
A SIMPLE PICTURE CODING ALGORITHM
WITH FAST RUN-LENGTH MODE 1

J. Oliver, M. P. Malumbres

Department of Computer Engineering (DISCA)

Technical University of Valencia
Camino de Vera 17, 46017 Valencia, Spain

E-mail: {joliver, mperez}@disca.upv.es

ABSTRACT1

Complex image coding algorithms have been previously
proposed in order to achieve high rate/distortion
performance, while features like SNR/resolution salability
and error resilience are also usually considered. The
complexity of these algorithms lies not only in their design
but also in their computation, resulting in slow execution
times.
In this paper, we present a new wavelet image coder that is
extremely simple in its definition and implementation,
performing faster than previous proposals. Despite its
simplicity, real implementations have shown that its
rate/distortion performance is within the state-of-the-art.
Thus, our algorithm presents the same PSNR distortion as
SPIHT and JASPER (an official JPEG2000
implementation) while both of them are slower in real
executions.
Moreover, our proposal is resolution scalable and presents
more robustness than SPIHT, due to its lack of inter-band
dependency. In addition, a run-length mode, which
improves its execution time, is described.

1. INTRODUCTION

Wavelet image encoders have been proved to be the best
compression schemes in term of rate/distortion (R/D)
optimization. However, one of the main drawbacks in
previous wavelet image encoders [1][2][3] is their high
complexity. That is mainly due to the bit plane processing,
that is performed along different iterations, using a
threshold that focuses on a different bit plane in each
iteration. This way, it is easy to achieve an embedded bit-
stream with progressive coding, since more bit planes add
more SNR resolution to the image.

1 This work was supported by the Spanish Ministry of
Science and Technology under Grant TIC 2000-1151-c07-
01 and by the Generalitat Valenciana research Grant
CTIDIB/2002/19

Although embedded bit-stream is a nice feature in an
image coder, it is not always needed and other alternatives,
like resolution scalability, may be more valuable according
to the final purpose. In this paper, we propose a very fast
and simple algorithm that is able to encode the wavelet
coefficients without performing one loop scan per bit
plane. Instead of it, only one scan of the transform
coefficients is needed.

In section 2, the simple wavelet image coder is
presented, while it is tuned and evaluated in section 3.
Section 4 introduces a run-length mode, and numerical
results from real executions are attained in section 5.
Finally, some conclusions are drawn in section 6.

2. A SIMPLE WAVELET IMAGE CODER

In the proposed algorithm, the quantization process is
performed by two strategies: one coarser and another finer.
The finer one consists in applying a scalar uniform
quantization to the coefficients, and it is performed just
after the DWT is applied. The coarser one is based on
removing bit planes from the least significant part of the
coefficients, and it is performed while the algorithm is
applied. Now we can define rplanes as the number of less
significant bits to be removed.

At encoder initialization, the maximum number of bits
needed to represent the highest coefficient (maxplane) is
calculated. This value and the rplanes parameter are
output to the decoder. Afterwards, we initialize an
adaptive arithmetic encoder that is used to encode the
number of bits required by the coefficients. We encode all
the coefficients. For those coefficients that require more
than rplanes bits to be coded (ci,j<2rplanes), we use an
arithmetic symbol indicating how many bits are necessary
in order to encode that symbol. Only maxplane-rplanes
symbols of this type are needed to represent this
information. However, an extra symbol, called LOWER
symbol, is required to encode those coefficients that are
lower than the established threshold (2rplanes). Notice that
we say that ci,j is a significant coefficient when it is

different to zero after discarding the least significant
rplanes bits, in other words, if ci,j ≥ 2rplanes.

In the next stage, the wavelet coefficients are encoded
as follows. For each subband, all its coefficients are
scanned. In order to preserve the locality of the
information, the proposed scan order is not line-by-line but
medium-sized blocks. A good block size for the scanning
is the same size as the LLN subband (the smallest and
lowest-frequency subband in a dyadic decomposition). For
each coefficient in a subband, if it is significant, a symbol
indicating the number of bits required to represent that
coefficient is arithmetically encoded. As coefficients in the
same subband have similar magnitude, and due to the
order we have established to scan the coefficients, the
adaptive arithmetic encoder is able to represent very
efficiently this information. However, we do not have
enough information to reconstruct correctly the

coefficient; we still need to encode its significant bits and
sign.

