetMap [15] and converted to SUMO format with the
tools included in SUMO (netconvert, polyconvert). There is a
large avenue of around 2000m that crosses the scenario from
north to south. Three RSUs (Road Side Unit) are positioned
in that avenue. The coverage radius of the wireless signal is
500m. The 3 RSUs are placed in the following way: one node
is in the middle of the main avenue and the other two are
at the beginning and the end of the avenue. These two nodes
have a small zone in which their coverage overlaps with the
middle node coverage. Figure 1 shows three big circles of the
same color (red) which are the 3 RSUs (2 in the edges and
1 in the middle of the scenario). Every time a packet is sent
by an RSU the circle changes its color. There is also a big

Fig. 1. VANET scenario in OMNeT++. (red rectangles = buildings // big
red circles = RSUs // big blue circles = video clients // small black&yellow
squares = background traffic sources // small circles = other vehicles)

circle of another color (blue) which helps us to identify cars
receiving video. Every time a video packet is received its circle
changes its color. These changes of color in RSUs and video
clients helps us to see what is really happening. Background
traffic nodes are represented by a small (black&yellow) square
which also changes its color for every sent packet. At last,
small circles represent other vehicles.

A car driven along this avenue is always reached by the
signal of, at least, one of the RSUs. The maximum vehicle
speed has been stablished to 14 m/s (50.4 km/h). Traffic lights
are active. We have left the physical parameters of the network
interface cards as they are configured in the Veins example
[13]. Every data packet is sent to the network using broadcast.

The 3 RSUs broadcast the same video sequence in a
synchronized way. They synchronize themselves by means of
the infrastructure network. In this manner, when a car moves
into the coverage area of an RSU and leaves the previous
one, it can keep receiving the same video sequence. Typical
applications of this could be contextual advertising or some
kind of information about the city, like tourist information,
local news, traffic jams, etc.

We have also launched the symmetric experiment, in which
a vehicle transmits a coded video to the RSUs, which are
connected to infrastructure networks, in order to send the
video where it may be of any use. Such a transmission could
be useful in the following scenario: a crashed car records a
video including sequences of the condition of the passengers,
an emergency video-call, or the state of the surroudings of
the car (chemical spills, fire, other crashed vehicles, injured
pedestrians, ...). Then it sends the video to another car that

passes near it. This car delivers the video to the RSUs, and the
RSUs forward that video through the infrastructure network.
This is sometimes refered in the literature as “data muling”.
This video could be used by emergency services in order to
help the people in the crashed vehicle, to protect the area near
the accident and also for example to reroute the traffic in the
surroundings.

We have used the video sequence named ‘“Race Horses”
which is one of the sequences used in JCT-VC Common
Conditions [16]. It has a frame size of 832x480 pixels, a frame
rate of 30 frames per second and a total length of 300 frames.
We have coded it with a Quantization Parameter (QP) value
of 37. The coded video sequence is sent through the network
in a cyclic way.

2) Variable parameters: Now we will enumerate the dif-
ferent parameters that we have varied to make comparisons
between the experiments. Some experiments have been done
with no background traffic and no beacons sent by the vehicles.
These experiments try to find out the “practical” minimum of
losses that would appear without any traffic in the network.
These losses are due to collisions in the overlapping zones. The
rest of the experiments have been done with some background
traffic using different packet sizes at different packet rates.

As it has already been mentioned, the coded video se-
quence is sent in a cyclic way. It has been coded using
Lowdelay-P (LP) configuration file from Common Conditions
[16]. LP mode generates a bitstream where the first frame of
the sequence is coded as an I frame and the rest of the frames
are coded as P frames with the restriction that reference frames
are always selected from previous frames (in display order).
This mode is more efficient than All Intra (AI) mode (where all
the frames are coded as I ones) because of temporal estimation
and compensation. LP generates a smaller bitstream and so a
smaller bitrate. This mode is faster than Random Access (RA)
mode because it does not have to wait for future frames (in
display order) to encode or decode the bitstream. RA is more
efficient but slower. Al is faster but less efficient. We have
chosen a compromise between bitrate and coding/decoding
speed.

The first packets of a video sequence are essential for the
decoder to do any decoding. If they are missing the decoding
process simply cannot begin and no reconstructed video can be
built. This is the reason why we assume that the first packets
of a sequence are protected by some network mechanism and
they cannot be missed.

