E-LTW: AN ENHANCED LTW ENCODER WITH SIGN CODING AND PRECISE RATE
CONTROL

O.Lopez, M.Martinez, P Pifiol, M.P.Malumbres

Universidad Miguel Hernandez
Physics and Computer Science
Avda. Universidad s/n, 03202 Elche, Spain

ABSTRACT

Traditional embedded coding systems involve high complex-
ity algorithms, requiring fast and expensive processors. In the
last years, several authors have developed very fast and sim-
ple non-embedded wavelet encoders that are able to get rea-
sonable good performance with reduced computing require-
ments. These encoders have lost the SNR scalability and pre-
cise rate control capabilities. In this paper, we propose a new
non-embedded LTW codec version (E-LTW) with precise rate
control method and good R/D performance due to the use of
intra band neighboring context modeling for sign coding.

Index Terms— Image coding, Wavelet transforms

1. INTRODUCTION

Wavelet transforms have proven to be very powerful tools
for image compression. Many state-of-the-art image codecs,
including the JPEG2000 image coding standard, employ a
wavelet transform in their algorithms ([1, 2]). At the be-
ginning the EZW [3] began the race for efficient image
coding by introducing the idea of wavelet coefficient-trees
and successive approximations, which can be implemented
with bit-plane coding. SPIHT [2] is an advanced version
of EZW, where coefficient trees are processed in a more ef-
ficient way. In this coder, coefficient-trees are partitioned
depending on the significance of the coefficients belonging
to each tree. Both EZW and SPIHT need the computation
of coefficient-trees to search for significant coefficients and
they need several iterations focusing on a different bit-plane,
which involves high computational complexity. In the final
JPEG 2000 standard [1], the proposed algorithm does not use
coefficient-trees, but it performs bit-plane coding in code-
blocks, with three passes per plane, so the most important
information is first encoded. In order to overcome the disad-
vantage of not using coefficient-trees, it also uses an iterative
optimization algorithm, based on the Lagrange multiplier
method, along with a large number of contexts, which are
very time-consuming.

*Thanks to Spanish Ministry of education and Science under grant
DPI2007-66796-C03-03 for funding.

978-1-4244-5654-3/09/$26.00 ©2009 IEEE

2821

J. Oliver*

Universidad Politécnica de Valencia
Computer Science
Camino de Vera s/n, 46022 Valencia, Spain

The use of complex mechanisms to improve coding ef-
ficiency makes the encoder very slow and typically with
high memory demands. This issue may be a serious limi-
tation for certain kind of applications like the ones related
to real-time multimedia communication services, where the
coding/decoding times are constrained to the application
requirements (e.g., reduced shot speed in digital cameras).
Several authors have considered this issue in order to design
fast and low-memory consuming coders. Most of these works
reduce coding complexity by removing the embedded feature
of the final bitstream, among other optimization issues.

A non-embedded version of SPIHT was first proposed to
reduce complexity in tree-based wavelet coding [4]. In this
modified SPIHT, once a coefficient is found to be signifi-
cant, all the significant bits are encoded, avoiding the refine-
ment passes. In [5], authors propose the LTW codec that,
with similar ideas plus some optimizations, avoids bit-plane
processing with very low memory requirements and similar
R/D performance to the one obtained by embedded encoders
like JPEG2000 and SPIHT. PROGRES, another very fast non-
embedded encoder, has been recently proposed [6], following
the same ideas of [5], arranging the coefficients in order to
achieve resolution scalability.

In this paper, we propose an enhanced version of the LTW
encoder (E-LTW) that includes a sign coding tool and a new
precise rate-control method. These new features will improve
the R/D behavior providing non-embedded encoders with a
high accurate rate control tool.

2. TEXTURE CODING: FAST & EFFICIENT LTW
ENCODER

LTW is a tree-based wavelet image encoder, with state-of-the-
art coding efficiency, but less resource demanding than other
encoders in the literature. The basic idea of this encoder is
very simple: after computing a dyadic wavelet transform of
an image, the wavelet coefficients are first quantized and then
encoded with arithmetic coding.

In LTW, the quantization process is performed by means
of two strategies: one coarser and another finer. The finer

ICIP 2009

one consists in applying a scalar uniform quantization (Q) to
wavelet coefficients. The coarser one is based on removing
the least significant bit planes (rplanes) from wavelet coeffi-
cients.

For the coding stage, if the absolute value of a coeffi-
cient and all its descendants (considering the classic quad-tree
structure from [2]) is lower than a threshold value (27P/*"¢5),
the entire tree is encoded with a single symbol, which we call
LOWER symbol (indicating that all the coefficients in the tree
are lower than 27P!%"¢s and so they form a lower-tree). But
if a coefficient is lower than the threshold and not all its de-
scendants are lower than it, that coefficient is encoded with
an ISOLATED LOWER symbol. On the other hand, for each
wavelet coefficient higher than 277195 we encode a symbol
indicating the number of bits needed to represent that coef-
ficient, along with a binary coded representation of its bits
and sign (note that the rplanes less significant bits are not en-
coded).