On the other hand, if a coefficient is not significant,
we should code a LOWER symbol, so that the decoder can
determine that it has been absolutely quantized, and thus it
does not have associated information (neither coefficient
bits nor sign).

Notice that when encoding the bits of a significant
coefficient, the first rplanes bits and the most significant
bit are not coded, the decoder can deduce the most
significant bit through the arithmetic symbol that indicates
the number of bits required to encode this coefficient.
Moreover, in order to speed up the execution time of the
algorithm, the bits and sign of significant coefficients are
raw encoded, which results in very small lost in R/D
performance.

This is the encoding algorithm, algorithm I:

44.95

45

45.05

45.1

45.15

45.2

45.25

45.3

0 100 200 300 400 500 600 700

P
S

N
R

(d
B

)

Increasing factor

rate=2 bpp

36.98

37

37.02

37.04

37.06

37.08

37.1

37.12

37.14

0 100 200 300 400 500 600 700

P
S

N
R

(d
B

)

Increasing factor

rate=0.5 bpp

33.88

33.9

33.92

33.94

33.96

33.98

34

34.02

34.04

0 100 200 300 400 500 600 700

P
S

N
R

(d
B

)

Increasing factor

rate=0.25 bpp

30.82

30.84

30.86

30.88

30.9

30.92

30.94

30.96

30.98

0 100 200 300 400 500 600 700

P
S

N
R

(d
B

)

Increasing factor

rate=0.125 bpp

Figure 1: PSNR performance according to the increasing factor in the adaptive model, with high, medium and low bit rates

(E1) INITIALIZATION
output rplanes

output maxplane () { }ji
LLc

c
Nji

,2logmax
, ∈∀

=

(E2) OUTPUT THE COEFFICIENTS. Scan the subbands
in the established order.
For each ci,j in a subband

() jiji cnbits ,2, log=

if rplanesnbits ji >,

arithmetic_output jinbits ,

output () ()jirplanejinbits cc
ji ,1,1 bitbit
),(+− �

output sign(jic ,)

else
arithmetic_output LOWER

Note: ()cnbit is a function that returns the nth bit of c.

3. TUNING THE PROPOSED ALGORITHM

Despite of the proposed algorithm simplicity, its
rate/distortion performance is competitive with the state-
of-the-art image coders, provided the suitable tuning of
parameters is applied. In this section, we present some
details on the algorithm that make it more efficient. In
order to perform the desired tests, we have selected the
standard Lena image as basis pattern.

An adaptive arithmetic encoder is used to efficiently
encode the symbols that are output in the coding process.
A regular adaptive arithmetic encoder uses a dynamic
histogram to estimate the current probability of a symbol.
In order to update this probability, a frequency count
associated to a symbol is increased every time that it is
encoded. Thus, we can consider a new parameter
regarding how much the histogram is increased with every
symbol; we call this parameter increasing factor. In the
original adaptive arithmetic encoder, a value of one was
used for this parameter. We have observed that if this
value is greater than one, the adaptive arithmetic encoder
may converge faster to local image features, leading to
higher compression ratios. However, increasing it too high
may turn the model (pdf estimation) inappropriate, leading
to poorer performance. Besides, this parameter can be
evaluated along with the maximum frequency count. When
this value is exceeded by the sum of all the counts in the
arithmetic encoder histogram (this count is called
cumulative frequency count), all these counts are halved
and thus overflow is prevented (see more details in [4]).
The original proposal for this parameter is 16384 (when
using 16 bits for coding), but experimental tests have led
us to use a slightly lower value, 12500, so the model is
halved more often.

In figure 1, we have evaluated the PSNR performance
for several increasing factors, using low, medium and high
compression rates (2bpp, 0.5bpp, 0.25 and 0.125bpp).
This figure shows that, for the proposed maximum
frequency count (12500), an optimal increasing factor is
located around 200 for all the bit rates, achieving a profit
of about 0.1-0.3 dB when it is compared to the original
proposal (i.e., increasing only one).

As we mentioned previously, coefficients in the same
subband have similar magnitude. In order to take better
profit from this fact, different histograms may be handled
according to the magnitude of previously coded
coefficients, i.e., according to the coefficient context. In
particular, we propose the use of two different contexts
according to the significance of the left and upper
coefficients (already encoded if a typical scan order is
performed). So, if both coefficients are insignificant, the
coefficient being encoded is likely to be also insignificant,
and thus a specific probability model is used.

coder/

rate(bpp)
Proposed
algorithm

Proposed
with ctxt.