We have coded the original sequence at 1, 2, 4, 8, 13 and
26 slices per frame. Every slice will travel in a different RTP
packet. If we divide a frame in several slices the loss of one
RTP packet will not imply the loss of the complete frame but
only part of it (because slices can be independently decoded).
As slices are independent, compression is not as efficient at 26
slices per frame as at 1 slice per frame. The frame rate of the
sequence is 30 frames per second so we will send 30, 60, 120,
240, 390 an 780 packets per second for each number of slices
per frame, to keep the video frame rate. The more slices per
frame used the smaller the packets will be. This variability in
the size and number of packets per second will lead to diverse
results when competing with other applications for the SCH
(here represented by the injection of background traffic).

Y PSNR (dB) vs Bitrate (kbps)

30,30

2 spf
30,20 1 spf .__.L;‘_La spfq

spf 26 spf
1 spf 4 spf -
30,10 o 8-spf—135pf

26 spf

30,00 R Taspf -3 * -
25 e o
29,90 i Spf 26pf

—o—LPI32
29,80

LP (loss)
29,70 -#= LPI32 (loss)

1 spf 4 spf 8 spf
29,60 -

13 spf 26 spf

29,50

29,40

450 470 490 510 530 550 570 590 610

Fig. 2. Rate-Distortion curves for Lowdelay-P (LP) and Lowdelay-P-132-CDR
(LPI32) modes, without any losses and with simple losses (without background
traffic)

The first experiments were done by using pure LP mode.
This mode only introduces an I frame at the beginning of the
sequence, so when packet losses appear, the error in one slice
“infects” the frames that use this one as reference and there is
a great drift. For alleviating this effect we have modified LP
configuration file and created ‘“Lowdelay-P-132-CDR” (LPI32)
mode. By “I32-CDR” we mean that the encoder inserts an I
CDR frame every 32 frames. In this way an error does not
propagate further than 32 frames away (approximately one
second of video).

IV. RESULTS
A. Rate-Distortion in absence of losses

In Figure 2 we can see the rate-distortion curves for the
video sequence coded in LP and LPI32 modes without any
losses (solid curves). Bitrates for LP mode ranges from 463.83
kbps (when we code it with 1 slice per frame) to 548.81 kbps
(when we code it with 26 slices per frame) with only 0.05
dB of difference in PSNR (Peak Signal-to-Noise Rate). This
means a 18.3% of increase in the bitrate. Such an increase is
due mainly to the overhead introduced by dividing a frame into
so many slices, and is also due to the fact that coding small
parts independently is less efficient than coding the frame as a
whole. We have also found that adding an I CDR frame every
32 frames (in LPI32) increases the bitstream around a 10%
over the pure version of LP and the PSNR value increases
around 0.1 dB.

B. Rate-Distortion with simple losses

The first experiment consists in measuring packet losses in
the absence of background traffic. The client vehicle travels
from the beginning of the avenue until the end, and receives
video packets from each of the 3 RSUs when it is in their
zone of coverage. Packet losses occur only in the areas where
the signals of two RSUs are overlapped. Percentage of losses
is around 0.57% for every combination of slices per frame.
In Figure 2 the dashed curves show the PSNR values of the
video sequence for this “simple” losses. It can be clearly seen
that LP reduces its quality more than LPI32. LPI32 reduces its
quality around 0.20 dB and LP around 0.47 dB. This is due to
the fact that when isolated losses occur, LPI32 recovers very
quickly from errors and LP does not.

C. Percentage of packet losses with background traffic

In Table I we can see the percentage of lost packets at
different background traffic rates (packets per second, packet
sizes) for each of the numbers of slices per frame. First we can
see that data losses are more influenced by the packet rate than
by the packet size. At 30 pps of 512 bytes (122.88 kbps) and
at 30 pps of 1024 bytes (245.76 kbps) the percentages of lost
packets are very similar. A similar behaviour can be seen for
90 pps: doubling the size of the packet (and therefore the data
rate) does not result in a significant packet loss increase. At 780
pps, nearly 1 of every 5 packets gets lost. This rate of losses is
hard to deal with, and especially if we are dealing with video
streaming. This is what would happen if two different video
streams at 26 slices per frame would compete in the same SCH.
Secondly, we can see that for 30 pps and 90 pps traffic, when
the number of slices per frame increases, the percentage of lost
packets decreases. This is because, at high video packet rates,
for example at 26 slices per frame, a high number of video
packets are not competing with background traffic. This may
seem a kind of solution (to increase the number of slices per
frame) but this may make the problem worsen due to channel
saturation, like stated before. So, it seems that keeping the
number of slices per frame at an intermediate level may be a
good compromise.