More details about the coding and decoding algorithms,
along with a formal description and an example of use can be
found in [5].

3. ENHANCED LTW ENCODER (E-LTW)

As mentioned before, the E-LTW encoder is based on the
LTW coding engine. The new features included in this new
codec are the use of intra band neighboring context model-
ing for sign coding and an improvement of the model-based
rate control method proposed in [7] that turns it into a high
accurate rate control tool.

3.1. Sign Coding

In the former wavelet image encoders, sign coding of wavelet
coefficients was not considered, because those coefficients
located at the high frequency subbands form a zero-mean
process, and therefore positive and negative coefficients are
equally probable.

Schwartz, Zandi and Boliek were the first authors to con-
sider sign coding, using the sign of one neighboring pixel in
their context modeling algorithm [8]. The main idea behind
this approach is to find correlations along and across edges.

As explained in [9], given a vertical edge in an HL sub-
band, it is reasonable to expect the transform coefficients
along this edge to be positively correlated. Neighboring
coefficients along the edge are considered valuable context
information, and are expected to have the same sign as the
coefficient being coded. It is also important to consider
correlation across edges, being the nature of the correlation
directly affected by the structure of the high pass filter. For
Daubechies’ 9/7 filters, wavelet coefficient signs are strongly
negatively correlated across edges because this filter is very
similar to a second derivative of a Gaussian, so, it is ex-
pected that wavelet coefficients will change sign as the edge

2822

is crossed.

The sign neighborhood correlation depends on the sub-
band type (HL,LH,HH) as Deever assesses in [9]. After the
analysis of the neighborhood probability distribution, we have
determined that for HL subband, the neighbors which sign is
more correlated with the sign of the current coefficient are
N (North), NN (North-North) and W (West)'. Taking into
account symmetry, for LH subband, those neighbors are W,
WW and N and for the HH subband are N, W and NW, look-
ing for diagonal edges. At this point, for each subband type
we have a maximum of 3% neighbor sign combinations be-
cause each coefficient can be positive, negative or insignifi-
cant.

After having analyzed all the possible neighbors combi-
nations for each subband type and for each wavelet decom-
position level, we could make a prediction of the current co-
efficient sign. With the prediction of the current coefficient
(SC; j [K]) based on the neighborhood sign information, we
encode the result of sign prediction (success or failure). That
is, a binary valued symbol from SC; ; [k] - SC; ;. In order
to compress as much as possible this binary valued symbol,
we have used two context for each subband type. So as to
minimize the zero order entropy of both contexts, we have
distributed all sign coding predictions from the neighborhood
between them. The selection criteria is to isolate in one con-
text those combinations with the highest correctness predic-
tion probability and highest number of occurrences. The rest
of combinations are grouped into the other context. However,
there are certain combinations with low correctness probabil-
ity but with a great amount of occurrences, so we have to
heuristically determine the convenience of including them in
the first context or not.

The maximum bit gain due to sign compression is 17.35%
when implemented in LTW for Barbara at 1 bpp and the min-
imum gain is 5.42% for Lena image at 0.125 bpp. This gain,
in terms of R/D, implies an improvement up to 0.25 dB, be-
ing greater the improvement at low and medium compression
rates.

3.2. Rate Control

The new rate control method is based on a modified version
of the Model-based rate control algorithm presented in [7].
Given a source image and the target bitrate, the proposed
model should supply an accurate estimation of both quanti-
zation parameters (Q and rplanes). As presented in [7], the
proposed rate control method has an intrinsic average error
of 5% at 1 bpp and 9% at 0.125 bpp. It is important to say
that the resulting bit-rate is always lower than the target one
leading to a PSNR performance loss.

The modified rate control method should take into account

"Due to the LTW scan order restrictions, when encoding a significant
coefficient, its South and East neighbors are not available, so they cannot
participate in the sign prediction contexts.