Jasper/
JPEG2000 SPIHT

2 45.30 45.30 44.62 45.07
1 40.24 40.32 40.31 40.41

0.5 36.95 37.13 37.22 37.21
0.25 33.79 34.02 34.04 34.11

0.125 30.79 30.97 30.84 31.10

Table 1: PSNR(dB)with different bit rates and coders using Lena

The benefit of using contexts is shown in table 1,

where the PSNR/bit rate performance is presented for both
cases (first and second columns), attaining a profit of up to
0.2 dB. On the other hand, in this table we can see that our
coder is within the state-of-the-art in terms of
rate/distortion performance, displaying similar PSNR
results to SPIHT and Jasper [5], an official
implementation of JPEG 2000 included in the ISO/IEC
15444-5.

Although our algorithm executes faster than SPIHT
and Jasper (it will be shown in section 5) it presents a
major drawback for low bit rate images. If we analyze the
description in previous section, we can observe that all the
symbols are explicitly encoded, i.e., heightwidth ×
symbols are arithmetically encoded. As we know, the
adaptive arithmetic encoder is one of the slower parts of
an image coding system. In our algorithm, experimental
results have shown that, for low bit rates, more than 3/4
part of time is expended in the arithmetic encoder system.
Besides, most of those symbols being encoded have been
absolutely quantized, and are always represented by the
same symbol: LOWER.

In order to overcome this problem and to reduce the
complexity in these cases, a way of grouping large streams

of LOWER symbols seems necessary. It will be introduced
in next section.

4. FAST RUN-LENGTH MODE

In this section, a run mode is introduced in the algorithm
proposed in section 2. This run mode serves to reduce
complexity in the case of large number of consecutive
LOWER symbols, which usually occurs in moderate to
high compression ratios. Very minor improvements in
compression performance are expected, due to the fact that
we are replacing many likely symbols by a symbol or
symbols that indicate the count of LOWERs, which will be
less likely. Therefore, although less number of symbols are
encoded, the probability dispersion affects adversely to the
adaptive arithmetic encoder, since it works better with
probability concentration.

We know that, in this new version, a run length count
of LOWER symbols is performed, however this run mode
is only applied when the LOWER count passes a threshold
value (called enter_run_mode parameter). Otherwise, the
compression performance of the algorithm would decrease
due to the large number of run-length symbols introduced
replacing short streams of the same type of symbol, the
LOWER symbol.

When the run count is interrupted by a significant
symbol, and the run value is high enough (greater than
enter_run_mode), the value of the run length count must
be output to the decoder and the run count resets.

At this point, a new symbol is introduced: the RUN
symbol. This symbol is used to indicate that a run value is
going to be encoded. After encoding a RUN symbol, the
run count is stored in a similar way as the significant
values. First, the number of bits needed to encode the run
value is arithmetically output (using a different context)
afterwards, the bits are raw output.

This is the new run-length version, algorithm II:

(E1) INITIALIZATION
output rplanes

output maxplane () { }ji
LLc

c
Nji

,2logmax
, ∈∀

=

run_length=0
(E2) OUTPUT THE COEFFICIENTS. Scan the subbands
in the established order.
For each ci,j in a subband

() jiji cnbits ,2, log=

if rplanesnbits ji ≤,

increase run_length
else

if 0_ ≠lengthrun
if modeenter_run_run_length <

repeat run_length times
arithmetic_output LOWER

else
arithmetic_output RUN

() run_lengthrbits 2log=
arithmetic_output rbits
output

() ()run_lengthrun_legthrbits 11 bitbit �−
run_length=0

arithmetic_output jinbits ,

output () ()jirplanejinbits cc
ji ,1,1 bitbit
),(+− �

output sign(jic ,)

Note: ()cnbit is a function that returns the nth bit of c
Algorithms I and II are resolution scalable, due to the

selected scanning order and the nature of the wavelet
transform. This way, the first subband that the decoder
attains is the LLN, which is a low-resolution scaled version
of the original image. Then, the decoder progressively
receives the remaining subbands increasing the image
resolution. The robustness of the proposed algorithms lies
in the low dependency among the encoded information.
This dependency is only present in consecutive arithmetic
encoded symbols and run-length counts, and thus, the use
of synchronism marks would increase the error resilience
at the cost of slightly decreasing the R/D performance.