TABLE 1. PERCENTAGE OF PACKET LOSSES AT DIFFERENT
BACKGROUND TRAFFIC. (PPS=PACKETS PER SECOND / B=BYTES /
SPF=SLICES PER FRAME)

o

[% of losses |[[1spf | 2spf | 4spf | 8spf | 13spf | 26spf |
[30pps/512B [6,9 [4,9 [2,7 [1,6 [1,3 | 0,9 |
| 30pps/1024B |[7,4 [4,6 [2,8 | 1,6 | 1,3 | 1,0 |
[90pps/512B [12,2 | 13,2 [9,5 [5,4 | 3,6 | 2,2 |
| 90pps/1024B [[12,9 | 13,4 | 9,9 | 5,5 | 3,8 | 2,4 |
[780pps/512B][20,1 | 17,9 [18,1 [18,6 | 19,3 [20,5 |
| 780pps/1024B |[19,5 [20,7 [21,3 | 21,6 | 21,9 | 34,5 |

D. PSNR with background traffic

In Figure 3 the rate-distortion curves for the tests of the
previous section have been drawn. As it was clear for the
percentage of lost packets, video quality values also indicate
that packet rate is more important than packet size when trying
to guarantee a certain video quality. Video sequences which
lie under 25 or 26 dB are not suitable for watching. So,
by combining data from Table I and Figure 3 we can state
that percentages of packet losses over 1.3% lead to decoded
sequences in bad conditions for their use. HEVC is very
sensitive to packet losses, even when introducing an I frame
every second.

E. LP vs LPI32

At the first experiments we could state that pure LP mode
would not resist even the minimum packet loss. This becomes
noticeable in the first tests with “simple” losses. That was the
reason for using LPI32 mode for our experiments. Now, we
can see by means of Figure 4 that, when background traffic is
delivered, this situation gets even worse. With a background
traffic of 30 pps and 1024 bytes/packet, LPI32 suffers a drop of
2.76 dB at 26 slices per frame, and a drop of 8.82 dB at 1 slice
per frame. In the same conditions LP suffers a drop of 5.97
dB at 26 slices per frame and 14.95 dB at 1 slice per frame.

Y PSNR (dB) vs Bitrate (kbps)
29,00
26 spf
27,00 13 spf _— |
8 spf
25,00 P —e—30pps/5128
15pf 4 spf —m-30pps/10248
23,00 e —3~ 90pps/512B
T 6 spf
21,00 - T 90pps/10248
2 spf 8spf |13 spf —+—780pps/5128
1 spf P
19,00 2 4;'1,-_ — 780pps/10248
P
17,00 Al—sﬁf;\\l._“ 8 spf| 13-spf 26T
5 4,,{ — i
15,00 I 4sp
500 520 540 560 580 600

Fig. 3. Rate-Distortion curves for Lowdelay-P-132-CDR (LPI32) mode, with
background traffic.

Y PSNR (dB) vs Bitrate (kbps)

30,00 . X K
26 spf|
28,00] o
26,00 spf
24,00 4 spf ——LPI32 w/o losses
2 SPf/I/zs £
22,00 1spf i —m-30pps/1024B LPI32
== LP w/o losses
7000 13 spf 30pps/10248 LP
18,00 asp
16,00 4 spf
1spf ‘2 spf
14,00 - !

450 470 490 510 530 550 570 590 610

Fig. 4. Rate-Distortion curves for Lowdelay-P (LP) and Lowdelay-P-132-
CDR (LPI32) modes, with background traffic.

This indicates that intra refresh improves error resilience of
coded videos in error prone networks (although it may not be
enough).

F. Simple Error Concealment Method

In order to improve video quality results we have mod-
ified the reference software, implementing a simple error
concealment method. If one slice is missing for decoding then
the decoder copies the corresponding slice of the previously
decoded frame. So, instead of a gray area for the missing
slice, we will get an approximation to the lost data. Although
PSNR values do not increase much with this method, it can be
seen from figures 5, 6 and 7 that subjective evaluation shows
an improvement. This is clearly noticed when playing the
sequence. This method is not of much help when severe losses
occur. However, for small percentages of losses, it smooths the
errors and conceals some annoying artifacts.

G. The symmetric experiment

As we have mentioned before, we have also performed
the symmetric experiment. Here, the vehicle moving along the
avenue sends a video sequence and the RSUs act as video
clients. The first and simple experiment, with no background
traffic, produces a 0% of packets lost. In this case, when the
vehicle is in one of the overlapped areas, the RSUs are merely
listening, so there are no packet losses. Also, since the RSUs
are located so that they cover the whole avenue, they get all

Fig. 5. Subjective evaluation. Encoded/decoded frame number 276 without
any losses

Fig. 6. Subjective evaluation. Reconstruction of frame 276 under packet
losses without activating the simple error concealment method

Fig. 7. Subjective evaluation. Reconstruction of frame 276 under packet
losses with the simple error concealment method active

the sent packets. When the vehicle is in an overlapped area,
then 2 RSUs receive the same packets. This does not cause any
problem because the application checks this, simply discarding
duplicated packets. When adding background traffic the results
are very similar of those shown in Figure 3. This experiment
has revealed that a single vehicle sending video to the RSUs
does not create any new problem; instead, it is a softer one.