Bit-rate | E-LTW | LTW-RC | Gain
Barbara (512x512)

1 36.69 35.61 1.08
0.5 31.63 30.80 0.83
0.25 27.92 27.09 0.82
0.125 25.02 24.29 0.72

0.0625 23.28 23.02 0.26
Bike (2048x2560)

1 37.82 36.97 0.85
0.5 33.28 32.36 0.92
0.25 29.45 28.40 1.04
0.125 26.09 25.09 1.00

0.0625 23.40 22.85 0.55

Table 1. PSNR (dB) gain for several test images.

the new sign coding tool and the intrinsic model error. The
idea is to fix the underestimation error in order to match the
final bit-rate with the target one. To do that, we first estimate a
’Delta_Q’ reduction factor in such a way that the resulting bit-
rate is under the target one, but this time very close to it. Then,
we append the number of bits required to match the target
bit-rate to the bitstream, by using those bits of the significant
coefficients that correspond to bit-planes lower or equal to the
rplanes quantization parameter (bits that were removed after
applying rplanes coarser quantization). These extra bits are
appended to the bitstream in a bit-plane order (from bit-plane
’rplane’ to 0) scanning the significant coefficients from the
low frequency subbands to the highest ones (see Figure 1).

Wavelet subbands order (resolution scalability)

| LL“| HL“| LH,

HH, . | HH, | Ord. Coeff_bits

rplanes...0

Subband coefficient

Symbol Sign & bits
Coeff: (if significant)

| [Raw bits
=1 Sign coding

[ZZ1 Symbol coding

Sign prediction
(OK or ERR)

Coeff_bit
MSB

Coeff_bit
rplanes+1

Fig. 1. E-LTW bistream format.

4. RESULTS

In this section we analyze the behavior of the proposed en-
coder (E-LTW). We will compare E-LTW encoder versus
JPEG2000 (Jasper 1.701.0), SPIHT (Spiht 8.01) and original
LTW_RC (initial rate control version), in terms of R/D, cod-
ing and decoding delay and memory requirements. All the
evaluated encoders have been tested on an Intel PentiumM
Dual Core 3.0 GHz with 1 Gbyte RAM memory. The en-
coders binaries were obtained by means of Microsoft Visual
C++ (2005 version) compiler with the same project options.

2823

Bit-rate || E-LTW | LTW-RC | JPEG2000 | SPIHT
Barbara (512x512)

1 36.69 35.61 37.11 36.41
0.5 31.64 30.80 32.14 31.39
0.25 27.92 27.09 28.33 27.58
0.125 25.02 24.30 25.25 24.86

0.0625 23.28 23.02 23.09 23.35
Lena (512x512

1 40.34 40.34 40.38 40.46
0.5 37.29 36.76 37.27 37.25
0.25 34.18 33.65 34.05 34.15
0.125 31.14 30.59 30.82 31.10

0.0625 28.37 27.80 27.84 28.38

Table 2. PSNR (dB) with different bit-rate and coders.

Bit-rate || E-LTW | LTW-RC | JPEG2000 | SPIHT
Barbara (512x512)

1 0.051 0.037 0.080 0.042
0.5 0.031 0.023 0.076 0.026
0.25 0.026 0.018 0.074 0.018
0.125 0.015 0.010 0.073 0.014

0.0625 0.014 0.008 0.072 0.011
Cafe (2048x2560)

1 0.914 0.648 2.623 0.920
0.5 0.527 0.382 2.543 0.521
0.25 0.349 0.225 2.507 0.323
0.125 0.198 0.158 2.518 0.221

0.0625 0.140 0.105 2.509 0.172

Table 3. Coding delay (seconds) excluding DWT time.

In Table 1 we show the PSNR (dB) gain when comparing
E-LTW with LTW-RC. As it can be seen there is a great im-
provement in PSNR (1.08 dB for Barbara image). The maxi-
mum PSNR improvement obtained is 1.6 dB for Zelda image
at 2 bpp?. In Table 2 we show the E-LTW behavior in R/D
when compared to SPIHT and JPEG2000. As shown, for high
textured images like Barbara, JPEG2000 has a better behav-
ior than E-LTW and SPIHT, being E-LTW better than SPIHT
(up to 0.34 dB for Barbara image at 0.25 bpp). On the other
hand, in images like Lena or Zelda, both SPIHT and E-LTW
have a better behavior than JPEG2000 (up to 0.52 dB at high
compression rates).

As it could be expected, the E-LTW uses more the arith-
metic encoder than the LTW when coding the sign, so this
fact implies a higher computational cost in the coding and de-
coding process as shown in Table 3. The computational cost
increase is a 40% on average. For high resolution images
like Bike or Cafe, E-LTW still remains competitive respect to
SPIHT and JPEG2000. Remark that the arithmetic encoder

2PSNR differences between LTW-RC and the original LTW presented in
[5] are due to the use of higher rplanes values in the rate control stage on
LTW-RC and E-LTW, whereas in Original LTW, the rplanes value is 2 and
the finer quantization parameter Q grows without a limit.