5. NUMERICAL RESULTS

We have implemented these algorithms in order to test
their compression and complexity performance. The
reader can easily perform new tests using the win32
version of this coder, available at
http://www.disca.upv.es/joliver/wavelet/RLW.zip.

In order to compare our algorithm with other wavelet
encoders, the standard Lena and Barbara images are used.
The results for Lena using run-length mode are practically
the same as those shown in table 1, version with contexts.
With the correct election of the enter_run_mode
parameter (128 in our tests), compression performance for
high bit rates is certainly the same (+/- 0.01dB), and at low
bit rates, very small improvement is achieved (+0.03 dB).

Table 2 shows similar compression performance
comparison using a high frequency image, Barbara. In this
case, our algorithm is clearly better than SPIHT but it is
unable to reach the performance of JPEG 2000, due to the
high number of contexts used in this standard.

We have seen that including a run-length mode has
not significantly improved the compression performance.
However, the main goal of these mode was reducing the
complexity of the algorithm, most of all for low bit rates.
We can see in tables 3 and 4, where the execution time for
coding and decoding Lena is presented. This objective has

been carried out. In fact, the number of symbols
arithmetically encoded at 0.125 bpp has passed from
512x512 (262144) to only 27485, and then, the execution
time expended in the arithmetic encoder system has
decreased from 3/4 to less than 1/3 part of the total.

In these tables, we also can observe that our final run-
length proposal is up to ten times faster than Jasper/JPEG
2000 when encoding, and up to twice when decoding.
Beside, compared with SPIHT, our algorithm is approx.
twice faster in the coding process and up to 3.5 times
faster in the decoding process.

coder/

rate(bpp)
Proposed
run-length

Jasper/
JPEG2000 SPIHT

1 36.54 37.11 36.41
0.5 31.66 32.14 31.39
0.25 27.95 28.34 27.58

0.125 25.12 25.25 24.86

Table 2: PSNR (dB) with diff. bit rates and coders using Barbara

codec\
rate SPIHT Jasper /

JPEG 2000
Proposed
(with ctxt)

Proposed
(run-length)

2 210.4 278.5 91.2 95.4
1 119.4 256.1 64.3 61.2

0.5 72.3 238.2 52.7 37.0
0.25 48.7 223.4 47.0 25.5

0.125 36.8 211.3 44.0 19.7

Table 3: Execution time for coding (Million of CPU cycles)

codec\
rate SPIHT Jasper /

JPEG 2000
Proposed
(with ctxt)

Proposed
(run-length)

2 217.0 108.8 91.3 93.7
1 132.7 72.3 70.2 63.0

0.5 90.7 51.4 60.3 36.3
0.25 69.6 38.1 55.4 24.1

0.125 59.7 31.3 53.0 17.8

Table 4: Execution time for decoding (Million of CPU cycles)

6. CONCLUSIONS

In this paper, we have presented a new simple wavelet
algorithm with run-length mode. This coder is simpler than
previous proposals while its compression performance is
within the state-of-the-art. Although the complexity of this
algorithm is lower than others (like JPEG 2000 and
SPIHT), a run-length mode is introduced in order to
decrease it, especially at low bit rates. This way, we have
seen that our proposal is up to 10 times faster than Jasper,
and 3.5 faster than SPIHT.

Due to its lower complexity, the lack of memory
overhead, possibility of robustness (no inter-band
dependency) and high symmetry in coding and decoding
execution times, we think that it is a good candidate for
real-time interactive multimedia communications.

7. REFERENCES

[1] ISO/IEC 15444-1: “JPEG2000 image coding system,” 2000.

[2] J.M. Shapiro, “Embedded Image Coding Using Zerotrees of
Wavelet Coefficients,” IEEE Tr.Signal Proc, vol. 41, Dec. 1993.

[3] A. Said, A. Pearlman. “A new, fast, and efficient image
codec based on set partitioning in hierarchical trees,” IEEE
Trans. on circuits and sys. for video tech, vol. 6, nº 3, June 1996.

[4] I.H. Witten, R.M. Neal, J.G. Cleary, “Arithmetic coding for
compression,” Commun. ACM, vol 30. pp. 520-540, 1986.

[5] M. Adams. “Jasper Software Reference Manual (Version
1.600.0,” ISO/IEC JTC 1/SC 29/WG 1 N 2415, Oct. 2002.