V. CONCLUSIONS

From the experiments and measurements we have observed
that HEVC is very sensitive to packet losses. Varying the
number of slices per frame can lead to an improvement or
a worsening of the situation, so an adaptive mechanism that
measures the SCH saturation and changes the number of slices
per frame can help with the percentage of packet losses. Also,
we have observed that Intra refreshing improves the quality
of the reconstructed video, but it is not enough to guarantee

a good video experience. A simple mechanism of error con-
cealment has been implemented in the reference software, and
subjectively proved to give some relief to a damaged video.
A combination of both protection of packets at network level,
and error resilience techniques at application level is needed
to guarantee the minimum video quality required.

ACKNOWLEDGMENT

This work was supported by Spanish Ministerio de Ciencia
e Innovacion under project TIN2011-27543-C03-03 and Con-
selleria de Educacion, Formacion y Empleo de la Generalitat
Valenciana under project ACOMP/2013/003.

REFERENCES

[1] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, Y.-K. Wang, and
T. Wiegand, “High Efficiency Video Coding (HEVC) text specification
draft 10,” Joint Collaborative Team on Video Coding (JCT-VC), Geneva
(Switzerland), Tech. Rep. JCTVC-L1003, January 2013.

[2] J.-R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand,
“Comparison of the Coding Efficiency of Video Coding Standards -
Including High Efficiency Video Coding (HEVC).” IEEE Trans. Circuits
Syst. Video Techn., vol. 22, no. 12, pp. 1669-1684, 2012.

[3] R. Garcia and H. Kalva, “Subjective evaluation of HEVC in mobile
devices,” in Proceedings of SPIE, ser. Multimedia Content and Mobile
Devices, vol. 8667, 2013, pp. 86 670L-86 670L-9.

[4] J. Nightingale, Q. Wang, and C. Grecos, “HEVStream: a framework
for streaming and evaluation of high efficiency video coding (HEVC)
content in loss-prone networks,” IEEE Trans. Consumer Electronics,
vol. 58, no. 2, pp. 404—412, 2012.

[5]1 J.-S. Park, U. Lee, and M. Gerla, “Vehicular communications: emer-
gency video streams and network coding,” Journal of Internet Services
and Applications, vol. 1, no. 1, pp. 57-68, 2010.

[6] M. Asefi, J. W. Mark, and X. Shen, “A Cross-Layer Path Selection
Scheme for Video Streaming over Vehicular Ad-Hoc Networks,” in
Vehicular Technology Conference Fall (VIC 2010-Fall), 2010 IEEE
72nd, 2010, pp. 1-5.

[71 M. Asefi, S. Cespedes, X. Shen, and J. W. Mark, “A Seamless Quality-
Driven Multi-Hop Data Delivery Scheme for Video Streaming in Urban
VANET Scenarios,” in Communications (ICC), 2011 IEEE International
Conference on, 2011, pp. 1-5.

[8] G. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the High
Efficiency Video Coding (HEVC) Standard,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 22, no. 12, pp. 1649—
1668, 2012.

[91 HM Reference Software vers. 9.0, https://hevc.hhi.fraunhofer.de/svn/
svin_HEVCSoftware/tags/HM-9.0.

[10] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent devel-
opment and applications of SUMO - Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements,
vol. 5, no. 3&4, pp. 128-138, December 2012.

[11] OMNeT++, http://www.omnetpp.org.

[12] MiXiM, http://mixim.sourceforge.net.

[13] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled
Network and Road Traffic Simulation for Improved IVC Analysis,”
IEEE Transactions on Mobile Computing, vol. 10, no. 1, pp. 3-15,
January 2011.

[14] “IEEE Standard for Wireless Access in Vehicular Environments
(WAVE)-Multi-channel Operation,” IEEE Std 1609.4-2010 (Revision
of IEEE Std 1609.4-2006), pp. 1-89, 2011.

[15] OpenStreetMap, http://wwww.openstreetmap.org.

[16] F. Bossen, “Common test conditions and software reference configura-

tions,” Joint Collaborative Team on Video Coding (JCT-VC), Geneva
(Switzerland), Tech. Rep. JCTVC-L1100, January 2013.