E-LTW LTW-RC E-LTW LTW-RC
(Arithmetic) || (Arithmetic) | Total time | Total time
0.060 0.039 0.105 0.076

Reduction estimation (6 times fewer)

0.010

0.006

0.054

0.043

Table 4. Arithmetic encoder time for Lena test image when

coding at 2 bpp.
Codec/image || SPIHT [JPEG2000| LTW-RC |E-LTW
Lena 3228 4148 2092 | 2212
Cafe 46776 | 65832 21632 | 25392

encoder processing, so there is enough room for becoming
faster. Regarding memory requirements, E-LTW needs a
little extra amount of memory to store the rplanes less sig-
nificant bits. As future work we are planning to use a fast
adaptive arithmetic encoder like [11] to significantly reduce
the computational cost.

6. REFERENCES

(1]

“JPEG2000 part I final int. std.,” September 2000,
ISO/IEC JTC 1/SC 29/WG 1 N1890.

Table 5. Memory Requirements for evaluated encoders (KB)

used in E-LTW is a non optimized version of Witten encoder
[10], as opposed to SPTHT that uses an optimized arithmetic
encoder. In [11] an in depth comparison for several arith-
metic encoders is presented and the arithmetic encoder used
by SPIHT is at least six times faster than Witten’s one. Notice
that the arithmetic encoding process is responsible of 60%
(E-LTW) and 51% (LTW) of the total encoding time. So, by
using a faster arithmetic encoder implementation, the overall
coding/decoding time would be significantly reduced on both
encoders (see prediction on Table 4).

In Table 5, memory requirements of the encoders under
test are shown. The original LTW-RC needs only the amount
of memory to store the source image and an extra of 1.2 KB,
basically used to store the histogram of significant symbols
needed to accomplish the model-based rate control algorithm.
On the other hand, the E-LTW version requires a few extra
memory space to store the rplanes less significant bits of the
significant coefficients. SPIHT requires more memory space
than LTW-RC and E-LTW, and JPEG2000 needs twice the
memory of LTW-RC for medium size images and three times
for high definition images (results obtained with the Windows
XP task manager, peak memory usage metric).

5. CONCLUSIONS

In this paper we present a new LTW encoder version (E-
LTW), and we compare its performance with SPIHT and
JPEG2000 encoders in terms of R/D performance, coding de-
lay and memory consumption. The E-LTW encoder exhibits
good R/D performance (up to 0.52 dB at high compression
rates compared to JPEG2000 and up to 0.34 dB for high
textured images compared to SPIHT). The use of high con-
text modeling for sign coding has a high computational cost
(40% overhead) but E-LTW still remains competitive for high
resolution images (similar coding time than SPIHT and up
to 2.3 times faster than JPEG2000). Even more, the compu-
tational cost of our proposal is dominated by the arithmetic

[2] A. Said and A. Pearlman, “A new, fast and efficient
image codec based on set partitioning in hierarchical
trees,” [IEEE Transactions on Circuits, Systems and
Video Technology, vol. 6, no. 3, pp. 243-250, 1996.

[3] J.M. Shapiro, “A fast technique for identifying zerotrees
in the EZW algorithm,” Proc. IEEE Int. Conf. Acoust.,

Speech, Signal Processing, vol. 3, pp. 1455-1458, 1996.
[4]

W. A. Pearlman, “Trends of tree-based, set partition-
ing compression techniques in still and moving image

systems,” in Picture Coding Symposium, March 2001.

J. Oliver and M. P. Malumbres, “Low-complexity
multiresolution image compression using wavelet lower
trees,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 16, no. 11, pp. 1437—-1444,2006.

[5]

Yushin Cho, W. A. Pearlman, and A. Said, “Low com-
plexity resolution progressive image coding algorithm:
PROGRES (progressive resolution decompression),” in
IEEE International Conference on Image Processing,
September 2005.

[7] O. Loépez, M. Martinez-Rach, J. Oliver, and M.P.
Malumbres, “Impact of rate control tools on very
fast non-embedded wavelet image encoders,” in Visual
Communications and Image Processing 2007, January

2007.

[8] Edward L. Schwartz, Ahmad Z, and Martin Boliek,
“CREW: Compression with reversible embedded

wavelets,” in In Proc SPIE, 1995, pp. 212-221.
[9]

Aaron Deever and Sheila S. Hemami, “What’s your
sign?: Efficient sign coding for embedded wavelet im-
age coding,” in Proc. IEEE Data Compression Conf.,

Snowbird, UT, 2000, pp. 273-282.

[10] LH. Witten, R.M. Neal, and J.G. Cleary, “Arithmetic
coding for data compression,” Commun. ACM, vol. 30,

no. 6, pp. 520-540, 1987.
[11]

Amir Said, “Comparative analysis of arithmetic cod-
ing computational complexity,” Tech. Rep., Hewlett-

Packard Laboratories HPL-2004-75, 2004.

2824

